Does Small Ruminant Lentivirus Infection in Goats Predispose to Bacterial Infection of the Mammary Gland? A Preliminary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials
3. Methods
3.1. Bacteriological Examination
3.2. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Spuria, L.; Biasibetti, E.; Bisanzio, N.; Biasato, I.; De Meneghi, D.; Nebbia, P.; Robino, P.; Bianco, P.; Lamberti, M.; Caruso, C.; et al. Microbial agents in macroscopically healthy mammary gland tissues of small ruminants. PeerJ 2017, 5, e3994. [Google Scholar] [CrossRef] [Green Version]
- Bagnicka, E.; Winnicka, A.; Jóźwik, A.; Rzewuska, M.; Strzałkowska, N.; Kościuczuk, E.; Prusak, B.; Kaba, J.; Horbańczuk, J.; Krzyżewski, J. Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin. Res. 2011, 100, 72–77. [Google Scholar] [CrossRef]
- Vanselow, J.; Yang, W.; Herrmann, J.; Zerbe, H.; Schuberth, H.-J.; Petzl, W.; Tomek, W.; Seyfert, H.-M. DNA-remethylation around a STAT5-binding enhancer in the αS1-casein promoter is associated with abrupt shutdown of αS1-casein synthesis during acute mastitis. J. Mol. Endocrinol. 2006, 37, 463–477. [Google Scholar] [CrossRef]
- Contreras, A.; Luengo, C.; Sánchez, A.; Corrales, J. The role of intramammary pathogens in dairy goats. Livest. Prod. Sci. 2003, 79, 273–283. [Google Scholar] [CrossRef]
- Stuhr, T.A.K. Intramammary infections in dairy goats: Recent knowledge and indicators for detection of subclinical mastitis. Landbauforsch. vTI Agric. For. Res. 2010, 4, 267–280. [Google Scholar]
- Bergonier, D.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Veter. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [Green Version]
- Rainard, P.; Gitton, C.; Chaumeil, T.; Fassier, T.; Huau, C.; Riou, M.; Tosser-Klopp, G.; Krupova, Z.; Chaize, A.; Gilbert, F.B.; et al. Host factors determine the evolution of infection with Staphylococcus aureus to gangrenous mastitis in goats. Veter. Res. 2018, 49, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johler, S.; Giannini, P.; Jermini, M.; Hummerjohann, J.; Baumgartner, A.; Stephan, R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins 2015, 7, 997–1004. [Google Scholar] [CrossRef]
- Deinhofer, M.; Pernthaner, A. Differenzierung von Staphylokokken aus Schaf-und Ziegenmilchproben [Differentiation of staphylococci from sheep and goat milk samples]. Deutsche Tierärztliche Wochenschr. 1993, 100, 234–236. [Google Scholar]
- Deinhofer, M. Staphylococcus spp. as mastitis-related pathogens in goat milk. Veter. Microbiol. 1995, 43, 161–166. [Google Scholar] [CrossRef]
- Jiménez, G.E.A.; Pérez, J.L.T.; Murillo, C.R.; Reynoso, B.A.; Álvarez, H.R. Serotyping versus genotyping in infected sheep and goats with small ruminant lentiviruses. Veter. Microbiol. 2021, 252, 108931. [Google Scholar] [CrossRef]
- Olech, M.; Kuźmak, J. Molecular Characterization of Small Ruminant Lentiviruses of Subtype A5 Detected in Naturally Infected but Clinically Healthy Goats of Carpathian Breed. Pathogens 2020, 9, 992. [Google Scholar] [CrossRef]
- Olech, M.; Rachid, A.; Croisé, B.; Kuźmak, J.; Valas, S. Genetic and antigenic characterization of small ruminant lentiviruses circulating in Poland. Virus Res. 2012, 163, 528–536. [Google Scholar] [CrossRef]
- Olech, M.; Valas, S.; Kuźmak, J. Epidemiological survey in single-species flocks from Poland reveals expanded genetic and antigenic diversity of small ruminant lentiviruses. PLoS ONE 2018, 13, e0193892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacklaws, B.A. Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef]
- Nowicka, D.; Czopowicz, M.; Szaluś-Jordanow, O.; Witkowski, L.; Bagnicka, E.; Kaba, J. Seropositive bucks and within-herd prevalence of small ruminant lentivirus infection. Central Eur. J. Immunol. 2015, 3, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Larruskain, A.; Jugo, B.M. Retroviral infections in sheep and goats: Small ruminant lentiviruses and host interaction. Viruses 2013, 5, 2043–2061. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Huder, J.B.; Böni, J.; Schönmann, M.; Mühlherr, J.; Lutz, H.; Schupbach, J. Direct evidence for natural transmission of small-ruminant lentiviruses of subtype A4 from goats to sheep and vice versa. J. Virol. 2004, 78, 7518–7522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stonos, N.; Wootton, S.K.; Karrow, N. Immunogenetics of small ruminant lentiviral infections. Viruses 2014, 6, 3311–3333. [Google Scholar] [CrossRef]
- Jarczak, J.; Kościuczuk, E.; Ostrowska, M.; Lisowski, P.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J.; Zwierzchowski, L.; Słoniewska, D.; Bagnicka, E. The effects of diet supplementation with yeast on the expression of selected immune system genes in the milk somatic cells of dairy goats. Anim. Sci. Pap. Rep. 2014, 32, 41–53. [Google Scholar]
- Jarczak, J.; Słoniewska, D.; Kaba, J.; Bagnicka, E. The expression of cytokines in the milk somatic cells, blood leukocytes and serum of goats infected with small ruminant lentivirus. BMC Veter. Res. 2019, 15, 1–11. [Google Scholar] [CrossRef]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Small ruminant lentivirus infection influences expression of acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats. Veter. Res. 2018, 49, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, C.N.; Bozza, M.T. Are Reactive Oxygen Species Always Detrimental to Pathogens? Antioxid. Redox Signal. 2014, 20, 1000–1037. [Google Scholar] [CrossRef] [Green Version]
- Asadpour, R.; Paktinat, S.; Ghassemi, F.; Jafari, R. Study on Correlation of Maedi-Visna Virus (MVV) with Ovine Subclinical Mastitis in Iran. Indian J. Microbiol. 2013, 54, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houwers, D.J.; Pekelder, J.J.; Akkermans, J.W.; Van Der Molen, E.J.; Schreuder, B. Incidence of indurative lymphocytic mastitis in a flock of sheep infected with maedi-visna virus. Veter. Rec. 1988, 122, 435–437. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.P.; Greenwood, P.L.; Nicholls, P.J. Effect of caprine arthritis-encephalitis virus infection on milk cell count and N-acetyl-β–glucosaminidase activity in dairy goats. J. Dairy Res. 1993, 60, 299–306. [Google Scholar] [CrossRef]
- Smith, M.C.; Cutlip, R. Effects of infection with caprine arthritis-encephalitis virus on milk production in goats. J. Am. Veter. Med Assoc. 1988, 193, 63–67. [Google Scholar]
- Tariba, B.; Kostelić, A.; Šalamon, D.; Roić, B.; Benić, M.; Prvanović Babić, N.; Salajpal, K. Subclinical mastitis and clinical arthritis in French Alpine goats serologically positive for caprine artritis-encephalitis virus. Vet. Arh. 2017, 87, 121–128. [Google Scholar]
- Nord, K. CAEV Infection does not Affect Prevalence of Bacterial Mastitis in Goats. Acta Veter. Scand. 1997, 38, 197–199. [Google Scholar] [CrossRef]
- Nowicka, D.; Czopowicz, M.; Mickiewicz, M.; Szaluś-Jordanow, O.; Witkowski, L.; Bagnicka, E.; Kaba, J. Diagnostic performance of ID Screen® MVV-CAEV Indirect Screening ELISA in identifying small ruminant lentiviruses-infected goats. Pol. J. Veter. Sci. 2014, 17, 501–506. [Google Scholar] [CrossRef]
- Brinkhof, J.; Van Maanen, C.; Wigger, R.; Peterson, K.; Houwers, D. Specific detection of small ruminant lentiviral nucleic acid sequences located in the proviral long terminal repeat and leader-gag regions using real-time polymerase chain reaction. J. Virol. Methods 2008, 147, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Bagnicka, E.; Distl, O.; Hamann, H.; Łukaszewicz, M. Heritabilities and genetic correlations between the dairy traits in goats estimated in first vs later lactations. Anim. Sci. Pap. Rep. 2004, 2, 205–213. [Google Scholar]
- Bagnicka, E.; Łukaszewicz, M.; Ådnøy, T. Genetic parameters of somatic cell score and lactose content in goat’s milk. J. Anim. Feed. Sci. 2016, 25, 210–215. [Google Scholar] [CrossRef]
- Nowicka, D.; Czopowicz, M.; Bagnicka, E.; Rzewuska, M.; Strzałkowska, N.; Kaba, J. Influence of small ruminant lentivirus infection on cheese yield in goats. J. Dairy Res. 2015, 82, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.; Paape, M.; Miller, R.; Contreras, A.; Paape, M.; Miller, R. Prevalence of subclinical intramammary infection caused by Staphylococcus epidermidis in a commercial dairy goat herd. Small Rumin. Res. 1999, 31, 203–208. [Google Scholar] [CrossRef]
- Boscos, C.; Stefanakis, A.; Alexopoulos, C.; Samartzi, F. Prevalence of subclinical mastitis and influence of breed, parity, stage of lactation and mammary bacteriological status on Coulter Counter Counts and California Mastitis Test in the milk of Saanen and autochthonous Greek goats. Small Rumin. Res. 1996, 21, 139–147. [Google Scholar] [CrossRef]
- Peterson, R.; Hariharan, H.; Matthew, V.; Stratton, G.; Hegamin-Younger, C.; Sharma, R. Comparison of Culture of Goat Milk with Indirect Measurement of Somatic Cell Count Using a Commercial Kit, and Antimicrobial Susceptibility of Bacterial Isolates. Int. J. Veter. Med. Res. Rep. 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Virdis, S.; Scarano, C.; Cossu, F.; Spanu, V.; Spanu, C.; De Santis, E.P.L. Antibiotic Resistance inStaphylococcus aureusand Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis. Veter. Med. Int. 2010, 2010, 1–6. [Google Scholar] [CrossRef] [Green Version]
- El-Jakee, J.K.; Aref, N.E.; Gomaa, A.; ElHariri, M.; Galal, H.M.; Omar, S.A.; Samir, A. Emerging of coagulase negative staphylococci as a cause of mastitis in dairy animals: An environmental hazard. Int. J. Veter. Sci. Med. 2013, 1, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, F.; Nóbrega, D.; Pereira, V.; Marson, P.M.; Pantoja, J.C.D.F.; Langoni, H. Enterotoxin genes in coagulase-negative and coagulase-positive staphylococci isolated from bovine milk. J. Dairy Sci. 2013, 96, 2866–2872. [Google Scholar] [CrossRef] [Green Version]
- Zalewska, M.; Kawecka-Grochocka, E.; Słoniewska, D.; Kościuczuk, E.; Marczak, S.; Jarmuż, W.; Zwierzchowski, L.; Bagnicka, E. Acute phase protein expressions in secretory and cistern lining epithelium tissues of the dairy cattle mammary gland during chronic mastitis caused by staphylococci. BMC Veter. Res. 2020, 16, 1–9. [Google Scholar] [CrossRef]
- Deubelbeiss, M.; Blatti-Cardinaux, L.; Zahno, M.-L.; Zanoni, R.; Vogt, H.-R.; Posthaus, H.; Bertoni, G. Characterization of small ruminant lentivirus A4 subtype isolates and assessment of their pathogenic potential in naturally infected goats. Virol. J. 2014, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, V.B.; Dufour, S.; Calcutt, M.J.; Adkins, P.R.; Middleton, J.R. Staphylococcal intramammary infection dynamics and the relationship with milk quality parameters in dairy goats over the dry period. J. Dairy Sci. 2019, 102, 4332–4340. [Google Scholar] [CrossRef]
- Gelasakis, A.; Angelidis, A.; Giannakou, R.; Arsenos, G. Bacterial subclinical mastitis and its effect on milk quality traits in low-input dairy goat herds. Veter. Rec. 2018, 183, 449. [Google Scholar] [CrossRef] [PubMed]
- Mahlangu, P.; Maina, N.; Kagira, J. Prevalence, Risk Factors, and Antibiogram of Bacteria Isolated from Milk of Goats with Subclinical Mastitis in Thika East Subcounty, Kenya. J. Veter. Med. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Contreras, A.; Corrales, J. Parity as a risk factor for caprine subclinical intramammary infection. Small Rumin. Res. 1999, 31, 197–201. [Google Scholar] [CrossRef]
- Milczarek, M.; Czopowicz, M.; Witkowski, L.; Bereznowski, A.; Bagnicka, E.; Kosieradzka, I.; Kaba, J. Metabolomic profile of adult Saanen goats infected with small ruminant lentivirus. Small Rumin. Res. 2019, 170, 12–18. [Google Scholar] [CrossRef]
Milking Day | Lactation Number (Parity) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th | Total | |
20 | 6 | 4 | 8 | 15 | 10 | 8 | 2 | 0 | 0 | 53 |
40 | 6 | 5 | 9 | 13 | 9 | 5 | 1 | 0 | 0 | 48 |
60 | 6 | 3 | 9 | 9 | 7 | 7 | 2 | 0 | 1 | 44 |
150 | 6 | 5 | 7 | 11 | 9 | 6 | 2 | 0 | 1 | 47 |
210 | 6 | 3 | 5 | 8 | 9 | 8 | 2 | 1 | 1 | 43 |
Total | 30 | 20 | 38 | 56 | 44 | 34 | 9 | 1 | 3 | 235 |
Pathogen | Type | Species | The Number (%) of Goats in Which the Bacterium Was Isolated | The Number (%) of Milk Samples From | |||||
---|---|---|---|---|---|---|---|---|---|
The Total Study Population (n = 95) | SRLV-SP (n = 71) | SRLV-SN (n = 24) | |||||||
n | % | n | % | n | % | ||||
Major | CPS | S. aureus | 2 (5.0) | 2 | 2.8 | 1 | 1.4 | 1 | 4.2 |
Minor | CNS | S. caprae | 12 (30.0) | 20 | 28.2 | 14 | 19.7 | 6 | 25.0 |
S. xylosus | 10 (25.0) | 18 | 25.4 | 14 | 19.7 | 4 | 16.7 | ||
S. gallinarum | 8 (20.0) | 13 | 18.3 | 9 | 12.7 | 4 | 16.7 | ||
S. lentus | 4 (10.0) | 6 | 8.5 | 4 | 5.6 | 2 | 8.3 | ||
S. lugdunensis | 4 (10.0) | 5 | 7 | 4 | 5.6 | 1 | 4.2 | ||
S. epidermidis | 5 (12.5) | 5 | 7 | 2 | 2.8 | 3 | 12.5 | ||
S. chromogenes | 5 (12.5) | 5 | 7 | 4 | 5.6 | 1 | 4.2 | ||
S. sciuri | 5 (12.5) | 5 | 7 | 3 | 4.2 | 2 | 8.3 | ||
S. warneri | 3 (7.5) | 3 | 4.2 | 2 | 2.8 | 1 | 4.2 | ||
S. simulans | 2 (5.0) | 3 | 4.2 | 3 | 4.2 | 0 | 0 | ||
S. arlettae | 3 (7.5) | 3 | 4.2 | 3 | 4.2 | 0 | 0 | ||
S. vitulinus | 2 (5.0) | 2 | 2.8 | 2 | 2.8 | 0 | 0 | ||
S. auricularis | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
S. schleiferi | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
S. saprophyticus | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
S. capitis | 1 (2.5) | 1 | 1.4 | 0 | 0 | 1 | 4.2 | ||
S. carnosus | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
Others | Aerococcus viridans | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | |
Enterococcus faecium | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
Leuconostoc cremoris | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
Kocuria kristinae | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 | ||
Alloiococcus otitis | 1 (2.5) | 1 | 1.4 | 1 | 1.4 | 0 | 0 |
Variable | Regression Coefficient (SE) | Model Parameter | p-Value | OR (CI 95%) |
---|---|---|---|---|
Goat | 0.00 (0.00) | - | 0.999 | - |
Constant | 0.69 (0.55) | - | - | - |
Parity | ||||
1st lactation | - a | - | - | - |
2nd lactation | −2.08 (0.96) | −2.16 | 0.032 * | 0.13 (0.02, 0.84) |
3rd lactation | −1.87 (0.79) | −2.36 | 0.019 * | 0.16 (0.03, 0.74) |
4th lactation | −1.51 (0.71) | −2.13 | 0.034 * | 0.22 (0.05, 0.89) |
≥5th lactation | −3.23 (1.13) | −2.85 | 0.005 * | 0.04 (0.004, 0.37) |
SRLV status in parity classes | ||||
SRLV-SN in any lactation | - a | - | - | - |
SRLV-SP in the 1st lactation | 0.32 (0.80) | 0.40 | 0.692 | 1.37 (0.28, 6.64) |
SRLV-SP in the 2nd lactation | 0.98 (1.02) | 0.96 | 0.338 | 2.66 (0.36, 19.90) |
SRLV-SP in the 3rd lactation | −0.27 (0.80) | −0.34 | 0.735 | 0.76 (0.16, 3.67) |
SRLV-SP in the 4th lactation | 0.39 (0.58) | 0.68 | 0.495 | 1.48 (0.48, 4.61) |
SRLV-SP in ≥5th lactation | 2.59 (1.02) | 2.55 | 0.012 * | 13.4 (1.80, 99.2) |
Breed b | ||||
PWI c | - a | - | - | - |
PFI d | 0.04 (0.34) | 0.11 | 0.909 | 1.04 (0.54, 2.02) |
Milking (stage of lactation) b | ||||
20th day | - a | - | - | - |
40th day | 0.33 (0.45) | 0.73 | 0.466 | 1.39 (0.57, 3.36) |
60th day | 0.82 (0.46) | 1.78 | 0.076 | 2.26 (0.92, 5.57) |
150th day | 1.06 (0.45) | 2.36 | 0.019 * | 2.89 (1.19, 7.01) |
210th day | 0.01 (0.47) | 0.01 | 0.989 | 1.01 (0.40, 2.54) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbańska, D.; Puchała, R.; Jarczak, J.; Czopowicz, M.; Kaba, J.; Horbańczuk, K.; Bagnicka, E. Does Small Ruminant Lentivirus Infection in Goats Predispose to Bacterial Infection of the Mammary Gland? A Preliminary Study. Animals 2021, 11, 1851. https://doi.org/10.3390/ani11071851
Urbańska D, Puchała R, Jarczak J, Czopowicz M, Kaba J, Horbańczuk K, Bagnicka E. Does Small Ruminant Lentivirus Infection in Goats Predispose to Bacterial Infection of the Mammary Gland? A Preliminary Study. Animals. 2021; 11(7):1851. https://doi.org/10.3390/ani11071851
Chicago/Turabian StyleUrbańska, Daria, Ryszard Puchała, Justyna Jarczak, Michał Czopowicz, Jarosław Kaba, Karina Horbańczuk, and Emilia Bagnicka. 2021. "Does Small Ruminant Lentivirus Infection in Goats Predispose to Bacterial Infection of the Mammary Gland? A Preliminary Study" Animals 11, no. 7: 1851. https://doi.org/10.3390/ani11071851
APA StyleUrbańska, D., Puchała, R., Jarczak, J., Czopowicz, M., Kaba, J., Horbańczuk, K., & Bagnicka, E. (2021). Does Small Ruminant Lentivirus Infection in Goats Predispose to Bacterial Infection of the Mammary Gland? A Preliminary Study. Animals, 11(7), 1851. https://doi.org/10.3390/ani11071851