Adrenal Gland Ultrasonographic Measurements and Plasma Hormone Concentrations in Clinically Healthy Newborn Thoroughbred and Standardbred Foals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Foals
2.2. Study Protocol
2.3. Blood Samples
2.4. Adrenal Gland Ultrasonography
2.5. Hormone Concentrations Determination
2.6. Statistical Analysis
3. Results
3.1. Foals
3.2. Adrenal Gland Ultrasonographic Measurements
3.3. Hormone Concentrations and Hormone Ratios
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1363. [Google Scholar] [CrossRef]
- Dembek, K.A.; Onasch, K.; Hurcombe, S.D.; MacGillivray, K.C.; Slovis, N.M.; Barr, B.S.; Reed, S.M.; Toribio, R.E. Renin-Angiotensin-aldosterone system and hypothalamic–pituitary–adrenal axis in hospitalized newborn foals. J. Vet. Intern. Med. 2013, 27, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Hurcombe, S.D.A. Hypothalamic-pituitary gland axis function and dysfunction in horses. Vet. Clin. Equine 2011, 27, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Toribio, R.E. Endocrine dysregulation in critically ill foals and horses. Vet. Clin. Equine 2011, 27, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L.; Forhead, A.J.; Ousey, J.C. Endocrine adaptations in the foal over the perinatal period. Equine Vet. J. 2012, 44, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Ousey, J.C. Peripartal endocrinology in the mare and foetus. Reprod. Domest. Anim. 2004, 39, 222–231. [Google Scholar] [CrossRef]
- Silver, M.; Fowden, A.L.; Knox, J.; Ousey, J.; Cash, R.; Rossdale, P.D. Relationship between circulating tri-idothyronine and cortisol in the perinatal period in the foal. J. Reprod. Fertil. Suppl. 1991, 44, 619–626. [Google Scholar]
- Silver, M.; Fowden, A.L. Prepartum adrenocortical maturation in the fetal foal: Responses to ACTH. J. Endocrinol. 1994, 142, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Holtan, D.W.; Houghton, E.; Slver, M.; Fowden, A.L.; Ousey, J.; Rossdale, P.D. Plasma progestagens in the mare, fetus and newborn foal. J. Reprod. Fertil. Suppl. 1991, 44, 517–528. [Google Scholar]
- Swink, J.M.; Rings, L.M.; Snyder, H.A.; McAuley, R.C.; Burns, T.A.; Dembek, K.A.; Gilsenan, W.F.; Browne, N.; Toribio, R.E. Dynamics of androgens in healthy and hospitalised newborn foals. J. Vet. Intern. Med. 2021, 35, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Pashen, R.L. Maternal and foetal endocrinology during late pregnancy and parturition in the mare. Equine Vet. J. 1984, 16, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Raeside, J.I.; Renaud, R.L.; Christie, H.L. Postnatal decline in gonadal secretion of dehydroepiandrosterone and 3 beta-hydroxyandrosta-5,7-dien-17-one in the newborn foal. J. Endocrinol. 1997, 155, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Tait, A.D.; Hodge, L.C.; Allen, W.R. The biosynthesis of 3 beta-hydroxy-5,7-androstadien-17-one by the horse fetal gonad. FEBS Lett. 1985, 182, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Panzani, S.; Villani, M.; McGladdery, A.; Magri, M.; Kindahl, H.; Galeati, G.; Martino, P.A.; Veronesi, M.C. Concentrations of 15-ketodihydro-PGF2α, cortisol, and progesterone in the plasma of healthy and pathologic newborn foals. Theriogenology 2009, 72, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Castagnetti, C.; Rametta, M.; Tudor Popeia, R.; Govoni, N.; Mariella, J. Plasma levels of ACTH and cortisol in normal and critically-ill neonatal foals. Vet. Res. Commun. 2008, 32, S127–S129. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.A.; Barton, M.H. Adrenocortical insufficiency in horses and foals. Vet. Clin. Equine 2011, 27, 19–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.R.; Divers, T.J.; Barton, M.H.; Lamb, S.V.; Place, N.J.; Mohammed, H.O.; Bain, F.T. Plasma adrenocorticotropin, cortisol, and adrenocorticotropin/cortisol ratios in septic and normal-term foals. J. Vet. Intern. Med. 2007, 21, 791–796. [Google Scholar] [PubMed]
- Lesur, O.; Roussy, J.F.; Chagnon, F.; Gallo-Payet, N.; Dumaine, R.; Sarret, P.; Chraibi, A.; Chouinard, L.; Hogue, B. Proven infection-related sepsis induces a differential stress response early after ICU admission. Crit. Care 2010, 14, R131. [Google Scholar] [CrossRef] [Green Version]
- Dembek, K.A.; Timko, K.J.; Johnson, L.M.; Hart, K.A.; Barr, B.S.; David, B.; Burns, T.A. Steroids, steroid precursors, and neuroactive steroids in critically ill equine neonates. Vet. J. 2017, 225, 42–49. [Google Scholar] [CrossRef]
- Tagliaferro, A.R.; Ronan, A.M. Physiological levels and action of dehydroepiandrosterone in Yucatan miniature swine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R1–R9. [Google Scholar] [CrossRef] [PubMed]
- Peric, T.; Corazzin, M.; Romanzin, A.; Bovolenta, S.; Prandi, A.; Montillo, M.; Comin, A. Cortisol and DHEA concentrations in the hair of dairy cows managed indoor or on pasture. Livest. Sci. 2017, 202, 39–43. [Google Scholar] [CrossRef]
- Trevisan, C.; Montillo, M.; Prandi, A.; Mkupasi, E.M.; Ngowi, H.A.; Johansen, M.V. Hair cortisol and dehydroepiandrosterone concentrations in naturally Taenia solium infected pigs in Tanzania. Gen. Comp. Endocrinol. 2017, 153, 4120–4127. [Google Scholar] [CrossRef] [PubMed]
- Bergamin, C.; Comin, A.; Corazzin, M.; Faustini, M.; Peric, T.; Scollo, A.; Gottardo, F.; Montillo, M.; Prandi, A. Cortisol, DHEA, and Sexual Steroid Concentrations in Fattening Pigs’ Hair. Animals 2019, 9, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montillo, M.; Rota Nodari, S.; Peric, T.; Polloni, A.; Corazzin, M.; Bergamin, C.; Balestrieri, A.; Prandi, A.; Comin, A. Steroids in pig hair and welfare evaluation systems: Combined approaches to improve management in pig breeding? Vet. Ital. 2020, 56, 177–184. [Google Scholar] [PubMed]
- Al-Alwan, I.; Navarro, O.; Daneman, D.; Daneman, A. Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J. Pediatrics 1999, 135, 71–75. [Google Scholar] [CrossRef]
- Barberet, V.; Saunders, J. Ultrasonographic examination of selected small structures in dogs and cats: Thyroid glands, lymph nodes and adrenal glands. Vlaams Diergeneeskd. Tijdschr. 2010, 79, 147–155. [Google Scholar]
- Benchekroun, G.; de Fornel-Thibaud Rodriguez Pineiro, M.I.; Rault, D.; Besso, J.; Cohen, A.; Hernandez, J.; Stambouli, F.; Gomez, E.; Garnier, F.; Begon, D.; et al. Ultrasonography criteria for differentiating ACTH dependency from ACTH independency in 47 dogs with hyperadrenocorticism and equivocal adrenal asymmetry. J. Vet. Intern. Med. 2010, 24, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Kuijten, A.M.; Schoemaker, N.J.; Voorhout, G. Ultrasonographic visualization of the adrenal glands of healthy ferrets and ferrets with hyperasdrenocorticism. J. Am. Anim. Hosp. Assoc. 2007, 43, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Sandhya Bhavani, M.; Thirunavukkarasu, P.S.; Kovitha, S.; Baranidharan, G.R. Ultrasonography of adrenal glands in normal and hyperadrenocorticoid dogs. Int. J. Curr. Res. 2015, 7, 16119–16122. [Google Scholar]
- Cartee, R.E.; Finn Bodner, S.T.; Gray, B.W. Ultrasound examination of the feline adrenal gland. J. Diag. Med. Son. 1993, 9, 327–330. [Google Scholar] [CrossRef]
- Grooters, A.M.; Biller, D.S.; Theisen, S.K.; Miyabayashi, T. Ultrasonographic characteristics of the adrenal glands in dogs with pituitary-dependent hyperadrenocorticism: Comparison with normal dogs. J. Vet. Intern. Med. 1996, 10, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Wenger, M.; Mueller, C.; Kook, P.H.; Reusch, C.E. Ultrasonographic evaluation of adrenal glands in dogs with primary hypoadrenocorticism or mimicking diseases. J. Vet. Rec. 2010, 167, 207–210. [Google Scholar] [CrossRef]
- Barthez, P.Y.; Nyland, T.G.; Feldman, E.C. Ultrasonography of the adrenal glands in the dog, cat, and ferret. Vet. Clin. Small Anim. Pract. 1998, 28, 869–885. [Google Scholar] [CrossRef]
- Douglass, J.P.; Clifford, R.B.; James, S. Ultrasonographic adrenal gland measurements in dogs without evidence of adrenal disease. Vet. Radiol. Ultrasound. 1997, 38, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Mogicato, G.; Layssol-Lamour, C.; Conchou, F.; Diquelou, A.; Raharison, F.; Saustet, J.; Concordet, D. Ultrasonographic evaluation of the adrenal glands in healthy dogs: Repeatability, reproducibility, observer-dependent variability, and the effect of bodyweight, age and sex. Vet. Rec. 2011, 168, 130. [Google Scholar] [CrossRef] [PubMed]
- Bento, P.L.; Center, S.A.; Randolph, J.F.; Yeager, A.E.; Bicalho, R.C. Association between sex, body weight, age, and ultrasonographically determined adrenal gland thickness in dogs with non-adrenal gland illness. J. Am. Vet. Med. Assoc. 2016, 248, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Soulsby, S.N.; Holland, M.; Hudson, J.A.; Behrend, E. Ultrasonographic evaluation of adrenal gland size compared to body weight in normal dogs. Vet. Radiol. Ultrasound. 2015, 56, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Duriel, I.; van Loon, G.; Vermeire, S.; de Clercq, D.; Vanshandevijl, K.; Deprez, P. Transrectal ultrasonography of the left adrenal gland in healthy horses. Vet. Radiol. Ultrasound. 2010, 51, 540–544. [Google Scholar] [CrossRef]
- Beccati, F.; Lauteri, E.; Cercone, M.; Gialletti, R. Ultrasonographic technique and appearance of adrenal gland in neonatal foals: A pilot study. J. Equine Vet. Sci. 2018, 61, 13–17. [Google Scholar] [CrossRef]
- Lauteri, E.; Mariella, J.; Beccati, F.; de Graaf-Roelfsema, E.; Castagnetti, C.; Pepe, M.; Peric, T.; Barbato, O.; Montillo, M.; Rouge, S.; et al. Ultrasonographic measurement of the adrenal gland in neonatal foals: Reliability of the technique and assessment of variation in healthy foals during the first five days of life. Vet. Record. 2020, 187, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dinev, D.; Georgiev, P. Influence of halothane anaesthesia in horses with abdominal surgery upon some endocrine parameters. Trakia J. Sci. 2003, 1, 26–31. [Google Scholar]
- Alfonso, T.; Giguere, S.; Brown, S.A.; Barton, M.H.; Rapoport, G.; Barba, M.; Dembek, K.A.; Toribio, R.E.; Coleman, A.E. Preliminary investigation of orally administered benazepril in horses with left-sided valvular regurgitation. Equine Vet. J. 2017, 50, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.L.; Wood, A.K.; McCarthy, P.H. Ultrasonography of the equine neonatal kidney. Equine Vet. J. 2000, 32, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.F.C.; Mamprim, M.J.; Sartor, R. Comparison of adrenal glands ultrasonographic characteristics and measurements in healthy puppies and kittens. Cienc. Anim. Bras. 2013, 14, 514–521. [Google Scholar]
- Vera, L.; de Clercq, D.; Paulussen, E.; van Steenkiste, G.; Decloedt, A.; Chiers, K.; van Loon, G. Aortic, common carotid and external iliac artery arterial wall stiffness parameters in horses: Inter-Day and inter-observer and intra-observer measurement variability. Equine Vet. J. 2020, 52, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Aleman, M.; Pickles, K.J.; Conley, A.J.; Stanley, S.; Hagget, E.; Toth, B.; Madigan, E. Abnormal plasma neuroactive progestogen derivates in ill, neonatal foals presented to the neonatal intensive care unit. Equine Vet. J. 2013, 45, 661–665. [Google Scholar] [CrossRef]
- Houghton, E.; Holtamn, D.; Grainger, L.; Voller, B.E.; Rossdale, P.D.; Ousey, J.C. Plasma progestagen concentrations in the normal and dysmature newborn foal. J. Reprod. Fertil. Suppl. 1991, 44, 609–617. [Google Scholar]
- Rossdale, P.D.; Ousey, J.C.; Cottrill, C.M.; Chavatte, P.; Allen, W.R.; McGladdery, A.J. Effects of placental pathology and mammary secretion calcium concentrations and on neonatal adrenocortical function in the horse. J. Reprod. Fertil. Suppl. 1991, 44, 579–590. [Google Scholar]
- Rossdale, P.D.; Ousey, J.C.; McGladdery, A.J.; Prandi, S.; Holdstock, N.; Grainger, L.; Houghton, E. A retrospective study of increased plasma progestagen concentrations in compromised neonatal foals. Reprod. Fertil. Dev. 1995, 7, 567–575. [Google Scholar] [CrossRef]
- Montillo, M.; Comin, A.; Corazzin, M.; Peric, T.; Faustini, M.; Veronesi, M.C.; Valentini, S.; Bustaffa, M.; Prandi, A. The effect of temperature, rainfall and light conditions on hair cortisol concentrations in newborn foals. J. Equine Vet. Sci. 2014, 34, 774–778. [Google Scholar] [CrossRef]
- Hart, K.A.; Slovis, N.M.; Barton, M.H. Hypothalamic-pituitary-adrenal axis dysfunction in hospitalized neonatal foals. J. Vet. Intern. Med. 2009, 23, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.S.; Yaqoob, F.; Enbergs, H. Hematologic, metabolite and hormone responses to weaning-induced stress in foals of different breeds. Pak. Vet. J. 2013, 33, 500–504. [Google Scholar]
- Charney, D.S. Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptations to extreme stress. Am. J. Psychiatry 2004, 161, 195–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McEwen, B.S. Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology 2000, 22, 108–124. [Google Scholar] [CrossRef]
- Russo, S.J.; Murrough, J.W.; Han, M.; Charney, D.S.; Nestler, E.J. Neurobiology of resilience. Nat. Neurosci. 2012, 15, 1475–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, S.; Li, X.; Zilioli, S.; Chen, Z.; Deng, H.; Pan, J.; Guo, W. Hair measurements of cortisol, DHEA, and DHEA to cortisol ratio as biomarkers of chronic stress among people living with HIV in China: Known-group validation. PLoS ONE 2017, 12, e0169827. [Google Scholar]
- Buckham Sporer, K.R.; Weber, P.S.D.; Burton, J.L.; Earley, B.; Crowe, M.A. Transportation of young beef bulls alters circulating physiological parameters that may be effective biomarkers of stress. J. Anim. Sci. 2008, 86, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, T.G.; Edwards, L. Chronic stress and the HPA axis: Clinical assessment and therapeutic considerations. Stand 2010, 9, 1–12. [Google Scholar]
- Saczawa, M.E.; Graber, J.A.; Brooks-Gunn, J.; Warren, M.P. Methodological considerations in use of the cortisol/DHEA(S) ratio in adolescent populations. Psychoneuroendocrinology 2013, 38, 2815–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measurement (cm) | Standardbred | Thoroughbred | p-Value |
---|---|---|---|
Whole right adrenal gland height | 3.21 ± 0.41 | 3.02 ± 0.86 | 0.577 |
Whole left adrenal gland height | 2.92 ± 0.60 | 2.7 ± 0.79 | 0.517 |
Right dorsal medulla width | 0.56 ± 0.09 | 0.38 ± 0.15 | 0.007 * |
Whole right dorsal lobe width | 0.82 ± 0.09 | 0.60 ± 0.16 | 0.003 * |
Right ventral medulla width | 0.57 ± 0.09 | 0.36 ± 0.15 | 0.002 * |
Whole right ventral lobe width | 0.84 ± 0.11 | 0.56 ± 0.19 | 0.002 * |
Left medulla width | 0.61 ± 0.13 | 0.42 ± 0.2 | 0.02 * |
Whole left adrenal gland width | 0.83 ± 0.10 | 0.61 ± 0.18 | 0.005 * |
Variables | Standardbred (Mean Age, 30.5 h) | Thoroughbred (Mean Age, 33 h) | p-Value |
---|---|---|---|
ACTH (pg/mL) | 8.9 (6.17–12.6) | 4.75 (3.67–8) | 0.023 * |
Cortisol (ng/mL) | 11.50 (7.8–15.68) | 21.38 (18.7–31.37) | 0.013 * |
DHEA (ng/mL) | 38.82 (31.26–101.90) | 18.6 (12.9– 30.43) | 0.353 |
P4 (ng/mL) | 3.07 (1.81–6.33) | 4.6 (3.1–5.82) | 0.393 |
Aldosterone (pg/mL) | 21.4 (14.7–60) | 19.25 (8.7–47.7) | 0.684 |
ACTH/Cortisol Ratio | 0.58 (0.22–0.94) | 0.24 (0.14–0.37) | 0.070 |
ACTH/P4 Ratio | 4.4 (0.92–5.82) | 1.2 (0.95–2.04) | 0.063 |
ACTH/Aldosterone Ratio | 0.44 (0.09–1) | 0.29 (0.9–2.04) | 0.623 |
ACTH/DHEA Ratio | 0.34 (0.05–0.98) | 0.23 (0.21–0.47) | 0.705 |
Cortisol/DHEA Ratio | 0.32 (0.14–0.62) | 1.27 (0.86–1.56) | 0.035 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauteri, E.; Mariella, J.; Beccati, F.; Roelfsema, E.; Castagnetti, C.; Pepe, M.; Peric, T.; Barbato, O.; Montillo, M.; Rouge, S.; et al. Adrenal Gland Ultrasonographic Measurements and Plasma Hormone Concentrations in Clinically Healthy Newborn Thoroughbred and Standardbred Foals. Animals 2021, 11, 1832. https://doi.org/10.3390/ani11061832
Lauteri E, Mariella J, Beccati F, Roelfsema E, Castagnetti C, Pepe M, Peric T, Barbato O, Montillo M, Rouge S, et al. Adrenal Gland Ultrasonographic Measurements and Plasma Hormone Concentrations in Clinically Healthy Newborn Thoroughbred and Standardbred Foals. Animals. 2021; 11(6):1832. https://doi.org/10.3390/ani11061832
Chicago/Turabian StyleLauteri, Eleonora, Jole Mariella, Francesca Beccati, Ellen Roelfsema, Carolina Castagnetti, Marco Pepe, Tanja Peric, Olimpia Barbato, Marta Montillo, Stefanie Rouge, and et al. 2021. "Adrenal Gland Ultrasonographic Measurements and Plasma Hormone Concentrations in Clinically Healthy Newborn Thoroughbred and Standardbred Foals" Animals 11, no. 6: 1832. https://doi.org/10.3390/ani11061832
APA StyleLauteri, E., Mariella, J., Beccati, F., Roelfsema, E., Castagnetti, C., Pepe, M., Peric, T., Barbato, O., Montillo, M., Rouge, S., & Freccero, F. (2021). Adrenal Gland Ultrasonographic Measurements and Plasma Hormone Concentrations in Clinically Healthy Newborn Thoroughbred and Standardbred Foals. Animals, 11(6), 1832. https://doi.org/10.3390/ani11061832