Antimicrobial Resistance in Pasteurellaceae Isolates from Pyrenean Chamois (Rupicapra pyrenaica) and Domestic Sheep in an Alpine Ecosystem
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Minimum Inhibitory Concentration (MIC)
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, J.F.; Liras, P. Organization and Expression of Genes Involved in the Biosynthesis of Antibiotics and other Secondary Metabolites. Annu. Rev. Microbiol. 1989, 43, 173–206. [Google Scholar] [CrossRef]
- Karesh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 2012, 380, 1936–1945. [Google Scholar] [CrossRef]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hansen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef]
- European Commission. A European One Health Action Plan against Antimicrobial Resistance (AMR). 2017. Available online: https://ec.europa.eu/health/sites/default/files/antimicrobial_resistance/docs/amr_2017_action-plan.pdf (accessed on 3 June 2021).
- Segura, P.A.; François, M.; Gagnon, C.; Sauvé, S. Review of the Occurrence of Anti-infectives in Contaminated Wastewaters and Natural and Drinking Waters. Environ. Health Perspect. 2009, 117, 675–684. [Google Scholar] [CrossRef]
- Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils—A review. J. Plant Nutr. Soil Sci. 2003, 166, 145–167. [Google Scholar] [CrossRef]
- Hawkey, P.M.; Jones, A.M. The changing epidemiology of resistance. J. Antimicrob. Chemother. 2009, 64, i3–i10. [Google Scholar] [CrossRef] [Green Version]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radhouani, H.; Silva, N.; Poeta, P.; Torres, C.; Correia, S.; Igrejas, G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front. Microbiol. 2014, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.; Wang, J.; Fanning, S.; McMahon, B.J. Antimicrobial resistant bacteria in wild mammals and birds: A coincidence or cause for concern? Ir. Vet. J. 2014, 67, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance 2014. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf?sequence=1 (accessed on 3 June 2021).
- Solà-Ginés, M.; González-López, J.J.; Cameron-Veas, K.; Piedra-Carrasco, N.; Cerdà-Cuéllar, M.; Migura-Garcia, L. Houseflies (Musca domestica) as Vectors for Extended-Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms. Appl. Environ. Microbiol. 2015, 81, 3604–3611. [Google Scholar] [CrossRef] [Green Version]
- Vittecoq, M.; Godreuil, S.; Prugnolle, F.; Durand, P.; Brazier, L.; Renaud, N.; Arnal, A.; Aberkane, S.; Jean-Pierre, H.; Gauthier-Clerc, M.; et al. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2016, 53, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Aminov, R.I.; Mackie, R.I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 2007, 271, 147–161. [Google Scholar] [CrossRef]
- Miller, R.V.; Gammon, K.; Day, M.J. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. This article is one of a selection of papers in the Special Issue on Polar and Alpine Microbiology. Can. J. Microbiol. 2009, 55, 37–45. [Google Scholar] [CrossRef]
- Cerdà-Cuéllar, M.; Moré, E.; Ayats, T.; Aguilera, M.; Muñoz-González, S.; Antilles, N.; Ryan, G.P.; González-Solís, J. Do humans spread zoonotic enteric bacteria in Antarctica? Sci. Total Environ. 2019, 654, 190–196. [Google Scholar] [CrossRef]
- Van Goethem, M.W.; Pierneef, R.; Bezuidt, O.K.I.; Van De Peer, Y.; Cowan, D.A.; Makhalanyane, T.P. A reservoir of “historical” antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 2018, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jánošková, A.; Kmet, V. Vancomycin Resistance Genes in Enterococcus spp. Strains Isolated from Alpine Accentor and Chamois. Acta Vet. Brno 2004, 73, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Botti, V.; Valérie-Navillod, F.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. Ital. 2013, 49, 195–202. [Google Scholar]
- Sasaki, Y.; Goshima, T.; Mori, T.; Murakami, M.; Haruna, M.; Ito, K.; Yamada, Y. Prevalence and antimicrobial susceptibility of foodborne bacteria in wild boars (Sus scrofa) and wild deer (Cervus nippon) in Japan. Foodborne Pathog. Dis. 2013, 10, 985–991. [Google Scholar] [CrossRef]
- Luzzago, C.; Locatelli, C.; Franco, A.; Scaccabarozzi, L.; Gualdi, V.; Viganò, R.; Sironi, G.; Besozzi, M.; Castiglioni, B.; Lanfranchi, P.; et al. Clonal diversity, virulence-associated genes and antimicrobial resistance profile of Staphylococcus aureus isolates from nasal cavities and soft tissue infections in wild ruminants in Italian Alps. Vet. Microbiol. 2014, 170, 157–161. [Google Scholar] [CrossRef]
- Espunyes, J.; Bartolomé, J.; Garel, M.; Gálvez-Cerón, A.; Aguilar, X.F.; Colom-Cadena, A.; Calleja, J.A.; Gassó, D.; Jarque, L.; Lavín, S.; et al. Seasonal diet composition of Pyrenean chamois is mainly shaped by primary production waves. PLoS ONE 2019, 14, e0210819. [Google Scholar] [CrossRef] [PubMed]
- Olvera, A.; Cerdà-Cuéllar, M.; Mentaberre, G.; Casas-Diaz, E.; Lavin, S.; Marco, I.; Aragon, V. First isolation of Haemophilus parasuis and other NAD-dependent Pasteurellaceae of swine from European wild boars. Vet. Microbiol. 2007, 125, 182–186. [Google Scholar] [CrossRef]
- De Arriba, M.L.; Lopez-Serrano, S.; Galofre-Mila, N.; Aragon, V. Characterisation of Bergeyella spp. isolated from the nasal cavities of piglets. Vet. J. 2018, 234, 1–6. [Google Scholar] [CrossRef]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; Van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 3 June 2021).
- Michael, G.B.; Bossé, J.T.; Schwarz, S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; ASM Press: Washington, DC, USA, 2018; pp. 331–363. [Google Scholar]
- Woolhouse, M.; Ward, M.; Van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef] [PubMed]
- Kehrenberg, C.; Schulze-Tanzil, G.; Martel, J.-L.; Chaslus-Dancla, E.; Schwarz, S. Antimicrobial resistance in Pasteurella and Mannheimia: Epidemiology and genetic basis. Vet. Res. 2001, 32, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Ryser-Degiorgis, M.P.; Ingold, P.; Tenhu, H.; Less, A.M.T.; Ryser, A.; Giacometti, M. Encounters between Alpine ibex, Alpine chamois and Domestic Sheep in the Swiss Alps. Hystrix 2002, 13, 1–11. [Google Scholar]
- Rérat, M.; Albini, S.; Jaquier, V.; Hüssy, D. Bovine respiratory disease: Efficacy of different prophylactic treatments in veal calves and antimicrobial resistance of isolated Pasteurellaceae. Prev. Vet. Med. 2012, 103, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Finley, R.L.; Collignon, P.; Larsson, D.J.; McEwen, S.A.; Li, X.-Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Critically Important Antimicrobials for Human Medicine–5th rev. Geneva. Licence: CC BY-NC-SA 3.0 IGO. 2017. Available online: https://apps.who.int/iris/bitstream/handle/10665/255027/9789241512220-eng.pdf;jsessionid=2636B96C3106072A41EF844A3AEAAA5C?sequence=1 (accessed on 3 June 2021).
- Klima, C.L.; Holman, D.B.; Cook, S.R.; Conrad, C.C.; Ralston, B.J.; Allan, N.; Anholt, R.M.; Niu, Y.D.; Stanford, K.; Hannon, S.J.; et al. Multidrug Resistance in Pasteurellaceae Associated with Bovine Respiratory Disease Mortalities in North America From 2011 to 2016. Front. Microbiol. 2020, 11, 606438. [Google Scholar] [CrossRef] [PubMed]
- El Garch, F.; de Jong, A.; Simjee, S.; Moyaert, H.; Klein, U.; Ludwig, C.; Marion, H.; Haag-Diergarten, S.; Richard-Mazet, A.; Thomas, V.; et al. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009–2012: VetPath results. Vet. Microbiol. 2016, 194, 11–22. [Google Scholar] [CrossRef]
Bacteria | Chamois | Sheep | All | |||
---|---|---|---|---|---|---|
Analyzed | AMR * | Analyzed | AMR | Analyzed | AMR | |
Pasteurella multocida | 19 | 7 | 1 | 0 | 20 | 7 |
Mannheimia haemolytica | 6 | 1 | 8 | 5 | 14 | 6 |
Bibersteinia trehalosi | 3 | - | - | - | - | - |
Total | 28 | 8 | 9 | 5 | 37 | 13 |
P. multocida. N = 20 (RP = 19, OA = 1) | |||||
---|---|---|---|---|---|
Antimicrobial Family | Antimicrobial Agent | Species | S (%) | I (%) | R (%) |
Cephalosporins | Ceftiour | RP | 94.7 | 0 | 5.3 |
OA | 100 | 0 | 0 | ||
Penicillins | Penicillin | RP | 89.47 | 0 | 10.53 |
OA | 100 | 0 | 0 | ||
Ampicillin | RP | 89.57 | 0 | 10.5 | |
OA | 100 | 0 | 0 | ||
Fluoroquinolones | Danofloxacin | RP | 100 | 0 | 0 |
OA | 100 | 0 | 0 | ||
Enrofloxacin | RP | 94.74 | 5.3 | 0 | |
OA | 100 | 0 | 0 | ||
Macrolides | Tulathromycin | RP | 100 | 0 | 0 |
OA | 100 | 0 | 0 | ||
Tilmicosin | RP | 100 | 0 | 0 | |
OA | 100 | 0 | 0 | ||
Tylosin tartrate | RP | - | - | - | |
OA | - | - | - | ||
Tetracyclines | Chlortetracycline | RP | 100 | 0 | 0 |
OA | 100 | 0 | 0 | ||
Oxytetracycline | RP | 100 | 0 | 0 | |
OA | 100 | 0 | 0 | ||
Aminoglycosides | Gentamicin | RP | - | - | - |
OA | - | - | - | ||
Neomcyin | RP | - | - | - | |
OA | - | - | - | ||
Spectinomycin | RP | - | - | - | |
OA | - | - | - | ||
Fenicols | Florfenicol | RP | 94.7 | 5.3 | 0 |
OA | 100 | 0 | 0 | ||
Sulphonamides | Sulphadimetoxine | RP | - | - | - |
OA | - | - | - | ||
Trimetroprim/Sulfametoxazole | RP | - | - | - | |
OA | - | - | - | ||
Lincosamides | Clindamycin | RP | - | - | - |
OA | - | - | - | ||
Tiamulin | RP | - | - | - | |
OA | - | - | - |
M. haemolytica N = 14 (RP = 6, OA = 8) | |||||
---|---|---|---|---|---|
Antimicrobial Family | Antimicrobial Agent | Species | S (%) | I (%) | R (%) |
Cephalosporins | Ceftiour | RP | 100 | 0 | 0 |
OA | 100 | 0 | 0 | ||
Penicillins | Penicillin | RP | 100 | 0 | 0 |
OA | 87.50 | 12.50 | 0 | ||
Ampicillin | RP | 100 | 0- | 0 | |
OA | 100 | - | - | ||
Fluoroquinolones | Danofloxacin | RP | 100 | 0 | 0 |
OA | 87.50 | 0 | 12.50 | ||
Enrofloxacin | RP | 100 | 0 | 0 | |
OA | 87.50 | 12.50 | 0 | ||
Macrolides | Tulathromycin | RP | 100 | 0 | 0 |
OA | 87.50 | 0 | 12.50 | ||
Tilmicosin | RP | 100 | 0 | 0 | |
OA | 100 | 0 | 0 | ||
Tylosin tartrate | RP | - | - | - | |
OA | - | - | - | ||
Tetracyclines | Chlortetracycline | RP | 100 | 0 | 0 |
OA | 100 | 0 | 0 | ||
Oxytetracycline | RP | 100 | 0 | 0 | |
OA | 100 | 0 | 0 | ||
Aminoglycosides | Gentamicin | RP | - | - | - |
OA | - | - | - | ||
Neomcyin | RP | - | - | - | |
OA | - | - | - | ||
Spectinomycin | RP | 100 | 0 | 0 | |
OA | 100 | 0 | 0 | ||
Fenicols | Florfenicol | RP | 100 | 0 | 0 |
OA | 100 | 0 | 0 | ||
Sulphonamides | Sulphadimetoxine | RP | - | - | - |
OA | - | - | - | ||
Trimetroprim/Sulfametoxazole | RP | - | - | - | |
OA | - | - | - | ||
Lincosamides | Clindamycin | RP | - | - | - |
OA | - | - | - | ||
Tiamulin | RP | - | - | - | |
OA | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Blas, I.; Fernández Aguilar, X.; Cabezón, O.; Aragon, V.; Migura-García, L. Antimicrobial Resistance in Pasteurellaceae Isolates from Pyrenean Chamois (Rupicapra pyrenaica) and Domestic Sheep in an Alpine Ecosystem. Animals 2021, 11, 1686. https://doi.org/10.3390/ani11061686
Torres-Blas I, Fernández Aguilar X, Cabezón O, Aragon V, Migura-García L. Antimicrobial Resistance in Pasteurellaceae Isolates from Pyrenean Chamois (Rupicapra pyrenaica) and Domestic Sheep in an Alpine Ecosystem. Animals. 2021; 11(6):1686. https://doi.org/10.3390/ani11061686
Chicago/Turabian StyleTorres-Blas, Irene, Xavier Fernández Aguilar, Oscar Cabezón, Virginia Aragon, and Lourdes Migura-García. 2021. "Antimicrobial Resistance in Pasteurellaceae Isolates from Pyrenean Chamois (Rupicapra pyrenaica) and Domestic Sheep in an Alpine Ecosystem" Animals 11, no. 6: 1686. https://doi.org/10.3390/ani11061686
APA StyleTorres-Blas, I., Fernández Aguilar, X., Cabezón, O., Aragon, V., & Migura-García, L. (2021). Antimicrobial Resistance in Pasteurellaceae Isolates from Pyrenean Chamois (Rupicapra pyrenaica) and Domestic Sheep in an Alpine Ecosystem. Animals, 11(6), 1686. https://doi.org/10.3390/ani11061686