Solid State Fermentation as a Tool to Stabilize and Improve Nutritive Value of Fruit and Vegetable Discards: Effect on Nutritional Composition, In Vitro Ruminal Fermentation and Organic Matter Digestibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism, Culture Media and Inoculum
2.2. Fruit and Vegetable Discards
2.3. Solid State Fermentation
2.4. Short-Term In Vitro Batch Fermentation Trial
2.5. Long-Term In Vitro Batch Fermentation Trial
2.6. Chemical Analyses
2.7. Calculations and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFFPA. European Former Foodstuff Processor Association. Reducing Food Waste. Available online: https://www.effpa.eu/reducing-food-waste/ (accessed on 3 October 2018).
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Wast–Extent, Causes and Prevention; FAO: Düsseldorf, Germany, 2011. [Google Scholar]
- Stenmarck, A.; Jensen, C.; Quested, T.; Moates, G.; Buksti, M.; Cseh, B.; Juul, S.; Parry, A.; Politano, A.; Redlingshofer, B.; et al. FUSIONS Estimates of European Food Waste Levels; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2016. [Google Scholar]
- FAOSTAT. New Food Balances. Available online: http://www.fao.org/faostat/en/#data/FBS (accessed on 23 February 2021).
- Wadhwa, M.; Bakshi, M.P.S.; Makkar, H.P.S. Waste to worth: Fruit wastes and by-products as animal feed. CAB Rev. 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P.S. Waste to worth: Vegetable wastes as animal feed. CAB Rev. 2016, 11, 1–26. [Google Scholar] [CrossRef]
- Ibarruri, J.; Hernández, I. Rhizopus oryzae as fermentation agent in food derived sub-products. Waste Biomass Valoriz. 2018, 9, 2107–2115. [Google Scholar] [CrossRef]
- Rajesh, N.; Imelda, J.; Raj, R.P. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry. Waste Manag. 2010, 30, 2223–2227. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-Y.; Kim, S.-M.; Lee, J.H.; Lim, S.-T. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2019, 272, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Massarolo, K.C.; de Souza, T.D.; Collazzo, C.C.; Furlong, E.B.; de Souza Soares, L.A. The impact of Rhizopus oryzae cultivation on rice bran: Gamma-oryzanol recovery and its antioxidant properties. Food Chem. 2017, 228, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Saharan, P.; Duhan, J.S. Bio-augmentation of antioxidants and phenolic content of Lablab purpureus by solid state fermentation with GRAS filamentous fungi. Resour. Effic. Technol. 2017, 3, 285–292. [Google Scholar] [CrossRef]
- Lennartsson, P.R.; Edebo, L.; Taherzadeh, M.J. Rhizopus. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Elsevier: New York, NY, USA, 2014; Volume 3, pp. 284–290. ISBN 978-0123847331. [Google Scholar]
- Ghosh, B.; Ray, R.R. Current Commercial Perspective of Rhizopus oryzae: A Review. J. Appl. Sci. 2011, 11, 2470–2486. [Google Scholar] [CrossRef] [Green Version]
- Morales, E.M.; Domingos, R.N.; Angelis, D.F. Improvement of Protein Bioavailability by Solid-State Fermentation of Babassu Mesocarp Flour and Cassava Leaves. Waste Biomass Valoriz. 2018, 9, 581–590. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Physicochemical, Microbiological and Functional Properties of Camelina Meal Fermented in Solid-State Using Food Grade Aspergillus Fungi. Fermentation 2020, 6, 44. [Google Scholar] [CrossRef]
- Regalado, C.; Vazquez-Obregon, I.; García-Almendárez, B.; García-Almendárez, E.; Dominguez, J.; Aguilera-Barreyro, A.; Amaro Reyes, A. Xylanolytic enzymes production by Aspergillus niger GS1 from solid-state fermentation on corn stover and their effect on ruminal digestibility. Electron. J. Biotechnol. ISSN 2011, 14, 717–3458. [Google Scholar] [CrossRef] [Green Version]
- Anele, U.Y.; Anike, F.N.; Davis-Mitchell, A.; Isikhuemhen, O.S. Solid-state fermentation with Pleurotus ostreatus improves the nutritive value of corn stover-kudzu biomass. Folia Microbiol. 2020. [Google Scholar] [CrossRef]
- Arredondo-Santoyo, M.; Herrera-Camacho, J.; Vázquez-Garcidueñas, M.S.; Vázquez-Marrufo, G. Corn stover induces extracellular laccase activity in Didymosphaeria sp. (syn. = Paraconiothyrium sp.) and exhibits increased in vitro ruminal digestibility when treated with this fungal species. Folia Microbiol. 2020, 65, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Arora, D.S. Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour. Technol. 2010, 101, 9248–9253. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Z.; Wu, Y.; Wang, J. Nutrient and ruminal fermentation profiles of Camellia seed residues with fungal pretreatment. Asian Australas. J. Anim. Sci. 2018, 32. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, F.; Fang, Y.; Zhou, D.; Wang, S.; Wu, D.; Wang, L.; Zhong, R. High-potency white-rot fungal strains and duration of fermentation to optimize corn straw as ruminant feed. Bioresour. Technol. 2020, 312, 123512. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Lizardi-Jimenez, M.A.; Hernandez-Martinez, R. Solid state fermentation (SSF): Diversity of applications to valorize waste and biomass. 3 Biotech. 2017, 7, 44. [Google Scholar] [CrossRef]
- Robinson, P.; Wiseman, J.; Udén, P.; Mateos, G. Some experimental design and statistical criteria for analysis of studies in manuscripts submitted for consideration for publication. Anim. Feed Sci. Technol. 2006, 129, 1–11. [Google Scholar] [CrossRef]
- Udén, P.; Robinson, P.H.; Mateos, G.G.; Blank, R. Use of replicates in statistical analyses in papers submitted for publication in Animal Feed Science and Technology. Anim. Feed Sci. Technol. 2012, 171, 1–5. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 9–55. [Google Scholar]
- Theodorou, M.K.; Lowman, R.S.; Davies, Z.S.; Cuddeford, D.; Owen, E. Principles of techniques that rely on gas measurement in ruminant nutrition. In In Vitro Techniques for Measuring Nutrient Supply to Ruminants; Deaville, E.R., Owen, E., Adesogan, A.T., Rymer, C., Huntington, J.A., Lawrence, T.L.J., Eds.; BSAP Occasional Publication: Edinburgh, UK, 1998; pp. 55–64. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists. In Official Methods of Analysis; AOAC International: Rockville, MD, USA, 1996. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Robertson, J.B.; Van Soest, P.J. The Detergent System of Analysis. In The Analysis of Dietary Fiber in Food; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Pell, A.N.; Schofield, P. Computerized Monitoring of Gas Production to Measure Forage Digestion In Vitro. J. Dairy Sci. 1993, 76, 1063–1073. [Google Scholar] [CrossRef]
- Blϋmmel, M.; Aiple, K.; Steingaβ, H.; Becker, K. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 2002, 81, 157–167. [Google Scholar] [CrossRef]
- Wolin, M.J. A Theoretical Rumen Fermentation Balance. J. Dairy Sci. 1960, 43, 1452–1459. [Google Scholar] [CrossRef]
- Krishnamoorthy, U.; Soller, H.; Steingass, H.; Menke, K.H. A comparative study on rumen fermentation of energy supplements in vitro. J. Anim. Physiol. Anim. Nutr. 1991, 65, 28–35. [Google Scholar] [CrossRef]
- SAS. Enterprise’s Guide; SAS Institute Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Tengerdy, R.P.; Szakacs, G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem. Eng. J. 2003, 13, 169–179. [Google Scholar] [CrossRef]
- Godoy, M.G.; Amorim, G.M.; Barreto, M.S.; Freire, D.M.G. Chapter 12: Agricultural Residues as Animal Feed: Protein Enrichment and Detoxification Using Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 235–256. [Google Scholar]
- Oliveira, M.d.S.; Feddern, V.; Kupski, L.; Cipolatti, E.P.; Badiale-Furlong, E.; de Souza-Soares, L.A. Physico-chemical characterization of fermented rice bran biomass. Caracterización fisico-química de la biomasa del salvado de arroz fermentado. CYTA J. Food 2010, 8, 229–236. [Google Scholar] [CrossRef]
- FazeliNejad, S.; Ferreira, J.A.; Brandberg, T.; Lennartsson, P.R.; Taherzadeh, M.J. Fungal protein and ethanol from lignocelluloses using Rhizopus pellets under simultaneous saccharification, filtration and fermentation (SSFF). Biofuel Res. J. 2016, 3, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Ibarruri, J.; Hernández, I. Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess Biosyst. Eng. 2019, 42, 1285–1300. [Google Scholar] [CrossRef]
- Jacqueline, E.; Visser, B. Biotechnology: Building on Farmers knowledge. In Assessing the Potential; Bunders, J., Haverkort, B., Hiemstra, W., Eds.; MPS: London, UK, 1996. [Google Scholar]
- Kupski, L.; Cipolatti, E.; da Rocha, M.; Oliveira, M.D.; Souza-Soares, L.D.; Badiale-Furlong, E. Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae. Braz. Arch. Biol. Technol. 2012, 55, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Ibarruri, J.; Cebrián, M.; Hernández, I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. J. Environ. Manag. 2021, 281, 111901. [Google Scholar] [CrossRef] [PubMed]
- Lecointe, K.; Cornu, M.; Leroy, J.; Coulon, P.; Sendid, B. Polysaccharides Cell Wall Architecture of Mucorales. Front. Microbiol. 2019, 10, 469. [Google Scholar] [CrossRef]
- Sniffen, C.; O’Connor, J.; Soest, P.; Fox, D.; Russell, J. A Net Carbohydrate and Protein System for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Silveira, C.; Badiale-Furlong, E. Sperathe Effects of Solid-state Fermentation in the Functional Properties of Defatted Rice Bran and Wheat Bran. Braz. Arch. Biol. Technol. 2009, 52. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, A.; Sahu, N.P.; Deo, A.D.; Kumar, S. Solid state fermentation of de-oiled rice bran: Effect on in vitro protein digestibility, fatty acid profile and anti-nutritional factors. Food Res. Int. 2019, 119, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, L.; Volpe, C.; Pezzotti, A.; Carilli, A. Changes in in-vitro digestibility of orange peels and distillery grape stalks after solid-state fermentation by higher fungi. Bioresour. Technol. 1993, 45, 17–20. [Google Scholar] [CrossRef]
- Andries, J.I.; Buysse, F.X.; De Brabander, D.L.; Cottyn, B.G. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances—A review. Anim. Feed Sci. Technol. 1987, 18, 169–180. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, C.; Guo, G.; Huo, W.J.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L.; Wang, H. Effects of branched-chain volatile fatty acids supplementation on growth performance, ruminal fermentation, nutrient digestibility, hepatic lipid content and gene expression of dairy calves. Anim. Feed Sci. Technol. 2018, 237, 27–34. [Google Scholar] [CrossRef]
- Joshi, V.K.; Sandhu, D.K. Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace. Bioresour. Technol. 1996, 56, 251–255. [Google Scholar] [CrossRef]
- Cooray, S.T.; Chen, W.N. Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. J. Funct. Foods 2018, 42, 85–94. [Google Scholar] [CrossRef]
- Chandra-Hioe, M.V.; Wong, C.H.M.; Arcot, J. The Potential Use of Fermented Chickpea and Faba Bean Flour as Food Ingredients. Plant Foods Hum. Nutr. 2016, 71, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Çabuk, B.; Nosworthy, M.; Stone, A.; Korber, D.; Tanaka, T.; House, J.; Nickerson, M. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [CrossRef]
- Jarrige, R.; Minson, D.J. Digestibilité des constituants du ray-grass anglais S24 et du dactyle S37, plus spécialement des constituants glucidiques. Ann. Zootech. 1964, 13, 117–153. [Google Scholar] [CrossRef] [Green Version]
- Arora, M.; Wadhwa, M.; Sehgal, V.K. In-vivo evaluation of fermented potato processing waste as ruminant feed. Indian J. Microbiol 1995, 35, 259–261. [Google Scholar]
- R., B.; Dulphy, J.P.; Sauvant, D.; Tran, G.; Meschy, F.; Aufrère, J.; Peyraud, J.L.; Champciaux, P. Les tables de la valeur des aliments. In Alimentation des Bovins, Ovins et Caprins. Besoins des Animaux-Valeurs des Aliments; Quae, É., Ed.; QUAE: Versailles, France, 2007; pp. 181–275. [Google Scholar]
- Hassoun, P.; Bocquier, F. Alimentation des ovins. In Alimentation des Bovins, Ovins et Caprins. Besoins des Animaux-Valeurs des Aliments; Quae, É., Ed.; QUAE: Versailles, France, 2007; pp. 12–136. [Google Scholar]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Chalupa, W. Manipulating Rumen Fermentation. J. Anim. Sci. 1977, 45, 585–599. [Google Scholar] [CrossRef]
- Sutton, J.D. Digestion and end-product formation in the rumen from production rations. In Digestive Physiology and Metabolism in Ruminants, Proceedings of the 5th International Symposium on Ruminant Physiology, Clermont—Ferrand, France, 3–7 September 1979; Ruckebusch, Y., Thivend, P., Eds.; Springer: Dordrecht, The Netherlands, 1980; pp. 271–290. [Google Scholar]
- Hvelplund, T. Volatile fatty acids and protein production. In Rumen Microbial Metabolism and Ruminant Digestion; Jouany, J.P., Ed.; INRA: Paris, France, 1991; pp. 165–178. [Google Scholar]
- Pandey, A.; Selvakumar, P.; Soccol, C.; Nigam, P. Solid State Fermentation for the Production of Industrial Enzymes. Curr. Sci. 1999, 77, 149–162. [Google Scholar]
Item (g kg−1 DM Unless Otherwise Stated) | Treatment | SEM | p-Value | |
---|---|---|---|---|
SSF | CTR | |||
DM (g kg−1) | 901 | 891 | 22 | 0.609 |
OM | 940 | 960 | 0.5 | <0.001 |
Reducing sugars | 43 | 265 | 2.1 | <0.001 |
CP | 157 | 100 | 1.4 | <0.001 |
NDF | 398 | 196 | 20.1 | <0.001 |
ADF | 303 | 153 | 12.7 | <0.001 |
NDICP (g kg−1 CP) | 33 | 9.5 | 9.07 | 0.001 |
Item | Treatment | SEM | p-Value | |
---|---|---|---|---|
SSF | CTR | |||
A (m Lg DM−1) | 207 | 303 | 13.8 | 0.001 |
c (h−1) | 0.057 | 0.061 | 0.0103 | 0.676 |
L (h) | 1.10 | 0.75 | 0.687 | 0.574 |
Item | Treatment | SEM | p-Value | |
---|---|---|---|---|
SSF | CTR | |||
IVOMD (g kg−1) | 585 | 804 | 14.3 | <0.001 |
SCFA (mmol L−1) | 76.4 | 89.6 | 2.61 | 0.003 |
SCFA: TDS (mmol g OM−1) | 308 | 260 | 6.6 | <0.001 |
CH4 (mmol L−1) | 24.8 | 29.3 | 0.81 | 0.002 |
CH4: TDS (mmol/g OM−1) | 9.99 | 8.50 | 0.224 | 0.001 |
Individual SCFA proportions (mmol 100 mmol−1) | ||||
Acetic | 63.8 | 61.8 | 0.67 | 0.020 |
Propionic | 20.1 | 20.9 | 0.17 | 0.004 |
Butyric | 12.7 | 14.5 | 0.43 | 0.006 |
Isobutyric | 0.702 | 0.472 | 0.0447 | 0.003 |
Valeric | 1.38 | 1.51 | 0.090 | 0.155 |
Isovaleric | 1.35 | 0.874 | 0.0887 | 0.003 |
Branched-chain FA | 2.05 | 1.35 | 0.133 | 0.003 |
Acetic:propionic | 3.19 | 2.96 | 0.055 | 0.008 |
(acetic+butyric):propionic | 3.82 | 3.67 | 0.042 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibarruri, J.; Goiri, I.; Cebrián, M.; García-Rodríguez, A. Solid State Fermentation as a Tool to Stabilize and Improve Nutritive Value of Fruit and Vegetable Discards: Effect on Nutritional Composition, In Vitro Ruminal Fermentation and Organic Matter Digestibility. Animals 2021, 11, 1653. https://doi.org/10.3390/ani11061653
Ibarruri J, Goiri I, Cebrián M, García-Rodríguez A. Solid State Fermentation as a Tool to Stabilize and Improve Nutritive Value of Fruit and Vegetable Discards: Effect on Nutritional Composition, In Vitro Ruminal Fermentation and Organic Matter Digestibility. Animals. 2021; 11(6):1653. https://doi.org/10.3390/ani11061653
Chicago/Turabian StyleIbarruri, Jone, Idoia Goiri, Marta Cebrián, and Aser García-Rodríguez. 2021. "Solid State Fermentation as a Tool to Stabilize and Improve Nutritive Value of Fruit and Vegetable Discards: Effect on Nutritional Composition, In Vitro Ruminal Fermentation and Organic Matter Digestibility" Animals 11, no. 6: 1653. https://doi.org/10.3390/ani11061653
APA StyleIbarruri, J., Goiri, I., Cebrián, M., & García-Rodríguez, A. (2021). Solid State Fermentation as a Tool to Stabilize and Improve Nutritive Value of Fruit and Vegetable Discards: Effect on Nutritional Composition, In Vitro Ruminal Fermentation and Organic Matter Digestibility. Animals, 11(6), 1653. https://doi.org/10.3390/ani11061653