Effect of Boar Sperm Proteins and Quality Changes on Field Fertility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Semen Collection
2.2. Preparation of Sperm and Seminal Plasma Proteins for Proteomic Analysis
2.3. Semen Sample Processing for the Performance of Sperm Analysis
2.4. Performance of Artificial Insemination, Data Recording
2.5. Assessment of Sperm Motility and Kinetics
2.6. Assessment of Sperm Morphology
2.7. Assessment of Sperm Viability
2.8. Assessment of HOST
2.9. Assessment of Mitochondrial Membrane Potential
2.10. Assessment of DNA Integrity
2.11. Sperm and Seminal Plasma Protein Analysis
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Key, N.; McBride, W.D. The Changing Economics of U.S. Hog Production. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Hoflack, G.; Opsomer, G.; Rijsselaere, T.; Van Soom, A.; Maes, D.; De Kruif, A.; Duchateau, L. Comparison of computer-assisted sperm motility analysis parameters in semen from Belgian Blue and Holstein-Friesian Bulls. Reprod. Domest. Anim. 2007, 42, 153–161. [Google Scholar] [CrossRef]
- Holt, W.V.; Palomo, M.J. Optimization of a continuous real-time computerized semen analysis system for ram sperm motility assessment, and evaluation of four methods of semen preparation. Reprod. Fertil. Dev. 1996, 8, 219–230. [Google Scholar] [CrossRef]
- Andersson, E.; Frössling, J.; Engblom, L.; Algers, B.; Gunnarsson, S. Impact of litter size on sow stayability in Swedish commercial piglet producing herds. Acta Vet. Scand. 2016, 58, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zini, A.; Boman, J.M.; Belzile, E.; Ciampi, A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: Systematic review and meta-analysis. Hum. Reprod. 2008, 23, 2663–2668. [Google Scholar] [CrossRef] [Green Version]
- Espino, J.; Bejarano, I.; Ortiz, Á.; Lozano, G.M.; García, J.F.; Pariente, J.A.; Rodríguez, A.B. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil. Steril. 2010, 94, 1915–1917. [Google Scholar] [CrossRef]
- Alvarez, J.G.; Storey, B.T. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res. 1989, 23, 77–90. [Google Scholar] [CrossRef]
- Foresta, C.; Flohé, L.; Garolla, A.; Roveri, A.; Ursini, F.; Maiorino, M. Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol. Reprod. 2002, 67, 967–971. [Google Scholar] [CrossRef] [Green Version]
- Killian, G.J.; Chapman, D.A.; Rogowski, L.A. Fertility-associated proteins in Holstein bull seminal plasma. Biol. Reprod. 1993, 49, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- Cancel, A.M.; Chapman, D.A.; Killian, G.J. Osteopontin is the 55-kilodalton fertility-associated protein in Holstein bull seminal plasma. Biol. Reprod. 1997, 57, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- De Souza, F.F.; Barreto, C.S.; Lopes, M.D. Characteristics of seminal plasma proteins and their correlation with canine semen analysis. Theriogenology 2007, 68, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.M.; Ghoneim, I.M.; Alhaider, A.K. Seminal plasma and serum fertility biomarkers in dromedary camels (Camelus dromedarius). Theriogenology 2015, 83, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Murphy, C.N.; Spate, L.; Wax, D.; Zhong, Z.; Samuel, M.; Mathialagan, N.; Schatten, H.; Prather, R.S. Osteopontin improves in vitro development of porcine embryos and decreases apoptosis. Mol. Reprod. Dev. 2008, 75, 291–298. [Google Scholar] [CrossRef]
- Boccia, L.; Di Francesco, S.; Neglia, G.; De Blasi, M.; Longobardi, V.; Campanile, G.; Gasparrini, B. Osteopontin improves sperm capacitation and invitro fertilization efficiency in buffalo (Bubalus bubalis). Theriogenology 2013, 80, 212–217. [Google Scholar] [CrossRef]
- Monaco, E.; Gasparrini, B.; Boccia, L.; De Rosa, A.; Attanasio, L.; Zicarelli, L.; Killian, G. Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology 2009, 71, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Susan, N.; Ana, R.S.; Dixon, W.T.; Foxcroft, G.R.; Dyck, M.K. Seminal plasma proteins as potential markers of relative fertility in boars. J. Androl. 2010, 31, 188–200. [Google Scholar] [CrossRef] [Green Version]
- De Maio, A. The heat-shock response. New Horiz. Sci. Pract. Acute Med. 1995, 3, 198–207. [Google Scholar]
- Valencia, J.; Gómez, G.; López, W.; Mesa, H.; Henao, F.J. Relationship between HSP90a, NPC2 and L-PGDS proteins to boar semen freezability. J. Anim. Sci. Biotechnol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Powers, M.V.; Clarke, P.A.; Workman, P. Dual Targeting of HSC70 and HSP72 Inhibits HSP90 Function and Induces Tumor-Specific Apoptosis. Cancer Cell 2008, 14, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Borkovich, K.A.; Farrelly, F.W.; Finkelstein, D.B.; Taulien, J.; Lindquist, S. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 1989, 9, 3919–3930. [Google Scholar] [CrossRef] [Green Version]
- Casas, I.; Sancho, S.; Ballester, J.; Briz, M.; Pinart, E.; Bussalleu, E.; Yeste, M.; Fàbrega, A.; Rodríguez-Gil, J.E.; Bonet, S. The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 2010, 74, 940–950. [Google Scholar] [CrossRef]
- Huang, S.Y.; Kuo, Y.H.; Lee, Y.P.; Tsou, H.L.; Lin, E.C.; Ju, C.C.; Lee, W.C. Association of heat shock protein 70 with semen quality in boars. Anim. Reprod. Sci. 2000, 63, 231–240. [Google Scholar] [CrossRef]
- Subcommittee on Swine Nutrition National Research Council. Nutrient Requirements of Swine, 10th ed.; National Academic Press: Washington, DC, USA, 1998. [Google Scholar]
- González-Cadavid, V.; Martins, J.A.M.; Moreno, F.B.; Andrade, T.S.; Santos, A.C.L.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Moura, A.A. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology 2014, 82, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Vilagran, I.; Castillo, J.; Bonet, S.; Sancho, S.; Yeste, M.; Estanyol, J.M.; Oliva, R. Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) aregood markers to predict boar sperm freezing capacity. Theriogenology 2013, 80, 443–450. [Google Scholar] [CrossRef]
- Vazquez, J.M.; Martinez, E.A.; Martinez, P.; Garcia-Artiga, C.; Roca, J. Hypoosmotic swelling of boar spermatozoa compared to other methods for analysing the sperm membrane. Theriogenology 1997, 47, 913–922. [Google Scholar] [CrossRef]
- Najafi, A.; Zhandi, M.; Towhidi, A.; Sharafi, M.; Akbari Sharif, A.; Khodaei Motlagh, M.; Martinez-Pastor, F. Trehalose and glycerol have a dose-dependent synergistic effect on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender. Cryobiology 2013, 66, 275–282. [Google Scholar] [CrossRef]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A.A. Relationship between sperm quality traits and field-fertility of porcine semen. J. Vet. Sci. 2010, 11, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Jelezarsky, L.; Vaisberg, C.; Chaushev, T.; Sapundjiev, E. Localization and characterization of glutathione peroxidase (GPx) in boar accessory sex glands, seminal plasma, and spermatozoa and activity of GPx in boar semen. Theriogenology 2008, 69, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Moreno, A.; Rigau, T.; Rodríguez-Gil, J.E. Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 2004, 61, 673–690. [Google Scholar] [CrossRef]
- Holt, C.; Holt, W.V.; Moore, H.D.M.; Reed, H.C.B.; Curnock, R.M. Objectivily measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: Results of two fertility trials. J. Androl. 1997, 18, 312–323. [Google Scholar] [CrossRef]
- Popwell, J.M.; Flowers, W.L. Variability in relationships between semen quality and estimates of in vivo and in vitro fertility in boars. Anim. Reprod. Sci. 2004, 81, 97–113. [Google Scholar] [CrossRef]
- Flowers, W.L. Management of boars for efficient semen production. J. Reprod. Fertil. Suppl. 1997, 52, 67–78. [Google Scholar] [PubMed]
- Gadea, J.; Sellés, E.; Marco, M.A. The predictive value of porcine seminal parameters on fertility outcome under commercial conditions. Reprod. Domest. Anim. 2004, 39, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Vyt, P.; Maes, D.; Quinten, C.; Rijsselaere, T.; Deley, W.; Aarts, M.; De Kruif, A.; Van Soom, A. Detailed motility evaluation of boar semen and its predictive value for reproductive performance in sows. Vlaams Diergeneeskd. Tijdschr. 2008, 77, 291–298. [Google Scholar]
- McPherson, F.J.; Nielsen, S.G.; Chenoweth, P.J. Semen effects on insemination outcomes in sows. Anim. Reprod. Sci. 2014, 151, 28–33. [Google Scholar] [CrossRef]
- McPherson, F.J.; Nielsen, S.G.; Chenoweth, P.J. Seminal factors influencing return to estrus in female pigs following artificial insemination. Anim. Reprod. 2014, 11, 24–31. [Google Scholar]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Broekhuijse, M.L.W.J.; Šoštarić, E.; Feitsma, H.; Gadella, B.M. Application of computer-assisted semen analysis to explain variations in pig fertility. J. Anim. Sci. 2012, 90, 779–789. [Google Scholar] [CrossRef]
- Basioura, A.; Tsousis, G.; Boscos, C.; Lymberopoulos, A.; Tsakmakidis, I. Method agreement between three different chambers for comparative boar semen computer-assisted sperm analysis. Reprod. Domest. Anim. 2019, 54, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Gaczarzewicz, D. Influence of chamber type integrated with computer-assisted semen analysis (CASA) system on the results of boar semen evaluation. Pol. J. Vet. Sci. 2015, 18, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Peng, N.; Zou, X.; Li, L. Comparison of different counting chambers using a computer-assisted semen analyzer. Syst. Biol. Reprod. Med. 2015, 61, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Langendijk, P.; Soede, N.M.; Kemp, B. Uterine activity, sperm transport, and the role of boar stimuli around insemination in sows. Theriogenology 2005, 63, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Myromslien, F.D.; Tremoen, N.H.; Andersen-Ranberg, I.; Fransplass, R.; Stenseth, E.B.; Zeremichael, T.T.; van Son, M.; Grindflek, E.; Gaustad, A.H. Sperm DNA integrity in Landrace and Duroc boar semen and its relationship to litter size. Reprod. Domest. Anim. 2019, 54, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Boe-Hansen, G.B.; Christensen, P.; Vibjerg, D.; Nielsen, M.B.F.; Hedeboe, A.M. Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 2008, 69, 728–736. [Google Scholar] [CrossRef]
- Roca, J.; Broekhuijse, M.L.W.J.; Parrilla, I.; Rodriguez-Martinez, H.; Martinez, E.A.; Bolarin, A. Boar Differences in Artificial Insemination Outcomes: Can They Be Minimized? Reprod. Domest. Anim. 2015, 50, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A.A.; Boscos, C.M.; Saratsi, A.; Alexopoulos, C. Evaluation of zearalenone and α-zearalenol toxicity on boar sperm DNA integrity. J. Appl. Toxicol. 2008, 28, 681–688. [Google Scholar] [CrossRef]
- Yeste, M.; Briz, M.; Pinart, E.; Sancho, S.; Bussalleu, E.; Bonet, S. The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Anim. Reprod. Sci. 2010, 119, 265–274. [Google Scholar] [CrossRef]
- Gadea, J.; Matás, C. Sperm factors related to in vitro penetration of porcine oocytes. Theriogenology 2000, 54, 1343–1357. [Google Scholar] [CrossRef]
- Schulze, M.; Ruediger, K.; Mueller, K.; Jung, M.; Well, C.; Reissmann, M. Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim. Reprod. Sci. 2013, 140, 70–76. [Google Scholar] [CrossRef]
- Huo, L.J.; Ma, X.H.; Yang, Z.M. Assessment of sperm viability, mitochondrial activity, capacitation and acrosome intactness in extended boar semen during long-term storage. Theriogenology 2002, 58, 1349–1360. [Google Scholar] [CrossRef]
- Höfner, L.; Luther, A.M.; Palladini, A.; Fröhlich, T.; Waberski, D. Tolerance of Stored Boar Spermatozoa to Autologous Seminal Plasma: A Proteomic and Lipidomic Approach. Int. J. Mol. Sci. 2020, 21, 6474. [Google Scholar] [CrossRef] [PubMed]
- Garlow, J.E.; Ka, H.; Johnson, G.A.; Burghardt, R.C.; Jaeger, L.A.; Bazer, F.W. Analysis of osteopontin at the maternal-placental interface in pigs. Biol. Reprod. 2002, 66, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Luedtke, C.C.; McKee, M.D.; Cyr, D.G.; Gregory, M.; Kaartinen, M.T.; Mui, J.; Hermo, L. Osteopontin expression and regulation in the testis, efferent ducts, and epididymis of rats during postnatal development through to adulthood. Biol. Reprod. 2002, 66, 1437–1448. [Google Scholar] [CrossRef] [Green Version]
- Moura, A.A.; Memili, E. Functional aspects of seminal plasma and sperm proteins and their potential as molecular markers of fertility. Anim. Reprod. 2016, 13, 191–199. [Google Scholar] [CrossRef]
- D’Cruz, O.J. Adhesion molecules in human sperm-oocyte interaction: Relevance to infertility. Front. Biosci. 1996, 1, d161–d176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandon, C.I.; Heusner, G.L.; Caudle, A.B.; Fayrer-Hosken, R.A. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology 1999, 52, 863–873. [Google Scholar] [CrossRef]
- Moura, A.A.; Koc, H.; Chapman, D.A.; Killian, G.J. Identification of proteins in the accessory sex gland fluid associated with fertility indexes of dairy bulls: A proteomic approach. J. Androl. 2006, 27, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Mathialagan, N.; Walters, E.; Mao, J.; Lai, L.; Becker, D.; Li, W.; Critser, J.; Prather, R.S. Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol. Reprod. 2006, 75, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Calle-Guisado, V.; Bragado, M.J.; García-Marín, L.J.; González-Fernández, L. HSP90 maintains boar spermatozoa motility and mitochondrial membrane potential during heat stress. Anim. Reprod. Sci. 2017, 187, 13–19. [Google Scholar] [CrossRef]
- Drevet, J.R. The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol. 2006, 250, 70–79. [Google Scholar] [CrossRef]
- Chabory, E.; Damon, C.; Lenoir, A.; Kauselmann, G.; Kern, H.; Zevnik, B.; Garrel, C.; Saez, F.; Cadet, R.; Henry-Berger, J.; et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J. Clin. Investig. 2009, 119, 2074–2085. [Google Scholar] [CrossRef] [PubMed]
- Barranco, S.; Tvarijonaviciute, A.; Perez-Patiho, C.; Vicente-Carrillo, A.; Parrilla, N.; Ceron, J.J.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. Glutathione peroxidase 5 is expressed by the entire pig male genital tract and once in the seminal plasma contributes to sperm survival and in vivo fertility. PLoS ONE 2016, 11, e0162958. [Google Scholar] [CrossRef] [PubMed]
Reproductive Data | Mean ± SD |
---|---|
Farrowing rate (%) | 82.8 ± 24.6 |
Farrowings with ≥12 piglets (%) | 45.8 ± 27.7 |
Total piglets born | 11.7 ± 1.2 |
Live-born piglets | 11.6 ± 1.2 |
Dead and stillborn piglets | 0.1 ± 0.2 |
Variables | Mean ± SD |
---|---|
Total motility (%) | 88.58 ± 9.4 |
Progressive motility (%) | 48.66 ± 14.7 |
Immotile spermatozoa (%) | 8.86 ± 0.9 |
Rapid spermatozoa (%) | 51.17 ± 21.7 |
Medium spermatozoa (%) | 19.72 ± 8.9 |
Slow spermatozoa (%) | 17.68 ± 9.9 |
VCL (μm/sec) | 62.64 ± 27.7 |
VSL (μm/sec) | 23.13 ± 7.5 |
VAP (μm/sec) | 39.88 ± 12.3 |
LIN (%) | 39.61 ± 11.9 |
STR (%) | 58.25 ± 9.6 |
WOB (%) | 67.49 ± 13.5 |
ALH (μm) | 2.17 ± 0.5 |
BCF (Hz) | 9.42 ± 4.0 |
Hyperactivated spermatozoa (%) | 0.18 ± 0.1 |
Variables | Mean ± SEM |
---|---|
Normal morphology (%) | 85.98 ± 10.4 |
Viability (%) | 82.81 ± 7.7 |
HOST + spermatozoa (%) | 38.90 ± 12.5 |
SAMM (%) | 84.79 ± 7.4 |
DNA fragmentation (%) | 0.17 ± 0.3 |
HSP90 | 2.46 ± 3.2 |
GPX5 | 3.43 ± 3.4 |
OPN70 | 3.65 ± 5.4 |
OPN12 | 4.29 ± 6.1 |
Live-Born Piglets | Litter Size ≥ 12 Piglets (%) | Farrowing Rate (%) | |
---|---|---|---|
Variables | r2 | r2 | r2 |
Immotile spermatozoa | 0.067 * | 0.065 * | 0.002 |
Progressive motility | 0.034 | 0.015 | 0.004 |
Rapid spermatozoa | 0.006 | 0.01 | 0.005 |
Medium spermatozoa | 0.016 | 0.012 | 0.005 |
Slow spermatozoa | 0.001 | 0.005 | 0.002 |
VCL | 0.000 | 0.000 | 0.001 |
VSL | 0.000 | 0.000 | 0.008 |
VAP | 0.000 | 0.001 | 0.000 |
LIN | 0.000 | 0.000 | 0.034 |
STR | 0.001 | 0.001 | 0.027 |
WOB | 0.000 | 0.001 | 0.017 |
ALH | 0.003 | 0.046 | 0.005 |
BCF | 0.000 | 0.013 | 0.001 |
Hyperactivated spermatozoa | 0.017 | 0.048 | 0.011 |
Live-Born Piglets | Litter Size ≥ 12 Piglets (%) | Farrowing Rate (%) | |
---|---|---|---|
Variables | r2 | r2 | r2 |
Normal morphology | 0.016 | 0.001 | 0.000 |
Viability | 0.025 | 0.013 | 0.003 |
HOST + spermatozoa | 0.245 * | 0.078 * | 0.019 |
SAMM | 0.135 * | 0.030 | 0.002 |
DNA Fragmentation | 0.005 | 0.025 | 0.015 |
Live-Born Piglets | Litter Size ≥ 12 Piglets (%) | Farrowing Rate (%) | |
---|---|---|---|
Variables | r2 | r2 | r2 |
HSP90 | 0.043 | 0.015 | 0.033 |
GPX5 | 0.006 | 0.000 | 0.067 * |
OPN70 | 0.008 | 0.075 * | 0.108 * |
OPN12 | 0.050 | 0.050 | 0.023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michos, I.; Tsantarliotou, M.; Boscos, C.M.; Tsousis, G.; Basioura, A.; Tzika, E.D.; Tassis, P.D.; Lymberopoulos, A.G.; Tsakmakidis, I.A. Effect of Boar Sperm Proteins and Quality Changes on Field Fertility. Animals 2021, 11, 1813. https://doi.org/10.3390/ani11061813
Michos I, Tsantarliotou M, Boscos CM, Tsousis G, Basioura A, Tzika ED, Tassis PD, Lymberopoulos AG, Tsakmakidis IA. Effect of Boar Sperm Proteins and Quality Changes on Field Fertility. Animals. 2021; 11(6):1813. https://doi.org/10.3390/ani11061813
Chicago/Turabian StyleMichos, Ilias, Maria Tsantarliotou, Constantin M. Boscos, Georgios Tsousis, Athina Basioura, Eleni D. Tzika, Panagiotis D. Tassis, Aristotelis G. Lymberopoulos, and Ioannis A. Tsakmakidis. 2021. "Effect of Boar Sperm Proteins and Quality Changes on Field Fertility" Animals 11, no. 6: 1813. https://doi.org/10.3390/ani11061813
APA StyleMichos, I., Tsantarliotou, M., Boscos, C. M., Tsousis, G., Basioura, A., Tzika, E. D., Tassis, P. D., Lymberopoulos, A. G., & Tsakmakidis, I. A. (2021). Effect of Boar Sperm Proteins and Quality Changes on Field Fertility. Animals, 11(6), 1813. https://doi.org/10.3390/ani11061813