Measurement of Selected Renal Biochemical Parameters in Healthy Adult Donkeys Considering the Influence of Gender, Age and Blood Freezing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Blood and Urine Sample Collection and Processing
2.2.2. Serum and Urine Biochemical Analysis
2.2.3. Freezing Procedure and Reanalysis of Serum Samples
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baum, N.; Dichoso, C.C.; Carlton, C.E. Blood urea nitrogen and serum creatinine: Physiology and interpretations. Urology 1975, 5, 583–588. [Google Scholar] [CrossRef]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Melendez, L.D.; Jewell, D.E. Relationship between lean body mass and serum renal biomarkers in healthy dogs. J. Vet. Intern. Med. 2015, 29, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.M.; Guo, X.X.; Zhang, G.M. Limiting the testing of urea: Urea along with every plasma creatinine test? J. Clin. Lab. Anal. 2017, 31, e22103. [Google Scholar] [CrossRef] [PubMed]
- Ilchyshyn, N.P.; Villiers, E.; Monti, P. Validation of a spectrophotometric method for GGT measurement in canine urine and determination of the urine GGT-to-creatinine ratio reference interval and biological variation in 41 healthy dogs. J. Vet. Diagn. Investig. 2019, 31, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schott, H.C.; Esser, M.M. The Sick Adult Horse: Renal Clinical Pathologic Testing and Urinalysis. Vet. Clin. N. Am. Equine Pract. 2020, 36, 121–134. [Google Scholar] [CrossRef]
- Sharkey, L. Chapter 6. Kidney Function Tests. In Interpretation of Equine Laboratory Diagnostics; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2017; pp. 39–43. [Google Scholar]
- El-Ashker, M.R.; Hussein, H.S.; El-Sebaei, M.G. Evaluation of Urinary Variables as Diagnostic Indicators of Acute Kidney Injury in Egyptian Draft Horses Treated With Phenylbutazone Therapy. J. Equine Vet. Sci. 2012, 32, 268–273. [Google Scholar] [CrossRef]
- Ernst, R.; Ogeer, J.; McCrann, D.; Cross, J.; Strong-Townsend, M.; Friis, H.; Coyne, M.; Clements, C.; Drake, C.; Murphy, R. Comparative performance of IDEXX SDMA Test and the DLD SDMA ELISA for the measurement of SDMA in canine and feline serum. PLoS ONE 2018, 13, e0205030. [Google Scholar] [CrossRef] [Green Version]
- Grossman, B.S.; Brobst, D.F.; Kramer, J.W.; Bayly, W.M.; Reed, S.M. Urinary indices for differentiation of prerenal azotemia and renal azotemia in horses. J. Am. Vet. Med. Assoc. 1982, 180, 284–288. [Google Scholar]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Jewell, D.E. Comparison of Serum Concentrations of Symmetric Dimethylarginine and Creatinine as Kidney Function Biomarkers in Cats with Chronic Kidney Disease. J. Vet. Intern. Med. 2014, 28, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.; Gray, J. The use of the urinary fractional electrolyte excretion test to assess electrolyte status in the horse. Equine Vet. Educ. 1992, 4, 162–166. [Google Scholar] [CrossRef]
- Siwińska, N.; Pasławska, U.; Bąchor, R.; Szczepankiewicz, B.; Żak, A.; Grocholska, P.; Szewczuk, Z. Evaluation of podocin in urine in horses using qualitative and quantitative methods. PLoS ONE 2020, 15, e0240586. [Google Scholar] [CrossRef]
- Schott, H.; Gallant, L.; Coyne, M. Symmetric dimethylarginine and creatinine concentrations in draft horse breeds. J. Vet. Intern. Med. 2017, 32, 2128–2129. [Google Scholar]
- Siwinska, N.; Zak, A.; Slowikowska, M.; Niedzwiedz, A.; Paslawska, U. Serum symmetric dimethylarginine concentration in healthy horses and horses with acute kidney injury. BMC Vet. Res. 2020, 16, 396. [Google Scholar] [CrossRef]
- Nabity, M.B.; Lees, G.E.; Boggess, M.M.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Rakitin, A.; Aguiar, J.; Relford, R. Symmetric dimethylarginine assay validation, stability, and evaluation as a marker for the early detection of chronic kidney disease in dogs. J. Vet. Intern. Med. 2015, 29, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, W.G.; Corvalan, E.O. Urinary and serum gamma glutamyl transpeptidase in relation to urinary pH and proteinuria in healthy Thoroughbred horses in training. Equine Vet. J. 1992, 24, 316–317. [Google Scholar] [CrossRef]
- Bayly, W.M.; Brobst, D.F.; Elfers, R.S.; Reed, S.M. Serum and urinary biochemistry and enzyme changes in ponies with acute renal failure. Cornell Vet. 1986, 76, 306–316. [Google Scholar]
- Heiene, R.; Moe, L.; Mølmen, G. Calculation of urinary enzyme excretion, with renal structure and function in dogs with pyometra. Res. Vet. Sci. 2001, 70, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Takaoka, M.; Yamauchi, T.; Oishi, T.; Mimura, Y.; Hashimoto, M.; Asano, N.; Yamamura, M.; Otsuka, F.; Makino, H.; et al. Changes in urinary enzyme activity and histochemical findings in experimental tubular injury induced by gold sodium thiomalate. J. Med. 1996, 27, 41–55. [Google Scholar] [PubMed]
- Shao, B.D.; Han, W.W.; Ji, A.L.; Fu, Y.L. Assessment of renal function in the early stages of nephrotoxicity induced by iodinated contrast media. Nephron 1999, 83, 122–125. [Google Scholar] [CrossRef]
- Uechi, M.; Nogami, Y.; Terui, H.; Nakayama, T.; Ishikawa, R.; Wakao, Y.; Takahashi, M. Evaluation of Urinary Enzymes in Dogs with Early Renal Disorder. J. Vet. Med. Sci. 1994, 56, 555–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Harst, M.R.; Bull, S.; Laffont, C.M.; Klein, W.R. Gentamicin nephrotoxicity—A comparison of In vitro findings with In vivo experiments in equines. Vet. Res. Commun. 2005, 29, 247–261. [Google Scholar] [CrossRef]
- Young, A. Laboratory investigation of equine kidney disease. Equine Vet. Educ. 1990, 2, 130–134. [Google Scholar] [CrossRef]
- Vilhena, H.C.R.; Santos, R.R.; Sargo, T.J.; Lima, T.B.; Dias, S.S.; Ramiro Pastorinho, M.; Queiroga, F.L.; Silvestre-Ferreira, A.C. Urine protein-to-creatinine concentration ratio in samples collected by means of cystocentesis versus manual compression in cats. J. Am. Vet. Med. Assoc. 2015, 246, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.D.; Divers, T.J.; Whitlock, R.H. Renal clearance and fractional excretion of electrolytes over a 24-hour period in horses. Am. J. Vet. Res. 1984, 45, 2431–2435. [Google Scholar] [PubMed]
- Schreuder, M.F.; Bökenkamp, A.; Van Wijk, J.A.E. Interpretation of the Fractional Excretion of Sodium in the Absence of Acute Kidney Injury: A Cross-Sectional Study. Nephron 2017, 136, 221–225. [Google Scholar] [CrossRef]
- Lam, M.; Kaufman, C. Fractional excretion of sodium as a guide to volume depletion during recovery from acute renal failure. Am. J. Kidney Dis. 1985, 6, 18–21. [Google Scholar] [CrossRef]
- Hubel, A.; Spindler, R.; Skubitz, A.P.N. Storage of human biospecimens: Selection of the optimal storage temperature. Biopreserv. Biobank. 2014, 12, 165–175. [Google Scholar] [CrossRef]
- Cray, C.; Rodriguez, M.; Zaias, J.; Altaian, N.H. Effects of storage temperature and time on clinical biochemical parameters from rat serum. J. Am. Assoc. Lab. Anim. Sci. 2009, 48, 202–204. [Google Scholar] [PubMed]
- Jordana, J.; Folch, P.; Cuenca, R. Clinical biochemical parameters of the endangered Catalonian donkey breed: Normal values and the influence of sex, age, and management practices effect. Res. Vet. Sci. 1998, 664, 7–10. [Google Scholar] [CrossRef]
- Laus, F.; Spaterna, A.; Faillace, V.; Paggi, E.; Serri, E.; Vullo, C.; Cerquetella, M.; Tesei, B. Reference values for hematological and biochemical parameters of mixed breed donkeys (Equus asinus). Wulfenia 2015, 22, 294–304. [Google Scholar]
- Rossier, Y.; Divers, T.J.; Sweeney, R.W. Variations in urinary gamma glutamyl transferase/urinary creatinine ratio in horses with or without pleuropneumonia treated with gentamicin. Equine Vet. J. 1995, 27, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Uberti, B.; Eberle, D.B.; Pressler, B.M.; Moore, G.E.; Sojka, J.E. Determination of and correlation between urine protein excretion and urine protein-to-creatinine ratio values during a 24-hour period in healthy horses and ponies. Am. J. Vet. Res. 2009, 70, 1551–1556. [Google Scholar] [CrossRef]
- Burden, F.A.; Hazell-Smith, E.; Mulugeta, G.; Patrick, V.; Trawford, R.; Brooks Brownlie, H.W. Reference intervals for biochemical and haematological parameters in mature domestic donkeys (Equus asinus) in the UK. Equine Vet. Educ. 2016, 28, 134–139. [Google Scholar] [CrossRef]
- Gupta, A.K.; Varshney, J.P.; Uppal, P.K. Comparative studies on biochemical indices in different breeds of equines. Indian Vet. J. 1994, 71, 26–30. [Google Scholar]
- Zinkl, J.G.; Mae, D.; Guzman Merida, P.; Farver, T.B.; Humble, J.A. Reference ranges and the influence of age and sex on hematologic and serum biochemical values in donkeys (Equus asinus). Am. J. Vet. Res. 1990, 51, 408–413. [Google Scholar]
- Riond, B.; Wenger-Riggenbach, B.; Hofmann-Lehmann, R.; Lutz, H. Serum protein concentrations from clinically healthy horses determined by agarose gel electrophoresis. Vet. Clin. Pathol. 2009, 38, 73–77. [Google Scholar] [CrossRef]
- Arosalo, B.M.; Raekallio, M.; Rajamäki, M.; Holopainen, E.; Kastevaara, T.; Salonen, H.; Sankari, S. Detecting early kidney damage in horses with colic by measuring matrix metalloproteinase -9 and -2, other enzymes, urinary glucose and total proteins. Acta Vet. Scand. 2007, 49, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schott, H.C. Examination of the Urinary System. In Equine Internal Medicine, 2nd ed.; Saunders: Philadelphia, PA, USA, 2004; pp. 1200–1210. [Google Scholar]
- Constable, P.D.; Hinchcliff, K.W.; Done, S.H.; Grünberg, W. 13—Diseases of the Urinary System. In Veterinary Medicine, 11th ed.; Saunders: Philadelphia, PA, USA, 2017; pp. 1095–1154. [Google Scholar]
- Thoresen, S.I.; Tverdal, A.; Havre, G.; Morberg, H. Effects of Storage Time and Freezing Temperature on Clinical Chemical Parameters From Canine Serum and Heparinized Plasma. Vet. Clin. Pathol. 1995, 48, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Langhorn, R.; Kieler, I.N.; Koch, J.; Christiansen, L.B.; Jessen, L.R. Symmetric Dimethylarginine in Cats with Hypertrophic Cardiomyopathy and Diabetes Mellitus. J. Vet. Intern. Med. 2018, 32, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.A.; Yerramilli, M.; Obare, E.; Yerramilli, M.; Almes, K.; Jewell, D.E. Serum Concentrations of Symmetric Dimethylarginine and Creatinine in Dogs with Naturally Occurring Chronic Kidney Disease. J. Vet. Intern. Med. 2016, 30, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Pelander, L.; Häggström, J.; Larsson, A.; Syme, H.; Elliott, J.; Heiene, R.; Ljungvall, I. Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs. J. Vet. Intern. Med. 2019, 33, 630–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teerlink, T. HPLC analysis of ADMA and other methylated l-arginine analogs in biological fluids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 851, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Cuhadar, S.; Koseoglu, M.; Atay, A.; Dirican, A. The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochem. Med. 2013, 23, 70–77. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group of Donkeys | Mean ± SD | Q1–Median–Q3 | Range (Min.–Max.) |
---|---|---|---|---|
Creatinine (μmol/L) | All | 82.25 ± 16.75 | 75–84–90 | 30–114 |
Female | 76.07 * ± 16.49 | 72–78–84 | 30–106 | |
Male | 92.79 * ± 11.11 | 88–91–99 | 71–114 | |
BUN (mmol/L) | All | 6.27 ± 1.11 | 5.5–6.1–7.2 | 4.1–8.4 |
Female | 6.47 * ± 1.13 | 5.6–6.6–7.4 | 4.1–8.4 | |
Male | 5.92 * ± 1.00 | 5.3–5.8–6.1 | 4.5–8.4 | |
sBUN/sCr | All | 0.080 ± 0.025 | 0.063–0.077–0.093 | 0.044–0.173 |
Female | 0.088 * ± 0.026 | 0.073–0.086–0.095 | 0.044–0.173 | |
Male | 0.064 * ± 0.013 | 0.053–0.063–0.069 | 0.049–0.092 | |
Albumin (g/L) | All | 28.03 ± 3.21 | 26–28–30 | 21–35 |
Female | 27.56 ± 3.30 | 26–27–30 | 21–35 | |
Male | 28.83 ± 2.93 | 26–28–32 | 23–33 | |
TP (g/L) | All | 71.05 ± 6.62 | 67–71–76 | 57–87 |
Female | 71.95 ± 6.81 | 69–71–76 | 57–87 | |
Male | 69.50 ± 6.09 | 64–69–76 | 60–77 | |
K (mmol/L) | All | 4.54 ± 0.48 | 4.3–4.6–4.7 | 2.9–6 |
Female | 4.52 ± 0.53 | 4.3–4.5–4.7 | 2.9–6 | |
Male | 4.59 ± 0.37 | 4.3–4.6–4.7 | 4.1–5.3 | |
Na (mmol/L) | All | 137.95 ± 2.72 | 136–138–139 | 134–148 |
Female | 138.17 ± 2.95 | 137–138–139 | 134–148 | |
Male | 137.58 ± 2.28 | 136–138–139 | 134–143 | |
Cl (mmol/L) | All | 103.05 ± 1.82 | 102–103–104 | 98–107 |
Female | 10337 ± 1.34 | 102–103–105 | 100–106 | |
Male | 102.50 ± 2.38 | 101–103–103 | 98–107 | |
Ca (mmol/L) | All | 2.97 ± 0.11 | 2.9–3.0–3.0 | 2.7–3.2 |
Female | 2.95 ± 0.10 | 2.9–3.0–3.0 | 2.7–3.1 | |
Male | 2.99 ± 0.13 | 2.9–3.0–3.1 | 2.7–3.2 | |
P (mmol/L) | All | 1.02 ± 0.20 | 0.9–1.0–1.1 | 0.7–1.7 |
Female | 0.99 ± 0.16 | 0.9–0.9–1.1 | 0.7–1.4 | |
Male | 1.08 ± 0.24 | 1.0–1.1–1.1 | 0.7–1.7 | |
SDMA (μg/dL) | All | 10.34 ± 1.67 | 9–10–12 | 8–14 |
Female | 9.95 ± 1.28 | 9–10–11 | 8–13 | |
Male | 11.00 ± 2.04 | 9–12–13 | 8–14 |
Parameter | Mean ± SD | Q1–Median–Q3 | Range (Min.–Max.) |
---|---|---|---|
UPC (g/L) | 0.32 ± 0.05 | 0.30–0.32–0.36 | 0.22–0.39 |
uCr (g/L) | 11.99 ± 4.46 | 9.12–11.57–14.77 | 4.59–21.20 |
UPCR | 0.29 ± 0.15 | 0.20–0.23–0.34 | 0.14–0.69 |
GGTP (U/L) | 11.28 ± 4.96 | 7.7–8.9–14.1 | 6.7–20.90 |
GGTP/creatinine (U/g) | 0.14 ± 0.69 | 5.35–9.18–12.18 | 3.41–20.81 |
FENa (%) | 0.09 ± 0.04 | 0.06–0.08–0.09 | 0.05–0.17 |
FEK (%) | 15.63 ± 6.69 | 10.28–14.79–19.78 | 5.89–30.18 |
sCr/uCr | 0.660 ± 0.329 | 0.510–0.533–0.698 | 0.299–1.445 |
UPC/TP | 0.0045 ± 0.0007 | 0.0041–0.0045–0.0048 | 0.0029–0.0058 |
Creatinine | BUN | Albumin | TP | K | Na | Cl | Ca | P | SDMA | |
---|---|---|---|---|---|---|---|---|---|---|
% | 8.94 * | 4.26 * | −2.67 * | −4.96 * | −2.37 | 0.05 | −0.90 * | −4.88 * | −12.03 * | 5.30 |
p | <0.001 | <0.001 | 0.016 | <0.001 | 0.123 | 0.916 | 0.014 | <0.001 | <0.001 | 0.104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frączkowska, K.; Trzebuniak, Z.; Żak, A.; Siwińska, N. Measurement of Selected Renal Biochemical Parameters in Healthy Adult Donkeys Considering the Influence of Gender, Age and Blood Freezing. Animals 2021, 11, 1748. https://doi.org/10.3390/ani11061748
Frączkowska K, Trzebuniak Z, Żak A, Siwińska N. Measurement of Selected Renal Biochemical Parameters in Healthy Adult Donkeys Considering the Influence of Gender, Age and Blood Freezing. Animals. 2021; 11(6):1748. https://doi.org/10.3390/ani11061748
Chicago/Turabian StyleFrączkowska, Kaja, Zuzanna Trzebuniak, Agnieszka Żak, and Natalia Siwińska. 2021. "Measurement of Selected Renal Biochemical Parameters in Healthy Adult Donkeys Considering the Influence of Gender, Age and Blood Freezing" Animals 11, no. 6: 1748. https://doi.org/10.3390/ani11061748
APA StyleFrączkowska, K., Trzebuniak, Z., Żak, A., & Siwińska, N. (2021). Measurement of Selected Renal Biochemical Parameters in Healthy Adult Donkeys Considering the Influence of Gender, Age and Blood Freezing. Animals, 11(6), 1748. https://doi.org/10.3390/ani11061748