Effect of Goji Berry (Lycium barbarum) Supplementation on Reproductive Performance of Rabbit Does
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Hormone and Metabolite Assays
2.3. Statistical Analysis
3. Results
3.1. Hormone Concentrations
3.2. Reproductive and Productive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Liang, T.; Liu, Y.; Ding, G.; Zhang, F.; Ma, Z. Extraction, structural characterization, and biological functions of lycium barbarum polysaccharides: A review. Biomolecules 2019, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent. Aging Dis. 2017, 8, 778–791. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.F.; Zhang, H.; Teh, S.S.; Wang, C.W.; Zhang, Y.; Hayford, F.; Wang, L.; Ma, T.; Dong, Z.; Zhang, Y.; et al. Goji Berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid. Med. Cell. Longev. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Guo, S.; Lu, Y.; Hua, Y.; Zhang, F.; Yan, H.; Shang, E.; Wang, H.; Zhang, W.; Duan, J. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition. Biomed. Pharmacother. 2020, 121, 109559. [Google Scholar] [CrossRef]
- Masci, A.; Carradori, S.; Casadei, M.A.; Paolicelli, P.; Petralito, S.; Ragno, R.; Cesa, S. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chem. 2018, 254, 377–389. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Vannini, S.; Cataldi, S.; Moretti, M.; Villarini, M.; Fioretti, B.; Albi, E.; Beccari, T.; Codini, M. Effect of Lycium barbarum berries cultivated in Umbria (Italy) on human hepatocellular carcinoma cells. J. Biotechnol. 2016, 231, S26–S27. [Google Scholar] [CrossRef]
- Yu, M.S.; Ho, Y.S.; So, K.F.; Yuen, W.H.; Chang, R.C.C. Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int. J. Mol. Med. 2006, 17, 1157–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, X.; Liu, F.; Xiao, J.; So, K.F. Neuro-protective Mechanisms of Lycium barbarum. NeuroMolecular Med. 2016, 18, 253–263. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Codini, M.; Cataldi, S.; Vannini, S.; Lazzarini, A.; Floridi, A.; Moretti, M.; Villarini, M.; Fioretti, B.; Beccari, T.; et al. Acid sphingomyelinase as target of Lycium Chinense: Promising new action for cell health. Lipids Health Dis. 2016, 15, 183. [Google Scholar] [CrossRef] [Green Version]
- Bo, R.; Sun, Y.; Zhou, S.; Ou, N.; Gu, P.; Liu, Z.; Hu, Y.; Liu, J.; Wang, D. Simple nanoliposomes encapsulating Lycium barbarum polysaccharides as adjuvants improve humoral and cellular immunity in mice. Int. J. Nanomedicine 2017, 12, 6289–6301. [Google Scholar] [CrossRef] [Green Version]
- Lian, Y.Z.; Lin, I.H.; Yang, Y.C.; Chao, J.C.J. Gastroprotective effect of Lycium barbarum polysaccharides and C-phyocyanin in rats with ethanol-induced gastric ulcer. Int. J. Biol. Macromol. 2020, 165, 1519–1528. [Google Scholar] [CrossRef]
- Reeve, V.E.; Allanson, M.; Arun, S.J.; Domanski, D.; Painter, N. Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochem. Photobiol. Sci. 2010, 9, 601–607. [Google Scholar] [CrossRef]
- Liu, L.; Sha, X.Y.; Wu, Y.N.; Chen, M.T.; Zhong, J.X. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen. Res. 2020, 15, 1526–1531. [Google Scholar] [CrossRef]
- Amagase, H.; Farnsworth, N.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Res. Int. 2011, 44, 1702–1717. [Google Scholar] [CrossRef]
- Kwok, S.S.; Bu, Y.; Lo, A.C.Y.; Chan, T.C.Y.; So, K.F.; Lai, J.S.M.; Shih, K.C. A Systematic Review of Potential Therapeutic Use of Lycium Barbarum Polysaccharides in Disease. Biomed Res. Int. 2019, 4615745. [Google Scholar] [CrossRef]
- Carnés, J.; De Larramendi, C.H.; Ferrer, A.; Huertas, A.J.; López-Matas, M.A.; Pagán, J.A.; Navarro, L.A.; García-Abujeta, J.L.; Vicario, S.; Peña, M. Recently introduced foods as new allergenic sources: Sensitisation to Goji berries (Lycium barbarum). Food Chem. 2013, 137, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Endes, Z.; Uslu, N.; Özcan, M.M.; Er, F. Physico-chemical properties, fatty acid composition and mineral contents of goji berry (Lycium barbarum L.) fruit. J. Agroaliment. Process. Technol. 2015, 21, 36–40. [Google Scholar]
- Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem. 2010, 120, 184–192. [Google Scholar] [CrossRef]
- Filipescu, I.E.; Leonardi, L.; Menchetti, L.; Guelfi, G.; Traina, G.; Casagrande-Proietti, P.; Piro, F.; Quattrone, A.; Barbato, O.; Brecchia, G. Preventive effects of bovine colostrum supplementation in TNBS-induced colitis in mice. PLoS ONE 2018, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Long, L.N.; Kang, B.J.; Jiang, Q.; Chen, J.S. Effects of dietary Lycium barbarum polysaccharides on growth performance, digestive enzyme activities, antioxidant status, and immunity of broiler chickens. Poult. Sci. 2020, 99, 744–751. [Google Scholar] [CrossRef]
- Menchetti, L.; Brecchia, G.; Branciari, R.; Barbato, O.; Fioretti, B.; Codini, M.; Bellezza, E.; Trabalza-Marinucci, M.; Miraglia, D. The effect of Goji berries (Lycium barbarum) dietary supplementation on rabbit meat quality. Meat. Sci. 2020, 161, 108018. [Google Scholar] [CrossRef]
- Menchetti, L.; Curone, G.; Andoni, E.; Barbato, O.; Troisi, A.; Fioretti, B.; Polisca, A.; Codini, M.; Canali, C.; Vigo, D.; et al. Impact of goji berries (Lycium barbarum) supplementation on the energy homeostasis of rabbit does: Uni- and multivariate approach. Animals 2020, 10, 2000. [Google Scholar] [CrossRef]
- Castrica, M.; Menchetti, L.; Balzaretti, C.C.M.; Branciari, R.; Ranucci, D.; Cotozzolo, E.; Vigo, D.; Curone, G.; Brecchia, G.; Miraglia, D. Impact of dietary supplementation with goji berries (Lycium barbarum) on microbiological quality, physico-chemical, and sensory characteristics of rabbit meat. Foods 2020, 9, 1480. [Google Scholar] [CrossRef] [PubMed]
- Rommers, J.M.; Boiti, C.; Brecchia, G.; Meijerhof, R.; Noordhuizen, J.P.T.M.; Decuypere, E.; Kemp, B. Metabolic adaptation and hormonal regulation in young rabbit does during long-term caloric restriction and subsequent compensatory growth. Anim. Sci. 2004, 79, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Paredes, E.; Ródenas, L.; Martínez-Vallespín, B.; Cervera, C.; Blas, E.; Brecchia, G.; Boiti, C.; Pascual, J.J. Effects of feeding programme on the performance and energy balance of nulliparous rabbit does. Animal 2012, 6, 1086–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menchetti, L.; Brecchia, G.; Canali, C.; Cardinali, R.; Polisca, A.; Zerani, M.; Boiti, C. Food restriction during pregnancy in rabbits: Effects on hormones and metabolites involved in energy homeostasis and metabolic programming. Res. Vet. Sci. 2015, 98, 7–12. [Google Scholar] [CrossRef]
- Menchetti, L.; Andoni, E.; Barbato, O.; Canali, C.; Quattrone, A.; Vigo, D.; Codini, M.; Curone, G.; Brecchia, G. Energy homeostasis in rabbit does during pregnancy and pseudopregnancy. Anim. Reprod. Sci. 2020, 218, 106505. [Google Scholar] [CrossRef]
- Menchetti, L.; Barbato, O.; Filipescu, I.E.; Traina, G.; Leonardi, L.; Polisca, A.; Troisi, A.; Guelfi, G.; Piro, F.; Brecchia, G. Effects of local lipopolysaccharide administration on the expression of Toll-like receptor 4 and pro-inflammatory cytokines in uterus and oviduct of rabbit does. Theriogenology 2018, 107, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Boiti, C.; Canali, C.; Brecchia, G.; Zanon, F.; Facchin, E. Effects of induced endometritis on the life-span of corpora lutea in pseudopregnant rabbits and incidence of spontaneous uterine infections related to fertility of breeding does. Theriogenology 1999, 52, 1123–1132. [Google Scholar] [CrossRef]
- Cronin, J.G.; Turner, M.L.; Goetze, L.; Bryant, C.E.; Sheldon, I.M. Toll-Like Receptor 4 and MYD88-Dependent Signaling Mechanisms of the Innate Immune System Are Essential for the Response to Lipopolysaccharide by Epithelial and Stromal Cells of the Bovine Endometrium1. Biol. Reprod. 2012, 86, 51. [Google Scholar] [CrossRef] [PubMed]
- Brecchia, G.; Menchetti, L.; Cardinali, R.; Castellini, C.; Polisca, a.; Zerani, M.; Maranesi, M.; Boiti, C. Effects of a bacterial lipopolysaccharide on the reproductive functions of rabbit does. Anim. Reprod. Sci. 2014, 147, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Brecchia, G.; Cardinali, R.; Mourvaki, E.; Collodel, G.; Moretti, E.; Dal Bosco, A.; Castellini, C. Short- and long-term effects of lipopolysaccharide-induced inflammation on rabbit sperm quality. Anim. Reprod. Sci. 2010, 118, 310–316. [Google Scholar] [CrossRef]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.P.; Gooch, C.A.; Lansing, S.; Schueler, J.; Hurst, J.J.; Sassoubre, L.; Crossette, E.M.; Aga, D.S. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J. Dairy Sci. 2020, 103, 1051–1071. [Google Scholar] [CrossRef]
- Amore, G.; Beloeil, P.; Bocca, V.; Boelaert, F.; Gibin, D.; Papanikolaou, A.; Rizz, V.; Stoicescu, A. Zoonoses, antimicrobial resistance and food-borne outbreaks guidance for reporting 2020 data. EFSA Support. Publ. 2021, 18, 112. [Google Scholar] [CrossRef]
- Menchetti, L.; Barbato, O.; Sforna, M.; Vigo, D.; Mattioli, S.; Curone, G.; Tecilla, M.; Riva, F.; Brecchia, G. Effects of Diets Enriched in Linseed and Fish Oil on the Expression Pattern of Toll-Like Receptors 4 and Proinflammatory Cytokines on Gonadal Axis and Reproductive Organs in Rabbit Buck. Oxid. Med. Cell. Longev. 2020, 2020, 4327470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, M.L.; De Oliveira, R.A. Nutraceutical in male reproduction. Rev. Bras. Med. Vet. 2018, 40, e220118. [Google Scholar] [CrossRef]
- Liu, C.; Gu, J.; Ma, W.; Zhang, Q.; Song, M.; Ha, L.; Xu, X.; Jiao, H.; Huo, Z. Lycium barbarum polysaccharide protects against ethanol-induced spermiotoxicity and testicular degenera-tion in Immp2l(+/-) mice. Andrologia 2020, 52, e13554. [Google Scholar] [CrossRef]
- Ren, F.; Fang, Q.; Feng, T.; Li, Y.; Wang, Y.; Zhu, H.; Hu, J. Lycium barbarum and Laminaria japonica polysaccharides improve Cashmere goat sperm quality and fertility rate after cryopreservation. Theriogenology 2019, 129, 29–36. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.L.; Wang, X.M.; Zhang, C.; Dai, J.G.; Huang, X.M.; Gao, J.M. Reparative effects of lycium barbarum polysaccharide on mouse ovarian injuries induced by repeated superovulation. Theriogenology 2020, 145, 115–125. [Google Scholar] [CrossRef]
- Wei, M.; ZHeng, S.; Ma, H.; Lv, Y. Discussion of protective mechanism of Lyceum barbarum polysaccharides on ovarian tissue in female senile rats. Zhong Yao Cai 2011, 34, 1915–1918. [Google Scholar]
- Polisca, A.; Scotti, L.; Orlandi, R.; Brecchia, G.; Boiti, C. Doppler evaluation of maternal and fetal vessels during normal gestation in rabbits. Theriogenology 2010, 73, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Boiti, C.; Guelfi, G.; Zerani, M.; Zampini, D.; Brecchia, G.; Gobbetti, A. Expression patterns of cytokines, p53 and nitric oxide synthase isoenzymes in corpora lutea of pseudopregnant rabbits during spontaneous luteolysis. Reproduction 2004, 127, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Parillo, F.; Dall’Aglio, C.; Brecchia, G.; Maranesi, M.; Polisca, A.; Boiti, C.; Zerani, M. Aglepristone (RU534) effects on luteal function of pseudopregnant rabbits: Steroid receptors, enzymatic activities, and hormone productions in corpus luteum and uterus. Anim. Reprod. Sci. 2013, 138, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Maertens, L.; Moermans, R.; De Groote, G. Prediction of the apparent digestible energy content of commercial pelleted feeds for rabbits. J. Appl. Rabbit. Res. 1988, 11, 60–67. [Google Scholar]
- IRRG; Theau-Clément, M.; Maertens, L.; Castellini, C.; Besenfelder, U.; Boiti, C. Recommendations and guidelines for applied reproduction trials with rabbit does. World Rabbit Sci. 2005, 13, 147–164. [Google Scholar]
- Menchetti, L.; Vecchione, L.; Filipescu, I.; Petrescu, V.F.; Fioretti, B.; Beccari, T.; Ceccarini, M.R.; Codini, M.; Quattrone, A.; Trabalza-Marinucci, M.; et al. Effects of Goji berries supplementation on the productive performance of rabbit. Livest. Sci. 2019, 220, 123–128. [Google Scholar] [CrossRef]
- Menchetti, L.; Canali, C.; Castellini, C.; Boiti, C.; Brecchia, G. The different effects of linseed and fish oil supplemented diets on insulin sensitivity of rabbit does during pregnancy. Res. Vet. Sci. 2018, 118, 126–133. [Google Scholar] [CrossRef]
- Brecchia, G.; Bonanno, A.; Galeati, G.; Federici, C.; Maranesi, M.; Gobbetti, A.; Zerani, M.; Boiti, C. Hormonal and metabolic adaptation to fasting: Effects on the hypothalamic-pituitary-ovarian axis and reproductive performance of rabbit does. Domest. Anim. Endocrinol. 2006, 31, 105–122. [Google Scholar] [CrossRef]
- Troisi, A.; Polisca, A.; Cardinali, L.; Orlandi, R.; Brecchia, G.; Menchetti, L.; Zerani, M.; Maranesi, M.; Di Mari, W.; Verstegen, J.P. Effect of aglepristone (RU534) administration during follicular phase on progesterone, estradiol-17β and LH serum concentrations in bitches. Reprod. Domest. Anim. 2020, 55, 1794–1802. [Google Scholar] [CrossRef]
- Moret, B. Comportement d’oestrus chez la lapine. Cunicult. Mag. 1980, 33, 159–161. [Google Scholar]
- Rodriguez, J.M.; Ubilla, E. Effects of sexual receptivity on ovulation response in rabbit does induced with GnRH. In Proceedings of the Proc 4th World Rabbit Congress, Buadapest, Hungary, 10–14 October 1988; pp. 504–509. [Google Scholar]
- Stouflet, I.; Caillol, M. Relation between circulating sex steroid concentrations and sexual behaviour during pregnancy and post-partum in the domestic rabbit. J. Reprod. Fertil. 1988, 82, 209–218. [Google Scholar] [CrossRef]
- Rebollar, P.G.; Ubilla, E.; Alvarino, J.M.R.; Illera, J.C.; Silvan, G. Effect of degree of sexual receptivity on post-partum plasma estardiol and ovulatory response in rabbit. Rev. Esp. Fisiol. 1992, 43, 13–18. [Google Scholar]
- Caillol, M.; Dauphin-Villemant, C.; Martinet, L. Oestrous behaviour and circulating progesterone and oestrogen levels during pseudo-pregnancy in the domestic rabbit. J. Reprod. Fertil. 1983, 69, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roustan, M.A. A study on relationship between receptivity and lactation in the doe, and their influ-ence on reproductive performance. J. Appl. Rabbit. Res. 1992, 15, 412–421. [Google Scholar]
- Suzuki, M.; Osawa, S.; Hirano, M. A Lycium Chinense Miller Component Inducing Ovulation in Adult Female Rabbits. Tohoku J. Exp. Med. 1972, 106, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Pau, K.; Orstead, K.; Hess, D.; Spies, H. Feedback effects of ovarian steroids on the hypothalamic-hypophyseal axis in the rab-bit. Biol. Reprod. 1986, 35, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, V.; Soufi, W. The neuroendocrine control of the rabbit ovarian cycle. In The Physiology of Reproduction, 2nd ed.; Knobil, E., Neill, J.D., Eds.; Raven Press: New York, NY, US, 1994; pp. 585–611. [Google Scholar]
- Rebollar, P.; Dal Bosco, A.; Millán, P.; Cardinali, R.; Brecchia, G.; Sylla, L.; Lorenzo, P.; Castellini, C. Ovulating induction methods in rabbit does: The pituitary and ovarian responses. Theriogenology 2012, 77, 292–298. [Google Scholar] [CrossRef]
- Jones, E.E.; Bain, J.B.; Odell, W.D. Postcoital luteinizing hormone release in male and female rabbits as determined by ra-dioimmunoassay. Fertil. Steril. 1976, 848–852. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, A.; Sun, X.; Li, X.; Zhao, X.; Li, S.; Ma, A. Protective effects of lycium barbarum polysaccharides on testis spermatogenic injury induced by bisphenol a in mice. Evidence Based Complement. Altern. Med. 2013, 2013, 690808. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.J.; Zheng, J.; Wu, J.; Qiao, H.Q.; Chang, Q.; Niu, Y.; Sun, T.; Li, Y.X.; Yu, J.Q. Protective effects of lycium barbarum polysaccharide on male sexual dysfunction and fertility impairments by activating hypothalamic pituitary gonadal axis in streptozotocin-induced type-1 diabetic male mice. Endocr. J. 2017, 64, 907–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Li, Z.; Huang, X.; Yan, J.; Zhang, S.; Cai, Y.Z. Lycium barbarum polysaccharides: Protective effects against heat-induced damage of rat testes and H2O2-induced DNA damage in mouse testicular cells and beneficial effect on sexual behavior and reproductive function of hemicastrated rats. Life Sci. 2006, 79, 613–621. [Google Scholar] [CrossRef]
- Yang, Q.; Xing, Y.; Qiao, C.; Liu, W.; Jiang, H.; Fu, Q.; Zhou, Y.; Yang, B.; Zhang, Z.; Chen, R. Semen quality improvement in boars fed with supplemental wolfberry (Lycium barbarum). Anim. Sci. J. 2019, 90, 1517–1522. [Google Scholar] [CrossRef] [PubMed]
- Bauman, D.E.; Mather, I.H.; Wall, R.J.; Lock, A.L. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 2006, 89, 1235–1243. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Wang, M.; Zhou, G.; Chen, L.; Ding, L.; Bu, D.; Loor, J. Arginine supply impacts the expression of candidate microRNA controlling milk casein yield in Bovine mammary tissue. Animals 2020, 10, 797. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Guo, C.y.; Gao, K.g.; Wang, L.; Chen, Z.; Ma, X.y.; Jiang, Z.y. Dietary arginine supplementation in multiparous sows during lactation improves the weight gain of suckling piglets. J. Integr. Agric. 2017, 16, 648–655. [Google Scholar] [CrossRef] [Green Version]
- Moshel, Y.; Rhoads, R.E.; Barash, I. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J. Cell. Biochem. 2006, 98, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Xiccato, G.; Bernardini, M.; Castellini, C.; Dalle Zotte, A.; Queaque, P.I.; Trocino, A. Effect of postweaning feeding on the performance and energy balance of female rabbits at different physiological states. J. Anim. Sci. 1999, 77, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Svennersten-Sjaunja, K.; Olsson, K. Endocrinology of milk production. Domest. Anim. Endocrinol. 2005, 29, 241–258. [Google Scholar] [CrossRef]
- Szendrö, Z.; Matics, Z.; Brecchia, G.; Theau-Clément, M.; Nagy, Z.; Princz, Z.; Biró-Németh, E.; Radnai, I.; Nagy, I. Milk production of pseudopregnant multiparous does. World Rabbit Sci. 2010, 18, 77–82. [Google Scholar] [CrossRef]
- Guan, S.; Zhu, Y.; Wang, J.; Dong, L.; Zhao, Q.; Wang, L.; Wang, B.; Li, H. A combination of Semen Cuscutae and Fructus Lycii improves testicular cell proliferation and inhibits their apoptosis in rats with spermatogenic dysfunction by regulating the SCF/c-kit--PI3K--Bcl-2 pathway. J. Ethnopharmacol. 2020, 251, 112525. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; Gonzalez-Bulnes, A.; Simal-Gandara, J. Polyphenols in farm animals: Source of reproductive gain or waste? Antioxidants 2020, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Long, L.; Jiang, Q.; Kang, B.; Li, Y.; Yin, J. Effects of dietary supplementation of Lycium barbarum polysaccharides on growth performance, immune status, antioxidant capacity and selected microbial populations of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Sun, Z.; Ye, C.; Lin, H. The effects of dietary Lycium barbarum extract on growth performance, liver health and immune related genes expression in hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀) fed high lipid diets. Fish Shellfish Immunol. 2019, 87, 847–852. [Google Scholar] [CrossRef]
- Ren, L.; Li, J.; Xiao, Y.; Zhang, Y.; Fan, J.; Zhang, B.; Wang, L.; Shen, X. Polysaccharide from Lycium barbarum L. leaves enhances absorption of endogenous calcium, and elevates cecal calcium transport protein levels and serum cytokine levels in rats. J. Funct. Foods 2017, 33, 227–234. [Google Scholar] [CrossRef]
- Zhu, W.; Zhou, S.; Liu, J.; McLean, R.J.C.; Chu, W. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomed. Pharmacother. 2020, 121, 109591. [Google Scholar] [CrossRef]
- Wang, M.; Xie, Z.; Li, L.; Chen, Y.; Li, Y.; Wang, Y.; Lu, B.; Zhang, S.; Ma, F.; Ma, C.W.; et al. Supplementation with compound polysaccharides contributes to the development and metabolic activity of young rat intestinal microbiota. Food Funct. 2019, 10, 2658–2675. [Google Scholar] [CrossRef]
- Tang, C.; Ding, R.; Sun, J.; Liu, J.; Kan, J.; Jin, C. The impacts of natural polysaccharides on intestinal microbiota and immune responses-a review. Food Funct. 2019, 10, 2290–2312. [Google Scholar] [CrossRef]
Ingredients/Analytical Data | Diet | ||
---|---|---|---|
C | G1 | G3 | |
Ingredients1 | |||
Wheat bran | 30.0 | 29.5 | 29.0 |
Dehydrated alfalfa meal | 42.0 | 41.5 | 41.0 |
Barley | 9.5 | 9.5 | 9.0 |
Sunflower meal | 4.5 | 4.5 | 4.2 |
Rice bran | 4.0 | 4.0 | 3.9 |
Soybean meal | 4.0 | 4.0 | 3.9 |
Calcium carbonate | 2.2 | 2.2 | 2.2 |
Cane molasses | 2.0 | 2.0 | 2.0 |
Dicalcium phosphate | 0.7 | 0.7 | 0.7 |
Vitamin-mineral premix 2 | 0.4 | 0.4 | 0.4 |
Soybean oil | 0.4 | 0.4 | 0.4 |
Salt | 0.3 | 0.3 | 0.3 |
Goji berries | - | 1.0 | 3.0 |
Analytical data1 | |||
Crude Protein | 15.74 | 15.64 | 15.66 |
Ether extract | 2.25 | 2.23 | 2.47 |
Ash | 9.28 | 9.36 | 9.25 |
Starch | 16.86 | 17.07 | 16.99 |
NDF | 38.05 | 38.55 | 37.49 |
ADF | 19.54 | 19.60 | 19.01 |
ADL | 4.01 | 4.31 | 3.98 |
Digestible Energy 3 | 2464 | 2463 | 2459 |
Parameter | C | G1 | G3 | RMSE | p Value |
---|---|---|---|---|---|
Pre-weaning mortality (%) | 25.1 | 16.7 | 22.8 | 16.1 | 0.176 |
Litter size at birth (n) | 6.5 | 7.2 | 6.4 | 1.9 | 0.249 |
Litter weight at birth (g) | 339 a | 408 b | 356 ab | 80 | 0.008 |
Litter size at weaning (n) | 4.8 a | 6.0 b | 4.9 ab | 1.6 | 0.020 |
Litter weight at weaning (g) | 3634 a | 5579 b | 4966 b | 1255 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andoni, E.; Curone, G.; Agradi, S.; Barbato, O.; Menchetti, L.; Vigo, D.; Zelli, R.; Cotozzolo, E.; Ceccarini, M.R.; Faustini, M.; et al. Effect of Goji Berry (Lycium barbarum) Supplementation on Reproductive Performance of Rabbit Does. Animals 2021, 11, 1672. https://doi.org/10.3390/ani11061672
Andoni E, Curone G, Agradi S, Barbato O, Menchetti L, Vigo D, Zelli R, Cotozzolo E, Ceccarini MR, Faustini M, et al. Effect of Goji Berry (Lycium barbarum) Supplementation on Reproductive Performance of Rabbit Does. Animals. 2021; 11(6):1672. https://doi.org/10.3390/ani11061672
Chicago/Turabian StyleAndoni, Egon, Giulio Curone, Stella Agradi, Olimpia Barbato, Laura Menchetti, Daniele Vigo, Riccardo Zelli, Elisa Cotozzolo, Maria Rachele Ceccarini, Massimo Faustini, and et al. 2021. "Effect of Goji Berry (Lycium barbarum) Supplementation on Reproductive Performance of Rabbit Does" Animals 11, no. 6: 1672. https://doi.org/10.3390/ani11061672
APA StyleAndoni, E., Curone, G., Agradi, S., Barbato, O., Menchetti, L., Vigo, D., Zelli, R., Cotozzolo, E., Ceccarini, M. R., Faustini, M., Quattrone, A., Castrica, M., & Brecchia, G. (2021). Effect of Goji Berry (Lycium barbarum) Supplementation on Reproductive Performance of Rabbit Does. Animals, 11(6), 1672. https://doi.org/10.3390/ani11061672