Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Feeding Systems Predicting Energy Requirements of Beef Cattle
2.2. Data Collection of Papers Determining Energy Requirements for Maintenance
2.3. Inclusion Criteria
2.4. Data Analysis
3. Results and Discussion
3.1. An Overview of the AFRC System Compared to Other Feeding Standards around the World
3.2. Energy Efficiencies
3.3. Energy Requirements for Growing Cattle
3.3.1. Maintenance Requirements
3.3.2. Live Weight Gain
3.4. Energy Requirements for Suckler Cows
3.4.1. Maintenance Requirements
3.4.2. Pregnancy
3.4.3. Lactation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
System | Equation, ks | ME/GE * | Reference | |
---|---|---|---|---|
0.50 | 0.65 | |||
AFRC (1993); CSIRO (2007) | km = 0.35 ME/GE + 0.503 | 0.68 | 0.73 | [2,12] |
kg = 0.78 ME/GE + 0.006 | 0.40 | 0.51 | ||
kl = 0.35 ME/GE + 0.42 | 0.60 | 0.65 | ||
INRA (2018) | km = 0.287 ME/GE + 0.554 | 0.70 | 0.74 | [5] |
kf = 0.78 ME/GE + 0.006 | 0.40 | 0.51 | ||
kmf = (km × kf × 1.5)/(kf + 0.5 × km) | -- | -- | ||
kpf = 0.35 + 0.25 × (1 − EP)2 | -- | -- | ||
kls = 0.65 + 0.247 (ME/GE − 0.63) | 0.62 | 0.65 | ||
NASEM (2016) | km = (1.37 ME − 0.138 ME2 + 0.0105 ME3 − 1.12)/ME | 0.61 | 0.67 | [13] |
kg = (1.42 ME − 0.174 ME2 + 0.0122 ME3 − 1.65)/ME | 0.35 | 0.45 | ||
BR-Corte (2016) | km = [(0.513 + 0.173 × kg + β2 × EBG) × θ] | -- | -- | [14] |
kg = 0.327/(0.539 − REp) | -- | -- |
Systems | Equations | Reference |
---|---|---|
AFRC (1993) | C (0.53 (LW/1.08)0.67) + 0.0071 LW | [2] |
CSIRO (2007) | CKM × 0.28 LW0.75 e(−0.03A) + 0.1 MEp × km | [12] |
INRA (2018) | 0.289 LW0.75/0.423 LW0.75 | [5] |
NASEM (2016) | 0.00293 (20 − Tp) + 0.322 SBW0.75 | [13] |
BR-Corte (2016) | 0.314 × EBW0.75 | [14] |
Systems | Equations | Reference |
---|---|---|
AFRC (1993) | C (4.1 + 0.0332 LW − 0.000009 LW2)/(1 − C2 0.1475 LWG) | [2] |
CSIRO (2007) | 0.92 [(6.7 + R) + (20.3 − R)/(1 + e(−6(P − 0.4)))] | [12] |
INRA (2018) | 22.9 ProtGain + 39.3 LipGain | [5] |
NASEM (2016) | 0.266 EBW0.75 × EBG1.097 | [13] |
BR-Corte (2016) | 0.052 × EQEBW0.75 × EBG1.062 | [14] |
Systems | Equations | Reference |
---|---|---|
AFRC (1993) | 0.53 (LW/1.08)0.67 + 0.0095 LW | [2] |
CSIRO (2007) | KM × 0.28 LW0.75 e(−0.03A) + 0.1 MEp × km | [12] |
INRA (2018) | 0.301 LW0.75 dry or pregnant/0.344 LW0.75 lactation | [5] |
NASEM (2016) | 0.0293 (20 − Tp) + 0.322 SBW0.75 | [13] |
BR-Corte (2016) | 0.314 × EBW0.75 | [14] |
Systems | Equations | kgest | Reference |
---|---|---|---|
AFRC (1993) | log10(Et) = 151.665 − 151.64 exp−0.0000576t | 0.133 | [2] |
0.025Wc (Et × 0.0201 exp−0.0000576t) | |||
CSIRO (2007) | Y = SBW exp (A − B (exp(–Ct)) | 0.133 | [12] |
DWG = nBC exp(−Ct)Y | 0.133 | ||
INRA (2018) | 0.000695 × BWcalf × exp (0.116 × WG) | 0.10–0.15 | [5] |
NASEM (2016) | ((CBW × (0.05855 − 0.0000996 × DP) × exp(0.03233 × DP − 0.0000275 × DP2))/1000 | 0.13 | [13] |
BR-Corte (2016) | (CBW × 0.000000793 × TG3.017)/1000 | 0.12 | [14] |
Systems | Equations | Reference |
---|---|---|
AFRC (1993) | MY (38.4 Fat + 22.3 Protein + 19.9 Lactose) − 0.108) | [2] |
CSIRO (2007) | MY (38.1 × Fat + 24.5 × Protein + 16.5 Lactose) | [12] |
INRA (1989) | UFLMY = 1.84 × MY | [5] |
NASEM (2016) | MY (40.6 Fat +1.51) | [13] |
BR-Corte (2016) | N.A. | [14] |
References
- Cottrill, B.R.; Dawson, L.E.R.; Yan, T.; Xue, B. Energy feeding systems for beef cattle and sheep. In A Review of the Energy, Protein and Phosphorus Requirements of Beef Cattle and Sheep; Project WQ 0133; Department for Environment Food & Rural Affairs: London, UK, 2009. [Google Scholar]
- Agricultural and Food Research Council (AFRC). Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Agricultural Research Council (ARC). The Nutrient Requirements of Ruminant Livestock; Agricultural Research Council, and The Gresham Press: London, UK, 1980. [Google Scholar]
- Steen, R.W.J. The effect of plane of nutrition and slaughter weight on growth and food efficiency in bulls, steers and heifers of three breed crosses. Livest. Prod. Sci. 1995, 42, 1–11. [Google Scholar] [CrossRef]
- Institut National de la Recherche Agronomique (INRA). INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- Tedeschi, L.O.; Fox, D.G. The Ruminant Nutrition System (RNS): An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants; Xanedu: Ann Arbor, MI, USA, 2017. [Google Scholar]
- Keane, M.; O’Ferrall, G.M.; Connolly, J. Growth and carcass composition of Friesian, Limousin × Friesian and Blonde d’ Aquitaine × Friesian steers. Anim. Sci. 1989, 48, 353–365. [Google Scholar] [CrossRef]
- Keane, M.; O’Ferrall, G.M. Comparison of Friesian, Canadian Hereford × Friesian and Simmental × Friesian steers for growth and carcass composition. Anim. Sci. 1992, 55, 377–387. [Google Scholar] [CrossRef]
- Juniper, D.T.; Bryant, M.J.; Beever, D.E.; Fisher, A.V. Effect of breed, gender, housing system and dietary crude protein content on performance of finishing beef cattle fed maize-silage-based diets. Animal 2007, 1, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Keane, M.G. Effects of finishing strategy on performance of Belgian Blue × Friesian and Limousin × Friesian steers. Ir. J. Agric. Food Res. 2010, 49, 27–39, ISSN: 0791-6833. [Google Scholar]
- Yan, T.; Porter, M.G.; Mayne, C.S. Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal 2009, 3, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Commonwealth Scientific and Industrial Research Organization (CSIRO). Nutrient Requirements of Domesticated Ruminants; CSIRO Publishing: Melbourne, Australia, 2007. [Google Scholar]
- The National Academies of Sciences, Engineering and Medicine (NASEM). Nutrient Requirements of Beef Cattle, 8th ed.; National Academic Press: Washington, DC, USA, 2016. [Google Scholar]
- BR-Corte. Nutrient Requirements of Zebu and Crossbred Cattle, 3rd ed.; Suprema Grafica Ltda: Viçosa, Minas Gerais, Brazil, 2016. [Google Scholar]
- Minson, D.J. Forage in Ruminant Nutrition; Academic Press: London, UK, 1990. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Weisz, J.R.; Weiss, B.; Han, S.S.; Granger, D.A.; Morton, T. Effects of psychotherapy with children and adolescents revisited: A meta-analysis of treatment outcome studies. Psychol. Bull. 1995, 117, 450–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2000. [Google Scholar]
- Agricultural Research Council (ARC). The Nutrient Requirements of Farm Livestock; No. 2, Ruminants. HMSO: London, UK, 1965. [Google Scholar]
- MAFF. Energy Allowances and Feeding Systems for Ruminants. In Ministry of Agriculture, Fisheries and Food Technical Bulletin; No. 33. MAFF: London, UK, 1975. [Google Scholar]
- Agricultural and Food Research Council (AFRC). Technical Committee on Responses to Nutrients, Report No. 5. In Nutritive Requirements of Ruminant Animals: Energy; Nutrition Abstracts and Reviews, Series B. 60; CAB International: Wallingford, UK, 1990; pp. 729–804. [Google Scholar]
- Agnew, R.E.; Yan, T. Calorimetry. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd ed.; Dijkstra, J., Forbes, J., France, J., Eds.; CAB International, University Press: Cambridge, UK, 2005; pp. 421–442. [Google Scholar]
- Graham, N.M. Energy feeding standards: A methodological problem. Energy Metabolism of Farm Animals. In Proceedings of the 9th Symposium, Europe, Association of Animal Production (EAAP); Ekern, A., Sundstol, F., Eds.; Agricultural University of Norway: Ås, Norway, 1982; pp. 108–111. [Google Scholar]
- Blaxter, K.L.; Wainman, F.W. The utilization of food by sheep and cattle. J. Agric. Sci. 1961, 57, 419–425. [Google Scholar] [CrossRef]
- McLean, J.A.; Tobin, G. Animal and Human Calorimetry; Cambridge University Press: New York, NY, USA, 1987. [Google Scholar]
- Thomas, C. ‘Feed into Milk’: A New applied Feeding System for Dairy Cows; Nottingham University Press: Nottingham, UK, 2004. [Google Scholar]
- Lofgreen, G.P.; Garrett, W.N. A system for expressing net energy requirements and feed values for growing and finishing beef cattle. J. Anim. Sci. 1968, 27, 793–806. [Google Scholar] [CrossRef]
- Andresen, C.E.; Wiseman, A.W.; McGee, A.; Goad, C.; Foote, A.P.; Reuter, R.; Lalman, D.L. Maintenance energy requirements and forage intake of purebred vs crossbred beef cows. Transl. Anim. Sci. 2020, 4, 1–14. [Google Scholar] [CrossRef]
- Trubenbach, L.A.; Wickersham, T.A.; Bierschwale, L.N.; Morrill, J.C.; Baber, J.R.; Sawyer, J.E. Limit feeding as a strategy to increase energy efficiency in intensified cow–calf production systems. Transl. Anim. Sci. 2019, 3, 796–810. [Google Scholar] [CrossRef] [Green Version]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta-analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Tylutki, T.P.; Fox, D.G.; Durbal, V.M.; Tedeschi, L.O.; Russell, J.B.; Van Amburgh, M.E.; Overton, T.R.; Chase, L.E.; Pell, A.N. Cornell Net Carbohydrate and Protein System: A model for precision feeding of dairy cattle. Anim. Feed Sci. Technol. 2008, 143, 174–202. [Google Scholar] [CrossRef]
- Institut National de la Recherche Agronomique (INRA). Alimentation des Bovins, Ovins et Caprins—Besoins des Animaux—Valeurs des Aliments—Tables INRA 2007; INRA: Versailles, France, 2007. [Google Scholar]
- Institut National De la Recherche Agronomique (INRA). Alimentation des Ruminants; INRA Publications: Versailles, France, 1978; p. 597. [Google Scholar]
- Ferrell, C.L.; Oltjen, J.W. ASAS Centennial Paper: Net energy systems for beef cattle. Concepts, application, and future models. J. Anim. Sci. 2008, 86, 2779–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrell, C.; Jenkins, T. Cow type and the nutritional environment: Nutritional aspects. J. Anim. Sci. 1985, 61, 725–741. [Google Scholar] [CrossRef]
- Dawson, L.E.R.; Steen, R.J.W. Estimation of maintenance energy requirements of beef cattle and sheep. J. Agric. Sci. 1998, 131, 477–485. [Google Scholar] [CrossRef] [Green Version]
- Marcondes, M.I.; Chizzotti, M.L.; Valadares Filho, S.C.; Gionbelli, M.P.; Paulino, P.V.R.; Paulino, M.F. Energy Requirements of Zebu Beef Cattle. In Nutrient Requirements of Zebu Beef Cattle BR-CORTE, 2nd ed.; de Campos Valadares Filho, S., Marcondes, M.I., Chizzotti, M.L., Rodrigues Paulino, P.V., Eds.; Federal University of Viçosa: Viçosa, Brazil, 2010; pp. 81–106. [Google Scholar]
- Jiao, H.P.; Yan, T.; McDowell, D.A.; Carson, A.F.; Ferris, C.P.; Easson, D.L.; Wills, D. Enteric methane emissions and efficiency of use of energy in Holstein heifers and steers at age of six months. J. Anim. Sci. 2013, 91, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Gordon, F.J.; Dawson, L.E.R.; Ferris, C.P.; Steen, R.J.W.; Kilpatrick, D.J. The influence of wilting and forage additive type on the energy utilisation of grass silage by growing cattle. Anim. Feed Sci. Technol. 1999, 79, 15–27. [Google Scholar] [CrossRef]
- Castro, M.M.D.; Albino, R.L.; Rodrigues, J.P.P.; Sguizzato, A.L.L.; Santos, M.M.F.; Rotta, P.P.; Caton, J.S.; Moraes, L.E.F.D.; Silva, F.F.; Marcondes, M.I. Energy and protein requirements of Holstein × Gyr crossbred heifers. Animal 2020, 9, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Valadares Filho, S.C.; Castro, M.M.D.; Dijkstra, J. Determination of energy and protein requirements for crossbred Holstein × Gyr preweaned dairy calves. J. Dairy Sci. 2017, 100, 1170–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oss, D.B.; Machado, F.S.; Tomich, T.R.; Pereira, L.G.R.; Campos, M.M.; Castro, M.M.D.; da Silva, T.E.; Marcondes, M.I. Energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. J. Dairy Sci. 2017, 100, 2603–2613. [Google Scholar] [CrossRef]
- Posada-Ochoa, S.L.; Noguera, R.R.; Rodriguez, N.M.; Costa, A.L. Indirect calorimetry to estimate energy requirements for growing and finishing Nellore bulls. J. Integ. Agric. 2017, 16, 151–161. [Google Scholar] [CrossRef]
- Marcondes, M.I.; Tedeschi, L.O.; Valadares Filho, S.C.; Gionbelli, M.P. Predicting efficiency of use of metabolizable energy to net energy for gain and maintenance of Nellore cattle. J. Anim. Sci. 2013, 91, 4887–4898. [Google Scholar] [CrossRef] [PubMed]
- Valente, E.E.L.; Paulino, M.F.; Detmann, E.; Valadares Filho, S.C.; Garces Cardenas, J.E.; Dias, I.F.T. Requirement of energy and protein of beef cattle on tropical pasture. Acta Sci. Anim. Sci. 2013, 35, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Porto, M.O.; Paulino, M.F.; Valadares Filho, S.C.; Detmann, E.; Cavali, J.; Sales, M.F.L.; Valente, E.E.L.; Couto, V.R.M. Nutritional requirements of energy, protein and macrominerals for maintenance and weight gain of young crossbred Nellore × Holstein bulls on pasture. R. Bras. Zootec. 2012, 41, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.L.; Borges, A.L.C.C.; Mourão, R.C.; Silva, R.R.; Duque, A.C.A.; Silva, J.S.; Souza, A.S.; Gonçalves, L.C.; Carvalho, P.H.A. Energy partition, nutritional energy requirements and methane production in F1 Holstein × Gyr bulls, using the respirometric technique. Anim. Prod. Sci. 2019, 59, 1253–1260. [Google Scholar] [CrossRef]
- Sainz, R.D.; Cruz, G.D.; Mendes, E.; Magnabosco, C.U.; Farjalla, Y.B.; Araujo, F.R.C.; Gomes, R.C.; Leme, P.R. Performance, efficiency and estimated maintenance energy requirements of Bos taurus and Bos indicus cattle. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; EAAP Publication No. 134; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013. [Google Scholar]
- Rotta, P.P.; Valadares Filho, S.C.; Detmann, E.; Silva, L.F.C.; Castaño Villadiego, F.A.; Galindo Burgos, E.M.; Silva, F.A.S. Nutrient requirements of energy and protein for Holstein × Zebu bulls finished in feedlot. Semina Ciências Agrárias 2013, 34, 2523–2534. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, P.; Kenny, D.A.; Earley, B.; McGee, M. Grazed grass herbage intake and performance of beef heifers with predetermined phenotypic residual feed intake classification. Animal 2012, 6, 1648–1661. [Google Scholar] [CrossRef] [Green Version]
- Gomes, R.C.; Sainz, R.D.; Silva, S.L.; César, M.C.; Bonin, M.N.; Leme, P.R. Feedlot performance, feed efficiency reranking, carcass traits, body composition, energy requirements, meat quality and calpain system activity in Nellore steers with low and high residual feed intake. Livest. Sci. 2012, 150, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, D.E.; Steen, R.W.J.; Unsworth, E.F. The effect of differing forage: Concentrate ratio and restricting feed intake on the energy and nitrogen utilization by beef cattle. Livest. Prod. Sci. 1997, 51, 151–164. [Google Scholar] [CrossRef]
- Kirkpatrick, D.E. The effects of diet on metabolizable energy utilization and carcass composition in beef cattle and sheep. Ph.D. Thesis, Queen’s University Belfast, Belfast, UK, 1995. [Google Scholar]
- Scholz, A.M.; Bunger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, T.L.J.; Fowler, V.R. Growth of Farm Animals, 3rd ed.; CAB International: Oxfordshire, UK, 2002; 347p. [Google Scholar]
- Ferrell, C.L. Contribution of visceral organs to animal energy expenditures. J. Anim. Sci. 1988, 66, 23–34. [Google Scholar] [CrossRef]
- Sainz, R.D.; De la Torre, F.; Oltjen, J.W. Compensatory growth and carcass quality in growth-restricted and refed beef steers. J. Anim. Sci. 1995, 73, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Carstens, G.E.; Johnson, D.E.; Ellenberger, M.A.; Tatum, J.D. Physical and chemical components of the empty body during compensatory growth in beef steers. J. Anim. Sci. 1991, 69, 3251–3264. [Google Scholar] [CrossRef] [Green Version]
- Drouillard, J.S.; Ferrell, C.L.; Klopfenstein, T.J.; Britton, R.A. Compensatory growth following metabolizable protein or energy restrictions in beef steers. J. Anim. Sci. 1991, 69, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyne, S.; Drennan, M.J.; Caffrey, P.J. Influence of concentrate level during winter and date of turn out to pasture on the performance of cattle and the effect of grazing of silage ground on grass yield and quality. Ir. J. Agric. Food Res. 2001, 40, 23–32. [Google Scholar]
- Freetly, H.C.; Nienaber, J.A.; Brown-Brandl, T. Partitioning of energy during lactation of primiparous beef cows. J. Anim. Sci. 2006, 84, 2157–2162. [Google Scholar] [CrossRef]
- Montaño-Bermudez, M.; Nielsen, M.K.; Deutscher, G.H. Energy requirements for maintenance of crossbred beef-cattle with different genetic potential for milk. J. Anim. Sci. 1990, 68, 2279–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, C.X.; Lively, F.L.; Wylie, A.R.G.; Yan, T. Estimation of the maintenance energy requirements, methane emissions and nitrogen utilization efficiency of two suckler cow genotypes. Animal 2016, 10, 616–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, A.; Redden, M.; McGee, A.; Spencer, C.; Reuter, R.; Horn, G.; Lalman, D. Effects of timing of weaning on energy utilization in primiparous beef cows and post-weaning performance of their progeny. J. Anim. Sci. 2019, 97, 1198–1211. [Google Scholar] [CrossRef]
- Carvalho, P.H.A.; Borge, A.L.C.C.; Reis e Silva, R.; Lage, H.F.; Vivenza, P.A.D.; Ruas, J.R.M.; Facury Filho, E.J.; Palhano, R.L.A.; Gonçalves, L.C.; Borges, I.; et al. Energy metabolism and partition of lactating Zebu and crossbred Zebu cows in different planes of nutrition. PLoS ONE 2018, 13, e0202088. [Google Scholar] [CrossRef] [PubMed]
- Fiems, L.O.; De Boever, J.L.; Vanacker, J.M.; De Campanere, S. Maintenance energy requirements of double-muscled Belgian Blue beef cows. Animals 2015, 5, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Cooper-Prado, M.J.; Long, J.N.M.; Davis, M.P.; Wright, E.C.; Madden, R.D.; Dilwith, J.W.; Bailey, C.L.; Spicer, L.J.; Wettemann, R.P. Maintenance energy requirements of beef cows and relationship with cow and calf performance, metabolic hormones, and functional proteins. J. Anim. Sci. 2014, 92, 3300–3315. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Perrin, D.R. The calorific value of milk of different species. J. Dairy Res. 1958, 25, 215–220. [Google Scholar] [CrossRef]
Nation of Origin | Organisation | Date | Publication Name | Animal Type | Maint. Req. | Energy Units 1 | CH4 Equations | Observations |
---|---|---|---|---|---|---|---|---|
UK | Agriculture and Food Research Council (AFRC, [2]), formerly Agriculture Research Council (ARC, [3,22]) | 1993 | Energy and Protein Requirements of Ruminants | Continental and British breeds | Calorimetry | ME | No | Still provides an important theoretical background for the majority of energy systems worldwide. Forage-based diets. |
Australia | Commonwealth Scientific and Industrial Research Organisation (CSIRO, [12]) | 2007 | Nutrient Requirements of Domesticated Ruminants | Bos taurus, Bos indicus and crossbreds | Calorimetry | ME | No | CSIRO guidelines follow the AFRC approach to use of MEm as the measure of maintenance requirements. Feed tables include low quality forages. |
France | Institut National de la Recherche Agronomique (INRA, [5,28,29]) | 2018 | INRA Feeding System for Ruminants | Beef and dairy origin genotypes | Calorimetry | NE | Yes | NE is expressed in terms of barley feed unit (1 FU = 1760 kcal for 1 kg of fresh standard barley). |
USA and Canada | National Academies of Sciences, Engineering and Medicine (NASEM, [13]). Update on National Research Council (NRC, [19]) guidelines | 2016 | Nutrient Requirements of Beef Cattle. 8th revised edition 2016 | Bos taurus, Bos indicus and crossbreds | Comparative slaughter | NE | Yes | North America diets for feeding beef cattle typically contain high concentrate levels compared to other countries. NASEM (2016) provides levels of solutions from empirical to more mechanistic approaches. |
Ruminant Nutrition System (RNS, [6]) Project | 2018 | The Ruminant Nutrition System. 2nd edition | Bos taurus, Bos indicus and crossbreds | Comparative slaughter | NE | Yes | The RNS is a further development of the Cornell Net Carbohydrate and Protein System published during the 2000s decade. The RNS includes 3 levels of solutions (L0, L1, and L2) from empirical to more mechanistic approaches. | |
Brazil | Universidade Federal de Viçosa (UFV) (BR-Corte, [14]) | 2016 | BR-Corte 3rd edition | Zebu cattle and crossbreds | Comparative slaughter | NE | Yes | Zebu cattle is mainly Nellore. Energy equations for both feedlot and pasture conditions. Calorimetry was recently introduced to estimate energy requirements. |
Reference | Country | Technique | Anim. | Type | Breed | LW (kg) | MEm (MJ/kg LW0.75) | NEm (MJ/kg LW0.75) |
AFBI studies 2 (1990–2020) | ||||||||
Jiao et al. [40] | UK | Calorimetry | 20 | Steers, heifers | Holstein | 176 | 0.781 | 0.570 |
Gordon et al. [41] | UK | Calorimetry | 12 | Steers | Angus × Friesian | 416 | 0.620 | -- |
Dawson and Steen [38] | UK | Calorimetry | 75 | Steers | Beef cross | 450–628 | 0.614 | -- |
International studies 3 (2009–2020) | ||||||||
Castro et al. [42] * | Brazil | Comp. laughter | 22 | Heifers | Holstein × Gyr | 98–172 | 0.545 | 0.352 |
Ferreira et al. [49] * | Brazil | Calorimetry | 15 | Bulls | Holstein × Gyr | 302 | 0.523 | 0.312 |
Silva et al. [43] | Brazil | Comp. Slaughter | 39 | Bulls | Holstein × Gyr | 43–93 | -- | 0.298 |
Oss et al. [44] | Brazil | Comp. slaughter | 24 | Bulls | Holstein × Gyr | 182–388 | -- | 0.313 |
Posada-Ochoa et al. [45] * | Brazil | Calorimetry | 5 | Bulls | Nellore | 219 | 0.691 | 0.418 |
Brazil | Calorimetry | 5 | Bulls | Nellore | 328 | 0.567 | 0.332 | |
Brazil | Calorimetry | 5 | Bulls | Nellore | 394 | 0.512 | 0.331 | |
Brazil | Calorimetry | 5 | Bulls | Nellore | 473 | 0.468 | 0.303 | |
Salah et al. [31]—Meta-analysis | France | Feeding studies | 1855 | Growing animals | Temperate and tropical phenotypes. | -- | 0.631 | -- |
Marcondes et al. [46]—Meta-analysis* | Brazil | Comp. slaughter | 752 | Growing animals | Nellore, Nellore × Bos taurus | 258–426 | -- | 0.386 |
Rotta et al. [51] * | Brazil | Comp. slaughter | 44 | Bulls | Holstein × Zebu | 338 | 0.555 | 0.382 |
Sainz et al. [50]—Meta-analysis* | USA | Comp. slaughter | 127 | Steers | Angus, Hereford and crossbreds | -- | -- | 0.314 |
Brazil | Comp. slaughter | 711 | Bulls | Bos indicus | -- | -- | 0.292 | |
Valente et al. [47] * | Brazil | Comp. slaughter | 46 | Bulls | Nellore | 138 | 0.603 | 0.325 |
Gomes et al. [53] * | Brazil | Comp. slaughter | 8 | Steers | Nellore, High RFI | 340–348 | 0.778 | -- |
Brazil | Comp. slaughter | 9 | Steers | Nellore, Low RFI | 334–441 | 0.637 | -- | |
Porto et al. [48] | Brazil | Comp. slaughter | 10 | Bulls | Nellore × Holstein | 199–317 | 0.607 | 0.352 |
Summaries 4 | ||||||||
AFBI studies (1990–2020) | 0.672 ± 0.0947 | 0.570 | ||||||
Literature (2009–2020) | 0.593 ± 0.0846 | 0.336 ± 0.0372 | ||||||
Cottrill et al. [1]—Review (1989–2009) 5 | 0.524 ± 0.0776 | 0.353 ± 0.0775 |
References | Country | Technique | Animals | Breed | Physiological State | LW (kg) | MEm (MJ/kg LW0.75) | NEm (MJ/kg LW0.75) |
---|---|---|---|---|---|---|---|---|
Andresen et al. [29] | USA | Feeding studies | 32 | Aberdeen Angus | Milking cows | 505–516 | 0.389 | 0.251 |
Feeding studies | 27 | Hereford × Angus | Milking cows | 518–516 | 0.400 | 0.259 | ||
Trubenbach et al. [30] | USA | Feeding studies | 31 | Angus × Nellore | Milking cows | 433–477 | 0.736 | -- |
Wiseman et al. [66] | USA | Feeding studies | 45 | Angus and Angus × Hereford | Trad. weaning, 226 d | 417–445 | 0.471 | 0.288 |
Feeding studies | 45 | Early weaning, 130 d | 414–445 | 0.447 | 0.274 | |||
Carvalho et al. [67] | Brazil | Calorimetry | 6 | Gyr | Milking cows | 483 | 0.729 | 0.408 |
Calorimetry | 6 | Gyr × Holstein | Milking cows | 510 | 0.796 | 0.446 | ||
Zou et al. [65] | UK | Calorimetry | 17 | Limousin × Holstein Friesian | Dry & pregnancy | 589 | 0.728 | 0.392 |
Calorimetry | 17 | Stabiliser * | Dry & pregnancy | 679 | 0.697 | 0.375 | ||
Fiems et al. [68] | Belgium | Feeding studies | 60 | Belgian Blue | Dry & non pregnant | -- | 0.569 | 0.332 |
Cooper-Prado et al. [69] | USA | Feeding studies | 93 | Aberdeen Angus | Dry & pregnancy | 582 | -- | 0.373 |
Summaries | ||||||||
Present review (2009–2014) | 0.596 ± 0.1580 | 0.340 ± 0.0687 | ||||||
Cottrill et al. [1]—Review (1989–2009) | 0.583 ± 0.0605 | N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabezas-Garcia, E.H.; Lowe, D.; Lively, F. Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance. Animals 2021, 11, 1642. https://doi.org/10.3390/ani11061642
Cabezas-Garcia EH, Lowe D, Lively F. Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance. Animals. 2021; 11(6):1642. https://doi.org/10.3390/ani11061642
Chicago/Turabian StyleCabezas-Garcia, Edward H., Denise Lowe, and Francis Lively. 2021. "Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance" Animals 11, no. 6: 1642. https://doi.org/10.3390/ani11061642
APA StyleCabezas-Garcia, E. H., Lowe, D., & Lively, F. (2021). Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance. Animals, 11(6), 1642. https://doi.org/10.3390/ani11061642