Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. In Vitro Experiment
2.1.1. In Vitro Fermentation Patterns
2.1.2. Gas and Methane Production
2.1.3. Statistical Analyses
2.2. In Vivo Experiment
2.2.1. Animals, Experimental Design, and Treatments
2.2.2. Experimental Ration, Feed Intake, and Apparent Digestibility
2.2.3. In Situ Study
2.2.4. Ruminal Fermentation Parameters
2.2.5. Methane Production
2.2.6. Chemical Analysis
2.2.7. Statistical Analyses
3. Results
3.1. In Vitro Experiments
3.1.1. In Vitro Fermentation Patterns
3.1.2. Gas and Methane Production
3.2. In Vivo Experiments
3.2.1. Feed Intake and Apparent Digestibility
3.2.2. In Situ Study
3.2.3. Rumen Fermentation Parameters
3.2.4. Methane Production
4. Discussion
4.1. In Vitro Experiments
4.2. In Vivo Experiment
4.2.1. Feed Intake and Apparent Digestibility
4.2.2. In Situ Study
4.2.3. Rumen Fermentation Parameters
4.2.4. Methane Production
4.3. In Vitro vs. In Vivo Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerber, P.J.; Mottet, A.; Opio, C.I.; Falcucci, A.; Teillard, F. Environmental Impacts of Beef Production: Review of Challenges and Perspectives for Durability. Meat Sci. 2015, 109, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial Ecosystem and Methanogenesis in Ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newbold, C.J. Effects and Mode of Action of Chitosan and Ivy Fruit Saponins on the Microbiome, Fermentation and Methanogenesis in the Rumen Simulation Technique. FEMS Microbiol. Ecol. 2016, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty Years of Research on Rumen Methanogenesis: Lessons Learned and Future Challenges for Mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [Green Version]
- Jafari, S.; Ebrahimi, M.; Goh, Y.M.; Rajion, M.A.; Jahromi, M.F.; Al-Jumaili, W.S. Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil)—A Review of Ten-Year Studies. Ann. Anim. Sci. 2019, 19, 3–29. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane Emissions from Cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Sampath, K.T. Nutrient Content, in Vitro Ruminal Fermentation Characteristics and Methane Reduction Potential of Tropical Tannin-Containing Leaves. J. Sci. Food Agric. 2012, 92, 2929–2935. [Google Scholar] [CrossRef]
- Hill, J.; McSweeney, C.; Wright, A.-D.G.; Bishop-Hurley, G.; Kalantar-zadeh, K. Measuring Methane Production from Ruminants. Trends Biotechnol. 2016, 34, 26–35. [Google Scholar] [CrossRef]
- Chatterjee, P.N.; Kamra, D.N.; Agarwal, N.; Patra, A. Influence of Supplementation of Tropical Plant Feed Additives on in Vitro Rumen Fermentation and Methanogenesis. Anim. Prod. Sci. 2014, 54, 1770–1774. [Google Scholar] [CrossRef]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divya, K.; Vijayan, S.; George, T.K.; Jisha, M.S. Antimicrobial Properties of Chitosan Nanoparticles: Mode of Action and Factors Affecting Activity. Fibers Polym. 2017, 18, 221–230. [Google Scholar] [CrossRef]
- Duffy, C.; O’Riordan, D.; O’Sullivan, M.; Jacquier, J.-C. In Vitro Evaluation of Chitosan Copper Chelate Gels as a Multimicronutrient Feed Additive for Cattle. J. Sci. Food Agric. 2018, 98, 4177–4183. [Google Scholar] [CrossRef]
- Henry, D.D.; Ruiz-Moreno, M.; Ciriaco, F.M.; Kohmann, M.; Mercadante, V.R.G.; Lamb, G.C.; DiLorenzo, N. Effects of Chitosan on Nutrient Digestibility, Methane Emissions, and in Vitro Fermentation in Beef Cattle. J. Anim. Sci. 2015, 93, 3539–3550. [Google Scholar] [CrossRef]
- Dias, A.O.C.; Goes, R.H.T.B.; Gandra, J.R.; Takiya, C.S.; Branco, A.F.; Jacaúna, A.G.; Oliveira, R.T.; Souza, C.J.S.; Vaz, M.S.M. Increasing Doses of Chitosan to Grazing Beef Steers: Nutrient Intake and Digestibility, Ruminal Fermentation, and Nitrogen Utilization. Anim. Feed Sci. Technol. 2017, 225, 73–80. [Google Scholar] [CrossRef]
- Raafat, D.; Sahl, H.-G. Chitosan and Its Antimicrobial Potential—A Critical Literature Survey. Microb. Biotechnol. 2009, 2, 186–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, A.P.C.; Venturelli, B.C.; Santos, M.C.B.; Gardinal, R.; Cônsolo, N.R.B.; Calomeni, G.D.; Freitas, J.E.; Barletta, R.V.; Gandra, J.R.; Paiva, P.G.; et al. Chitosan Affects Total Nutrient Digestion and Ruminal Fermentation in Nellore Steers. Anim. Feed Sci. Technol. 2015, 206, 114–118. [Google Scholar] [CrossRef]
- Gandra, J.R.; Takiya, C.S.; De Oliveira, E.R.; Paiva, P.G.; Goes, R.H.T.B.; Gandra, E.R.S.; Araki, H.M.C. Nutrient Digestion, Microbial Protein Synthesis, and Blood Metabolites of Jersey Heifers Fed Chitosan and Whole Raw Soybeans. R. Bras De Zootec. 2016, 45, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Campos, O.; Bodas, R.; Prieto, N.; Giraldez, F.J.; Perez, V.; Andres, S. Naringin Dietary Supplementation at 0.15% Rates Does Not Provide Protection against Sub-Clinical Acidosis and Does Not Affect the Responses of Fattening Lambs to Road Transportation. Animal 2010, 4, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.; Jia, Z.; Zheng, X.; Cui, S.; Chen, W. A Recent Review of Citrus Flavanone Naringenin on Metabolic Diseases and Its Potential Sources for High Yield-Production. Trends Food Sci. Technol. 2018, 79, 35–54. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population. Biomed. Res. Int. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Araiza-Ponce, K.; Murillo-Ortiz, M.; Herrera-Torres, E.; Valencia-Vázquez, R.; Carrete-Carreón, F.; Pamanes-Carrasco, G. Leucaena leucocephala y Opuntia ficus-indica reducen la producción de metano in vitro. Abanico Vet. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Patra, A.K.; Yu, Z. Combinations of Nitrate, Saponin, and Sulfate Additively Reduce Methane Production by Rumen Cultures in Vitro While Not Adversely Affecting Feed Digestion, Fermentation or Microbial Communities. Bioresour. Technol. 2014, 155, 129–135. [Google Scholar] [CrossRef]
- ANKOM Technology. ANKOM RF Gas Production System Operator’s Manual; ANKOM Technology: Macedon, NY, USA, 2008. [Google Scholar]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of Fiber Digestion from in Vitro Gas Production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef] [PubMed]
- González-Arreola, A.; Murillo-Ortíz, M.; Pámanes-Carrasco, G.; Reveles-Saucedo, F.O.; Herrera-Torres, E. Nutritive Quality and Gas Production of Corn Silage with the Addition of Fresh and Fermented Prickly Pear Cladodes. J. Anim. Plant Sci. 2019, 40, 6544–6553. [Google Scholar]
- SAS Institute. SAS Statistical Analysis System for Windows; Version 9.0; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- National Academies of Sciences, Engineering and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Schneider, B.; Flat, W. The Evaluation of Feeds through Digestibility Experiments; The University of Georgia: Athens, GA, USA, 1975. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Ryan, J.P. Determination of Volatile Fatty Acids and Some Related Compounds in Ovine Rumen Fluid, Urine, and Blood Plasma, by Gas-Liquid Chromatography. Anal. Biochem. 1980, 108, 374–384. [Google Scholar] [CrossRef]
- Canul-Solís, J.R.; Piñeiro-Vázquez, A.T.; Arceo-Castillo, J.I.; Alayón-Gamboa, J.A.; Ayala-Burgos, A.J.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J.; Castelán-Ortega, O.A.; Lachica-López, M.; Quintana-Owen, P.; et al. Design and Construction of Low-Cost Respiration Chambers for Ruminal Methane Measurements in Ruminants. Rev. Mex. De Cienc. Pecu. 2017, 8, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Valencia Salazar, S.S.; Piñeiro Vázquez, A.T.; Molina Botero, I.C.; Lazos Balbuena, F.J.; Uuh Narváez, J.J.; Segura Campos, M.R.; Ramírez Avilés, L.; Solorio Sánchez, F.J.; Ku Vera, J.C. Potential of Samanea Saman Pod Meal for Enteric Methane Mitigation in Crossbred Heifers Fed Low-Quality Tropical Grass. Agric. Meteorol. 2018, 258, 108–116. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Changes: Geneva, Switzerland, 2006; p. 26. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/0_Overview/V0_1_Overview.pdf (accessed on 3 March 2021).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kim, E.T.; Guan, L.L.; Lee, S.J.; Lee, S.M.; Lee, S.S.; Lee, I.D.; Lee, S.K.; Lee, S.S. Effects of Flavonoid-Rich Plant Extracts on In Vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics. Asian Australas. J. Anim. Sci. 2015, 28, 530–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, J.; Zhang, H.; Wang, J.; Liu, Y.; Mao, S.; Xiong, B.; Jiang, L. Effects of Different Molecular Weights of Chitosan on Methane Production and Bacterial Community Structure in Vitro. J. Integr. Agric. 2020, 19, 1644–1655. [Google Scholar] [CrossRef]
- Belanche, A.; Ramos-Morales, E.; Newbold, C.J. In Vitro Screening of Natural Feed Additives from Crustaceans, Diatoms, Seaweeds and Plant Extracts to Manipulate Rumen Fermentation: Alternative Feed Additives to Manipulate Rumen Function. J. Sci. Food Agric. 2016, 96, 3069–3078. [Google Scholar] [CrossRef] [Green Version]
- Haryati, R.P.; Jayanegara, A.; Laconi, E.B.; Ridla, M.; Suptijah, P. Evaluation of Chitin and Chitosan from Insect as Feed Additives to Mitigate Ruminal Methane Emission. In Proceedings of the International Conference on Biology and Applied Science (ICOBAS), Malang, Indonesia, 13–14 March 2019; AIP Publishing: College Park, MD, USA, 2019; p. 040008. [Google Scholar]
- Olagaray, K.E.; Bradford, B.J. Plant Flavonoids to Improve Productivity of Ruminants—A Review. Anim. Feed Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Beuvink, J.M.W.; Spoelstra, S.F. Interactions between Substrate, Fermentation End-Products, Buffering Systems and Gas Production upon Fermentation of Different Carbohydrates by Mixed Rumen Microorganisms in Vitro. Appl. Microbiol. Biotechnol. 1992, 37, 505–509. [Google Scholar] [CrossRef]
- Harahap, R.P.; Setiawan, D.; Nahrowi, N.; Suharti, S.; Obitsu, T.; Jayanegara, A. Enteric Methane Emissions and Rumen Fermentation Profile Treated by Dietary Chitosan: A Meta-Analysis of In Vitro Experiments. Trop. Anim. Sci. J. 2020, 43, 233–239. [Google Scholar] [CrossRef]
- Chagas, J.C.; Ramin, M.; Krizsan, S.J. In Vitro Evaluation of Different Dietary Methane Mitigation Strategies. Animals 2019, 9, 1120. [Google Scholar] [CrossRef] [Green Version]
- Mingoti, R.D.; Freitas, J.E.; Gandra, J.R.; Gardinal, R.; Calomeni, G.D.; Barletta, R.V.; Vendramini, T.H.A.; Paiva, P.G.; Rennó, F.P. Dose Response of Chitosan on Nutrient Digestibility, Blood Metabolites and Lactation Performance in Holstein Dairy Cows. Livest. Sci. 2016, 187, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Vendramini, T.H.A.; Takiya, C.S.; Silva, T.H.; Zanferari, F.; Rentas, M.F.; Bertoni, J.C.; Consentini, C.E.C.; Gardinal, R.; Acedo, T.S.; Rennó, F.P. Effects of a Blend of Essential Oils, Chitosan or Monensin on Nutrient Intake and Digestibility of Lactating Dairy Cows. Anim. Feed Sci. Technol. 2016, 214, 12–21. [Google Scholar] [CrossRef]
- Kirwan, S.F.; Pierce, K.M.; Serra, E.; McDonald, M.; Rajauria, G.; Boland, T.M. Effect of Chitosan Inclusion and Dietary Crude Protein Level on Nutrient Intake and Digestibility, Ruminal Fermentation, and N Excretion in Beef Heifers Offered a Grass Silage Based Diet. Animals 2021, 11, 771. [Google Scholar] [CrossRef]
- Wencelová, M.; Váradyová, Z.; Mihaliková, K.; Kišidayová, S.; Jalč, D. Evaluating the Effects of Chitosan, Plant Oils, and Different Diets on Rumen Metabolism and Protozoan Population in Sheep. Turk. J. Vet. Anim. Sci 2014, 38, 26–33. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen Methanogens and Mitigation of Methane Emission by Anti-Methanogenic Compounds and Substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadel El-Seed, A.N.M.A.; Kamel, H.E.M.; Sekine, J.; Hishinuma, M.; Hamana, K. Chitin and Chitosan as Possible Novel Nitrogen Sources for Ruminants. Can. J. Anim. Sci. 2003, 83, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Goiri, I.; Oregui, L.M.; Garcia-Rodriguez, A. Use of Chitosans to Modulate Ruminal Fermentation of a 50:50 Forage-to-Concentrate Diet in Sheep. J. Anim. Sci. 2010, 88, 749–755. [Google Scholar] [CrossRef] [PubMed]
- McGuffey, R.K.; Richardson, L.F.; Wilkinson, J.I.D. Ionophores for Dairy Cattle: Current Status and Future Outlook. J. Dairy Sci. 2001, 84, E194–E203. [Google Scholar] [CrossRef]
- Zanferari, F.; Vendramini, T.H.A.; Rentas, M.F.; Gardinal, R.; Calomeni, G.D.; Mesquita, L.G.; Takiya, C.S.; Rennó, F.P. Effects of Chitosan and Whole Raw Soybeans on Ruminal Fermentation and Bacterial Populations, and Milk Fatty Acid Profile in Dairy Cows. J. Dairy Sci. 2018, 101, 10939–10952. [Google Scholar] [CrossRef] [PubMed]
- Del Valle, T.; de Paiva, P.G.; de Jesus, E.F.; de Almeida, G.F.; Zanferari, F.; Costa, A.G.; Bueno, I.; Rennó, F.P. Dietary Chitosan Improves Nitrogen Use and Feed Conversion in Diets for Mid-Lactation Dairy Cows. Livest. Sci. 2017, 201, 22–29. [Google Scholar] [CrossRef] [Green Version]
- De Paiva, P.G.; De Jesus, E.F.; Del Valle, T.; De Almeida, G.F.; Costa, A.G.B.V.B.; Consentini, C.E.C.; Zanferari, F.; Takiya, C.S.; Bueno, I.; Rennó, F.P. Effects of Chitosan on Ruminal Fermentation, Nutrient Digestibility, and Milk Yield and Composition of Dairy Cows. Anim. Prod. Sci. 2017, 57, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Dias, L.S.B.; Silva, D.S.; Carvalho, G.G.P.; Araújo, M.L.G.M.L.; Silva, F.F.D.; Pereira, M.L.A.; Gandra, J.R.; Lima, V.G.O.; Santos, A.C.S.D.; Bulcão, L.F.A.; et al. Chitosan Associated with Whole Raw Soybean in Diets for Murrah Buffaloes on Ruminal Fermentation, Apparent Digestibility and Nutrients Metabolism. Anim. Sci. J. 2020, 91, 1–16. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Jiménez-Ocampo, R.; Valencia-Salazar, S.; Pinzón-Díaz, C.E.; Herrera-Torres, E.; Aguilar-Pérez, C.F.; Arango, J.; Ku-Vera, J.C. The Role of Chitosan as a Possible Agent for Enteric Methane Mitigation in Ruminants. Animals 2019, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Williams, S.R.O.; Deighton, M.H.; Hannah, M.C.; Ribaux, B.E.; Morris, G.L.; Jacobs, J.L.; Hill, J.; Wales, W.J. Effects of Feeding Wheat or Corn and of Rumen Fistulation on Milk Production and Methane Emissions of Dairy Cows. Anim. Prod. Sci. 2019, 59, 891–905. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M. Enteric Methane Emissions from Growing Beef Cattle as Affected by Diet and Level of Intake. Can. J. Anim. Sci. 2006, 86, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Berger, L.M.; Blank, R.; Zorn, F.; Wein, S.; Metges, C.C.; Wolffram, S. Ruminal Degradation of Quercetin and Its Influence on Fermentation in Ruminants. J. Dairy Sci. 2015, 98, 5688–5698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcells, J.; Aris, A.; Serrano, A.; Seradj, A.R.; Crespo, J.; Devant, M. Effects of an Extract of Plant Flavonoids (Bioflavex) on Rumen Fermentation and Performance in Heifers Fed High-Concentrate Diets 1. J. Anim. Sci. 2012, 90, 4975–4984. [Google Scholar] [CrossRef] [PubMed]
- Seradj, A.R.; Abecia, L.; Crespo, J.; Villalba, D.; Fondevila, M.; Balcells, J. The Effect of Bioflavex® and Its Pure Flavonoid Components on in Vitro Fermentation Parameters and Methane Production in Rumen Fluid from Steers given High Concentrate Diets. Anim. Feed Sci. Technol. 2014, 197, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Xue, C.; Mao, X. Chitosan: Structural Modification, Biological Activity and Application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. [Google Scholar] [CrossRef]
- Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A Review on Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. [Google Scholar] [CrossRef]
- Seradj, A.R.; Gimeno, A.; Fondevila, M.; Crespo, J.; Armengol, R.; Balcells, J. Effects of the Citrus Flavonoid Extract Bioflavex or Its Pure Components on Rumen Fermentation of Intensively Reared Beef Steers. Anim. Prod. Sci. 2018, 58, 553–560. [Google Scholar] [CrossRef]
- Stoldt, A.-K.; Derno, M.; Das, G.; Weitzel, J.M.; Wolffram, S.; Metges, C.C. Effects of Rutin and Buckwheat Seeds on Energy Metabolism and Methane Production in Dairy Cows. J. Dairy Sci. 2016, 99, 2161–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J.; Gisi, D.D.; Higginbotham, G.E.; Riordan, T.J. Methane Production from Commercial Dairy Rations Estimated Using an in Vitro Gas Technique. Anim. Feed Sci. Technol. 2005, 123–124, 391–402. [Google Scholar] [CrossRef]
- Amanzougarene, Z.; Fondevila, M. Fitting of the In Vitro Gas Production Technique to the Study of High Concentrate Diets. Animals 2020, 10, 1935. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, Implementation and Interpretation of in Vitro Batch Culture Experiments to Assess Enteric Methane Mitigation in Ruminants—A Review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Macome, F.M.; Pellikaan, W.F.; Schonewille, J.T.; Bannink, A.; van Laar, H.; Hendriks, W.H.; Warner, D.; Cone, J.W. In Vitro Rumen Gas and Methane Production of Grass Silages Differing in Plant Maturity and Nitrogen Fertilisation, Compared to in Vivo Enteric Methane Production. Anim. Feed Sci. Technol. 2017, 230, 96–102. [Google Scholar] [CrossRef]
Ingredient Inclusion (g/kg DM) | TMR |
Guinea grass hay (Megathyrsus maximus) 1 | 700 |
Ground corn | 180 |
Soybean meal | 85 |
Urea | 30 |
Minerals | 5 |
Item (g/kg DM) | |
Dry matter | 942 ± 1.52 |
Organic matter | 928 ± 1.04 |
Crude protein | 110 ± 1.15 |
Ether extract | 7.0 ± 0.25 |
Ash | 72 ± 1.56 |
Neutral detergent fiber | 706 ± 1.52 |
Acid detergent fiber | 393 ± 1.70 |
Gross energy (MJ/kg DM) | 14.6 ± 0.26 |
Item | Treatments | SEM | p-Value | Contrast | |||||
---|---|---|---|---|---|---|---|---|---|
CTL | NA1 | NA2 | CHI1 | CHI2 | L | Q | |||
pH 1 | 6.8 ± 2.9E−8 | 6.9 ± 4.1E−8 | 6.8 ± 5.2E−8 | 6.8 ± 5.2E−8 | 6.7 ± 3.7E−8 | 1.8E−8 | 0.387 | 0.524 | 0.626 |
N-NH3 (mg/dL) | 13.7 ± 0.07 c | 17.8 ± 0.16 a | 15.7 ± 0.16 b | 17.2 ± 0.35 a | 12.8 ± 0.19 c | 0.210 | <0.001 | <0.001 | 0.055 |
Molar proportions of VFA (%) | |||||||||
Acetic | 46.6 ± 0.01a | 40.9 ± 0.65 b | 40.7 ± 0.36 b | 41.9 ± 0.99 b | 43.1 ± 0.11 b | 0.555 | 0.003 | <0.001 | 0.004 |
Propionic | 18.6 ± 0.63 c | 24.0 ± 0.01 b | 25.9 ± 0.16 a,b | 24.8 ± 0.32 a,b | 26.2 ± 0.23 a | 0.340 | <0.001 | <0.001 | <0.001 |
Isobutyric | 5.0 ± 0.59 | 4.4 ± 0.67 | 4.6 ± 0.11 | 3.6 ± 0.11 | 3.5 ± 0.10 | 0.411 | 0.18 | 0.994 | 0.043 |
Butyric | 18.6 ± 0.16 b,c | 19.9 ± 0.37 a,b | 18.3 ± 0.23 c | 20.0 ± 0.22 a | 18.6 ± 0.01 b,c | 0.231 | 0.009 | 0.370 | 0.014 |
Isovaleric | 7.9 ± 0.15 a | 7.3 ± 0.17 a | 7.3 ± 0.17 a | 6.3 ± 0.13 b | 5.8 ± 0.00 b | 0.141 | <0.001 | 0.788 | <0.001 |
Valeric | 2.5 ± 0.08 a,b | 3.3 ± 0.15 a | 2.9 ± 0.01 a,b | 3.1 ± 0.21 a,b | 2.6 ± 0.02 b | 0.120 | 0.042 | 0.842 | 0.415 |
Acetic:propionic acid ratio | 2.5 ± 0.08 a | 1.7 ± 0.02 b | 1.5 ± 0.00 b | 1.6 ± 0.06 b | 1.6 ± 0.01 b | 0.049 | <0.001 | <0.001 | <0.001 |
Item | Treatments | SEM | p-Value | Contrast | |||||
---|---|---|---|---|---|---|---|---|---|
CTL | NA1 | NA2 | CHI1 | CHI2 | L | Q | |||
Gmax (mL/g DM) | 602 | 607.5 | 594.3 | 504.3 | 572.0 | 29.49 | 0.16 | 0.36 | 0.24 |
A (h) | 2.5 | 2.7 | 2.8 | 2.8 | 2.8 | 0.11 | 0.42 | 0.21 | 0.22 |
K(%/h) | 0.07 | 0.09 | 0.08 | 0.09 | 0.10 | 0.008 | 0.30 | 0.41 | 0.06 |
GP24 (mL/g DM) | 417.5 | 436.6 | 413.3 | 405.0 | 431.6 | 17.90 | 0.71 | 0.68 | 0.53 |
Methane (mL/g DM) | 40.9 b | 43.2 b | 35.9 b,c | 27.9 c | 51.8 a | 1.78 | <0.001 | 0.36 | 0.01 |
Item | Treatments | SEM | p-Value | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CTL | NA1 | NA2 | CHI1 | CHI2 | CHI–NA | L | Q | |||
Intake (kg/day) | ||||||||||
DM | 9.04 ± 0.46 | 8.84 ± 0.89 | 8.73 ± 0.37 | 8.69 ± 0.65 | 8.97 ± 0.90 | 8.93 ± 0.94 | 0.64 | 0.93 | 0.41 | 0.66 |
OM | 7.43 ± 0.38 | 7.27 ± 0.73 | 7.17 ± 0.24 | 7.15 ± 0.57 | 7.38 ± 0.79 | 7.40 ± 0.75 | 0.53 | 0.94 | 0.41 | 0.73 |
CP | 0.99 ± 0.05 | 0.97 ± 0.98 | 0.96 ± 0.41 | 0.95 ± 0.71 | 0.99 ± 0.10 | 0.98 ± 0.10 | 0.07 | 0.93 | 0.41 | 0.66 |
NDF | 6.38 ± 0.32 | 6.24 ± 0.63 | 6.16 ± 0.26 | 6.13 ± 0.46 | 6.33 ± 0.63 | 6.30 ± 0.66 | 0.45 | 0.92 | 0.41 | 0.66 |
ADF | 3.55 ± 0.18 | 3.47 ± 0.35 | 3.43 ± 0.15 | 3.41 ± 0.25 | 3.52 ± 0.35 | 3.51 ± 0.37 | 0.25 | 0.92 | 0.41 | 0.66 |
GE (MJ/day) | 130.7 ± 6.62 | 127.8 ± 12.8 | 126.3 ± 5.38 | 125.7 ± 9.39 | 129.7 ± 13.0 | 129.1 ± 13.5 | 9.25 | 0.92 | 0.41 | 0.66 |
Apparent digestibility (%) | ||||||||||
DM% | 65.8 ± 2.43 | 62.7 ± 1.92 | 64.3 ± 2.19 | 61.8 ± 1.76 | 64.1 ± 1.91 | 63.4 ± 2.13 | 1.63 | 0.43 | 0.20 | 0.39 |
OM% | 62.7 ± 2.64 | 59.6 ± 2.28 | 61.4 ± 2.66 | 58.2 ± 1.94 | 61.1 ± 2.20 | 60.41 ± 2.77 | 1.83 | 0.45 | 0.25 | 0.39 |
CP% | 78.1 ± 1.55 a | 73.5 ± 1.50 b,c | 75.7 ± 1.67 a,b | 70.6 ± 1.36 c | 72.3 ± 1.57 c | 75.1 ± 1.74 a,b | 1.19 | 0.0009 | 0.014 | 0.0013 |
NDF% | 64.7 ± 2.50 | 60.0 ± 2.25 | 63.5 ± 2.52 | 59.2 ± 1.88 | 62.6 ± 2.11 | 63.4 ± 2.56 | 1.74 | 0.11 | 0.05 | 0.50 |
ADF% | 60.7 ± 2.78 a | 53.7 ± 2.60 b | 60.5 ± 2.57a | 53.0 ± 2.18 b | 58.2 ± 2.36 ab | 58.7 ± 2.89 ab | 1.94 | 0.014 | 0.02 | 0.61 |
Item | Treatments | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CTL | NA1 | NA2 | CHI1 | CHI2 | CHI–NA | |||
a (%) | 28.75 ± 2.77 | 28.38 ± 2.26 | 27.73 ± 1.67 | 27.44 ± 1.91 | 28.09 ± 1.56 | 29.12 ± 1.54 | 2.00 | 0.98 |
b (%) | 40.89 ± 6.05 | 38.37 ± 2.22 | 40.08 ± 1.56 | 39.04 ± 1.37 | 39.69 ± 0.97 | 38.50 ± 2.69 | 3.00 | 0.99 |
c (h−1) | 0.04 ± 0.009 | 0.04 ± 0.006 | 0.04 ± 0.004 | 0.04 ± 0.006 | 0.04 ± 0.007 | 0.04 ± 0.008 | 0.01 | 0.98 |
PD (%) | 69.65 ± 3.39 | 66.75 ± 0.55 | 67.81 ± 1.89 | 66.48 ± 0.93 | 67.78 ± 1.70 | 67.62 ± 2.40 | 2.04 | 0.87 |
ED (%) | 45.62 ± 3.33 | 45.65 ± 2.49 | 44.65 ± 2.11 | 43.63 ± 2.92 | 45.75 ± 1.88 | 45.86 ± 1.57 | 2.46 | 0.97 |
Item | Treatments | SEM | p-Value | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CTL | NA1 | NA2 | CHI1 | CHI2 | CHI–NA | L | Q | |||
pH 1 | 6.6 ± 1.5E−7 | 6.3 ± 7.4E−7 | 6.7 ± 6.4E−8 | 6.5 ± 2.5E−7 | 6.4 ± 3.2E−7 | 6.5 ± 9.2E−8 | 3.0E−6 | 0.69 | 0.45 | 0.72 |
Volatile fatty acids (molar%) | ||||||||||
Acetate | 49.27 ± 0.30 | 48.54 ± 0.33 | 48.82 ± 0.43 | 48.86 ± 0.64 | 48.76 ± 0.65 | 48.98 ± 0.53 | 0.46 | 0.89 | 0.27 | 0.84 |
Propionate | 24.72 ± 0.33 | 24.52 ± 0.61 | 24.59 ± 0.19 | 24.59 ± 0.42 | 24.63 ± 0.43 | 24.39 ± 0.29 | 0.37 | 0.99 | 0.87 | 0.90 |
Butyrate | 18.29 ± 0.36 | 18.90 ± 0.40 | 18.29 ± 0.62 | 18.75 ± 0.34 | 18.65 ± 0.81 | 18.54 ± 0.49 | 0.42 | 0.87 | 0.50 | 0.90 |
Isobutyrate | 2.20 ± 0.24 | 2.15 ± 0.19 | 2.51 ± 0.32 | 2.19 ± 0.21 | 2.27 ± 0.20 | 2.34 ± 0.13 | 0.18 | 0.70 | 0.93 | 0.56 |
Isovalerate | 3.21 ± 0.21 | 3.15 ± 0.37 | 3.35 ± 0.26 | 3.06 ± 0.30 | 3.17 ± 0.43 | 3.21 ± 0.26 | 0.22 | 0.95 | 0.97 | 0.86 |
Valerate | 2.31 ± 0.11 | 2.73 ± 0.10 | 2.44 ± 0.12 | 2.55 ± 0.13 | 2.53 ± 0.10 | 2.53 ± 0.12 | 0.11 | 0.16 | 0.06 | 0.94 |
Acetic:propionic acid ratio | 1.99 ± 0.04 | 1.99 ± 0.06 | 1.99 ± 0.02 | 1.99 ± 0.05 | 1.98 ± 0.03 | 2.01 ± 0.04 | 0.035 | 0.99 | 0.68 | 0.93 |
Item | Treatments | SEM | p-Value | Contrast | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CTL | NA1 | NA2 | CHI1 | CHI2 | CHI–NA | L | Q | |||
Methane production per day and yield | ||||||||||
CH4 (g day−1) | 153.0 ± 11.8 | 168.1 ± 11.2 | 153.0 ± 7.4 | 158.3 ± 13.0 | 161.0 ± 10.0 | 161.5 ± 14.0 | 10.21 | 0.14 | 0.20 | 0.70 |
CH4 (g kg−1 DMI) | 18.09 ± 1.13 | 18.96 ± 0.78 | 18.04 ± 0.49 | 18.12 ± 0.60 | 18.98 ± 0.79 | 18.48 ± 1.14 | 0.69 | 0.57 | 0.60 | 0.95 |
Methane g kg−1 per digestible fractions intake | ||||||||||
CH4 (DM) | 30.86 ± 2.25 | 33.87 ± 2.48 | 31.37 ± 1.85 | 32.15 ± 0.98 | 32.98 ± 2.01 | 32.27 ± 2.79 | 1.15 | 0.40 | 0.20 | 0.96 |
CH4 (OM) | 35.43 ± 2.68 | 39.01 ± 2.97 | 35.91 ± 2.20 | 37.23 ± 1.44 | 37.75 ± 2.29 | 36.70 ± 3.49 | 1.46 | 0.49 | 0.20 | 0.98 |
CH4 (CP) | 207.5 ± 12.64 | 230.2 ± 12.10 | 212.5 ± 7.20 | 225.7 ± 6.60 | 233.4 ± 10.08 | 218.9 ± 14.77 | 7.71 | 0.06 | 0.12 | 0.19 |
CH4 (NDF) | 38.71 ± 2.51 | 43.38 ± 2.74 | 39.07 ± 1.71 | 41.25 ± 1.38 | 41.50 ± 1.93 | 39.86 ± 2.97 | 1.48 | 0.18 | 0.08 | 0.97 |
Methane energy loss,Ym, and emission factor | ||||||||||
Energy loss as CH4 (MJ GEI day−1) | 8.53 ± 0.66 | 9.35 ± 0.63 | 8.52 ± 0.41 | 8.81 ± 0.72 | 8.97 ± 0.56 | 8.99 ± 0.78 | 0.57 | 0.13 | 0.20 | 0.70 |
Ym (% GE/day−1) | 6.95 ± 0.43 | 7.28 ± 0.30 | 6.93 ± 0.19 | 6.96 ± 0.23 | 7.30 ± 0.30 | 7.11 ± 0.44 | 0.26 | 0.53 | 0.54 | 0.99 |
EF (CH4/head−1/year−1) | 55.9 ± 4.30 | 61.3 ± 4.11 | 55.8 ± 2.71 | 57.7 ± 4.75 | 58.7 ± 3.67 | 58.9 ± 5.10 | 3.73 | 0.13 | 0.20 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Ocampo, R.; Montoya-Flores, M.D.; Herrera-Torres, E.; Pámanes-Carrasco, G.; Arceo-Castillo, J.I.; Valencia-Salazar, S.S.; Arango, J.; Aguilar-Pérez, C.F.; Ramírez-Avilés, L.; Solorio-Sánchez, F.J.; et al. Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass. Animals 2021, 11, 1599. https://doi.org/10.3390/ani11061599
Jiménez-Ocampo R, Montoya-Flores MD, Herrera-Torres E, Pámanes-Carrasco G, Arceo-Castillo JI, Valencia-Salazar SS, Arango J, Aguilar-Pérez CF, Ramírez-Avilés L, Solorio-Sánchez FJ, et al. Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass. Animals. 2021; 11(6):1599. https://doi.org/10.3390/ani11061599
Chicago/Turabian StyleJiménez-Ocampo, Rafael, María Denisse Montoya-Flores, Esperanza Herrera-Torres, Gerardo Pámanes-Carrasco, Jeyder Israel Arceo-Castillo, Sara Stephanie Valencia-Salazar, Jacobo Arango, Carlos Fernando Aguilar-Pérez, Luis Ramírez-Avilés, Francisco Javier Solorio-Sánchez, and et al. 2021. "Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass" Animals 11, no. 6: 1599. https://doi.org/10.3390/ani11061599
APA StyleJiménez-Ocampo, R., Montoya-Flores, M. D., Herrera-Torres, E., Pámanes-Carrasco, G., Arceo-Castillo, J. I., Valencia-Salazar, S. S., Arango, J., Aguilar-Pérez, C. F., Ramírez-Avilés, L., Solorio-Sánchez, F. J., Piñeiro-Vázquez, Á. T., & Ku-Vera, J. C. (2021). Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass. Animals, 11(6), 1599. https://doi.org/10.3390/ani11061599