Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Traditional Cryoprotectants Supplemented with Antioxidants
2.1. Astaxanthin
2.2. Resveratrol
2.3. Quercetin
2.4. Myoinositol
2.5. Curcumin
2.6. Iodixanol
2.7. Spermine
2.8. Kinetin
2.9. Melatonin
2.10. Metformin
2.11. Olive-Derived Antioxidants
3. Egg Yolk Alternatives
3.1. Low-Density Lipoproteins
3.2. Egg Yolk Plasma
3.3. Soybean Lecithin
3.4. Skim Milk
3.5. Polyvinyl Alcohol
4. Cryoprotectants Supplemented with MSCs or Their Derivatives
4.1. Ad-MSCs Supplementation
4.2. Ad-MSCs Derivatives Supplementation
4.3. Supplementation of AMSCs Derivatives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Santos, R.L.; Souza, T.D.; Mol, J.P.S.; Eckstein, C.; Paixao, T.A. Canine Brucellosis: An Update. Front. Vet. Sci. 2021, 8, 594291. [Google Scholar] [CrossRef] [PubMed]
- Abeka, Y.T. Review on Canine Transmissible Venereal Tumor (CTVT). Cancer Ther. Oncol. Int. J. 2019, 14, 86–94. [Google Scholar]
- Prinosilova, P.; Rybar, R.; Zajicova, A.; Hlavicova, J. DNA integrity in fresh, chilled and frozen-thawed canine spermatozoa. Vet. Med. Czech. 2012, 57, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Sicherle, C.C.; de Souza, F.F.; Freitas-Dell’Aqua, C.P.; Mothe, G.B.; Padovani, C.R.; Papa, F.O.; Lopes, M.D. Effects of the cryopreservation process on dog sperm integrity. Anim. Reprod. 2020, 17, e20190081. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Martínez, I.; Moran, J.; Peña, F. A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: Changes after cryopreservation. Reprod. Domest. Anim. 2006, 41, 408–415. [Google Scholar] [CrossRef] [PubMed]
- PERROS, C. Oxidative stress challenges during the sperm cryopreservation in dogs. J. Vet. Androl. 2017, 2, 1–7. [Google Scholar]
- Tatone, C.; Di Emidio, G.; Vento, M.; Ciriminna, R.; Artini, P.G. Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 2010, 26, 563–567. [Google Scholar] [CrossRef]
- Drobnis, E.Z.; Crowe, L.M.; Berger, T.; Anchordoguy, T.J.; Overstreet, J.W.; Crowe, J.H. Cold Shock Damage Is Due to Lipid Phase-Transitions in Cell-Membranes—A Demonstration Using Sperm as a Model. J. Exp. Zool. 1993, 265, 432–437. [Google Scholar] [CrossRef]
- Maldjian, A.; Pizzi, F.; Gliozzi, T.; Cerolini, S.; Penny, P.; Noble, R. Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology 2005, 63, 411–421. [Google Scholar] [CrossRef]
- Singh, V.K.; Atreja, S.K.; Kumar, R.; Chhillar, S.; Singh, A.K. Assessment of intracellular Ca2+, cAMP and 1,2-diacylglycerol in cryopreserved buffalo (Bubalus bubalis) spermatozoa on supplementation of taurine and trehalose in the extender. Reprod. Domest. Anim. 2012, 47, 584–590. [Google Scholar] [CrossRef]
- Kumar, R.; Atreja, S.K. Effect of incorporation of additives in tris-based egg yolk extender on buffalo (Bubalus bubalis) sperm tyrosine phosphorylation during cryopreservation. Reprod. Domest. Anim. 2012, 47, 485–490. [Google Scholar] [CrossRef]
- Majzoub, A.; Agarwal, A. Antioxidants in sperm cryopreservation. In Male Infertility; Springer: Berlin/Heidelberg, Germany, 2020; pp. 671–678. [Google Scholar]
- Sanchez-Calabuig, M.J.; Maillo, V.; Beltran-Brena, P.; Martinez, J.D.; Calera-Carrillo, S.; Perez-Gutierrez, J.F.; Perez-Cerezales, S. Cryopreservation of canine sperm using egg yolk and soy bean based extenders. Reprod. Biol. 2017, 17, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Bousseau, S.; Brillard, J.P.; Marquant-Le Guienne, B.; Guerin, B.; Camus, A.; Lechat, M. Comparison of bacteriological qualities of various egg yolk sources and the in vitro and in vivo fertilizing potential of bovine semen frozen in egg yolk or lecithin based diluents. Theriogenology 1998, 50, 699–706. [Google Scholar] [CrossRef]
- Abe, Y.; Yokozawa, S.; Umemiya-Shirafuji, R.; Moumouni, P.; Suwa, Y.; Suzuki, H. Fertilizing ability of canine spermatozoa cryopreserved with skim milk-based extender in a retrospective study. Reprod. Domest. Anim. 2018, 53, 237–242. [Google Scholar] [CrossRef]
- Bencharif, D.; Amirat-Briand, L.; Garand, A.; Anton, M.; Schmitt, E.; Desherces, S.; Delhomme, G.; Langlois, M.-L.; Barrière, P.; Destrumelle, S. The advantages of using a combination of LDL and glutamine in comparison with TRIS egg yolk and Equex® STAMP extenders in the cryopreservation of canine semen. Res. Vet. Sci. 2012, 93, 440–447. [Google Scholar] [CrossRef]
- Bencharif, D.; Amirat, L.; Anton, M.; Schmitt, E.; Desherces, S.; Delhomme, G.; Langlois, M.L.; Barriere, P.; Larrat, M.; Tainturier, D. The advantages of LDL (low density lipoproteins) in the cryopreservation of canine semen. Theriogenology 2008, 70, 1478–1488. [Google Scholar] [CrossRef]
- Dalmazzo, A.; Losano, J.D.A.; Rocha, C.C.; Tsunoda, R.H.; Angrimani, D.S.R.; Mendes, C.M.; Assumpcao, M.; Nichi, M.; Barnabe, V.H. Effects of Soy Lecithin Extender on Dog Sperm Cryopreservation. Anim. Biotechnol. 2018, 29, 174–182. [Google Scholar] [CrossRef]
- Saadeldin, I.M.; Khalil, W.A.; Alharbi, M.G.; Lee, S.H. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals 2020, 10, 2281. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Gorskaja, J.F.; Kulagina, N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976, 4, 267–274. [Google Scholar]
- Hmadcha, A.; Martin-Montalvo, A.; Gauthier, B.R.; Soria, B.; Capilla-Gonzalez, V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front. Bioeng. Biotechnol. 2020, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, C.; Xu, J.; Zhang, S.; Dai, J.; Zhang, D. Addition of butylated hydroxytoluene (BHT) in tris-based extender improves post-thaw quality and motion dynamics of dog spermatozoa. Cryobiology 2020, 97, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Neagu, V.R.; Garcia, B.M.; Sandoval, C.S.; Rodriguez, A.M.; Ferrusola, C.O.; Fernandez, L.G.; Tapia, J.A.; Pena, F.J. Freezing dog semen in presence of the antioxidant butylated hydroxytoluene improves postthaw sperm membrane integrity. Theriogenology 2010, 73, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Alexopoulos, C.; Pontiki, E.; Hadjipavlou-Litina, D.; Saratsis, P.; Boscos, C. Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. Theriogenology 2007, 68, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Martins-Bessa, A.; Rocha, A.; Mayenco-Aguirre, A. Effects of taurine and hypotaurine supplementation and ionophore concentrations on post-thaw acrosome reaction of dog spermatozoa. Theriogenology 2009, 71, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Lecewicz, M.; Strzezek, R.; Kordan, W.; Majewska, A. Effect of Extender Supplementation with Low-molecular-weight Antioxidants on Selected Quality Parameters of Cryopreserved Canine Spermatozoa. J. Vet. Res. 2018, 62, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.C.; Goncalves, J.S.; Rodrigues, J.A.; Lucio, C.F.; Silva, L.C.; Assumpcao, M.E.; Vannucchi, C.I. Influence of ascorbic acid and glutathione antioxidants on frozen-thawed canine semen. Reprod. Domest. Anim. 2009, 44 (Suppl. 2), 359–362. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.T.; Wang, J.R.; Sun, L.Z.; Jin, X.H.; Shi, X.Y.; Lin, J.Y.; Yue, S.L.; Zhou, J.B. Effects of astaxanthin on plasma membrane function and fertility of boar sperm during cryopreservation. Theriogenology 2021, 164, 58–64. [Google Scholar] [CrossRef]
- Basioura, A.; Tsakmakidis, I.A.; Martinez, E.A.; Roca, J.; Li, J.; Molina, M.F.; Theodoridis, A.; Boscos, C.M.; Parrilla, I. Effect of astaxanthin in extenders on sperm quality and functional variables of frozen-thawed boar semen. Anim. Reprod. Sci. 2020, 218, 106478. [Google Scholar] [CrossRef] [PubMed]
- Qamar, A.Y.; Fang, X.; Bang, S.; Shin, S.T.; Cho, J. The effect of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod. Domest. Anim. 2020, 55, 1163–1171. [Google Scholar] [CrossRef]
- Lee, E.; Kim, D. Effects of Astaxanthin on Miniature Pig Sperm Cryopreservation. Biomed. Res. Int. 2018, 2018, 6784591. [Google Scholar] [CrossRef]
- Abdi-Benemar, H.; Khalili, B.; Zamiri, M.J.; Ezazi, H.; Ardabili, G.S.; Moghadam, S.H.; Simanoor, N. Effects of astaxanthin supplementation on the freezability, lipid peroxidation, antioxidant enzyme activities and post-thawing fertility of ram semen. Small Rumin. Res. 2020, 192, 106213. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Fan, X.; Lv, Y.; Zheng, Y.; Hoque, S.; Wu, D.; Zeng, W. Resveratrol Improves Boar Sperm Quality via 5AMP-Activated Protein Kinase Activation during Cryopreservation. Oxidative Med. Cell. Longev. 2019, 2019, 5921503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longobardi, V.; Zullo, G.; Salzano, A.; De Canditiis, C.; Cammarano, A.; De Luise, L.; Puzio, M.V.; Neglia, G.; Gasparrini, B. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Qamar, A.Y.; Tanga, B.M.; Fang, X.; Cho, J. Resveratrol supplementation into extender protects against cryodamage in dog post-thaw sperm. J. Vet. Med. Sci. 2021, 21-0125. [Google Scholar] [CrossRef]
- Nouri, H.; Shojaeian, K.; Samadian, F.; Lee, S.; Kohram, H.; Lee, J.I. Using Resveratrol and Epigallocatechin-3-Gallate to Improve Cryopreservation of Stallion Spermatozoa With Low Quality. J. Equine Vet. Sci. 2018, 70, 18–25. [Google Scholar] [CrossRef]
- Garcez, M.E.; dos Santos Branco, C.; Lara, L.V.; Pasqualotto, F.F.; Salvador, M. Effects of resveratrol supplementation on cryopreservation medium of human semen. Fertil. Steril. 2010, 94, 2118–2121. [Google Scholar] [CrossRef]
- Avdatek, F.; Yeni, D.; Inanc, M.E.; Cil, B.; Tuncer, B.P.; Turkmen, R.; Tasdemir, U. Supplementation of quercetin for advanced DNA integrity in bull semen cryopreservation. Andrologia 2018, 50, e12975. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Sakurai, D.; Yoshihara, T.; Tsuchida, M.; Harakawa, S.; Suzuki, H. Effect of quercetin on the motility of cryopreserved canine spermatozoa. Cryobiology 2020, 96, 50–54. [Google Scholar] [CrossRef]
- Seifi-Jamadi, A.; Kohram, H.; Shahneh, A.Z.; Ansari, M.; Macias-Garcia, B. Quercetin Ameliorate Motility in Frozen-Thawed Turkmen Stallions Sperm. J. Equine Vet. Sci. 2016, 45, 73–77. [Google Scholar] [CrossRef]
- Zribi, N.; Chakroun, N.F.; Ben Abdallah, F.; Elleuch, H.; Sellami, A.; Gargouri, J.; Rebai, T.; Fakhfakh, F.; Keskes, L.A. Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 2012, 65, 326–331. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Fang, X.; Kim, M.J.; Cho, J. Myoinositol Supplementation of Freezing Medium Improves the Quality-Related Parameters of Dog Sperm. Animals 2019, 9, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Affonso, F.J.; Carvalho, H.F.; Lanconi, R.; Lemes, K.M.; Leite, T.G.; Oliveira, L.Z.; Celeghini, E.C.C.; de Arruda, R.P. Addition of Antioxidants Myoinositol, Ferulic Acid, and Melatonin and Their Effects on Sperm Motility, Membrane Integrity, and Reactive Oxygen Species Production in Cooled Equine Semen. J. Equine Vet. Sci. 2017, 59, 57–63. [Google Scholar] [CrossRef]
- Condorelli, R.A.; La Vignera, S.; Bellanca, S.; Vicari, E.; Calogero, A.E.J.U. Myoinositol: Does it improve sperm mitochondrial function and sperm motility? Urology 2012, 79, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Condorelli, R.A.; La Vignera, S.; Di Bari, F.; Unfer, V.; Calogero, A.E. Effects of myoinositol on sperm mitochondrial function in-vitro. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 129–134. [Google Scholar]
- Mohammadi, F.; Varanloo, N.; Heydari Nasrabadi, M.; Vatannejad, A.; Amjadi, F.S.; Javedani Masroor, M.; Bajelan, L.; Mehdizadeh, M.; Aflatoonian, R.; Zandieh, Z. Supplementation of sperm freezing medium with myoinositol improve human sperm parameters and protects it against DNA fragmentation and apoptosis. Cell Tissue Bank 2019, 20, 77–86. [Google Scholar] [CrossRef]
- Saleh, R.; Assaf, H.; Abd El Maged, W.M.; Elsuity, M.; Fawzy, M. Increased cryo-survival rate in ejaculated human sperm from infertile men following pre-freeze in vitro myo-inositol supplementation. Clin. Exp. Reprod. Med. 2018, 45, 177–182. [Google Scholar] [CrossRef]
- Kulaksız, R.; Bucak, M.N.; Akçay, E.; Sakin, F.; Daşkın, A.; Ateşşahin, A. The Effects of Different Extenders and Myo-Inositol on Post-thaw Quality of Ram Semen. Kafkas Univ. Vet. Fak. Derg. 2011, 17, 217–222. [Google Scholar]
- Chanapiwat, P.; Kaeoket, K.J.A.S.J. The effect of C urcuma longa extracted (curcumin) on the quality of cryopreserved boar semen. Anim. Sci. J. 2015, 86, 863–868. [Google Scholar]
- Bucak, M.N.; Baspinar, N.; Tuncer, P.B.; Coyan, K.; Sariozkan, S.; Akalin, P.P.; Buyukleblebici, S.; Kucukgunay, S. Effects of curcumin and dithioerythritol on frozen-thawed bovine semen. Andrologia 2012, 44 (Suppl. 1), 102–109. [Google Scholar] [CrossRef] [PubMed]
- Aparnak, P.; Saberivand, A. Effects of curcumin on canine semen parameters and expression of NOX5 gene in cryopreserved spermatozoa. In Veterinary Research Forum; Urmia University: Urmia, Iran, 2019; p. 221. [Google Scholar]
- Santonastaso, M.; Mottola, F.; Iovine, C.; Colacurci, N.; Rocco, L. Protective Effects of Curcumin on the Outcome of Cryopreservation in Human Sperm. Reprod. Sci. 2021, 1–11. [Google Scholar] [CrossRef]
- Chuawongboon, P.; Sirisathien, S.; Pongpeng, J.; Sakhong, D.; Nagai, T.; Vongpralub, T. Effects of supplementation of iodixanol to semen extender on quality and fertilization ability of frozen-thawed Thai native bull sperm. Anim. Sci. J. 2017, 88, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Saragusty, J.; Gacitua, H.; Rozenboim, I.; Arav, A. Protective effects of iodixanol during bovine sperm cryopreservation. Theriogenology 2009, 71, 1425–1432. [Google Scholar] [CrossRef]
- Swami, D.S.; Kumar, P.; Malik, R.K.; Saini, M.; Kumar, D.; Jan, M.H. The cryoprotective effect of iodixanol in buffalo semen cryopreservation. Anim. Reprod. Sci. 2017, 179, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Abdillah, D.A.; Setyawan, E.M.N.; Oh, H.J.; Ra, K.; Lee, S.H.; Kim, M.J.; Lee, B.C. Iodixanol supplementation during sperm cryopreservation improves protamine level and reduces reactive oxygen species of canine sperm. J. Vet. Sci. 2019, 20, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Beehan, D.P. The Effects of Iodixanol Present during Equine Semen Cryopreservation. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2012. [Google Scholar]
- Kim, S.; Hooper, S.; Agca, C.; Agca, Y. Post-thaw ATP supplementation enhances cryoprotective effect of iodixanol in rat spermatozoa. Reprod. Biol. Endocrinol. 2016, 14, 5. [Google Scholar] [CrossRef] [Green Version]
- Cirit, U.; Bagis, H.; Demir, K.; Agca, C.; Pabuccuoglu, S.; Varisli, O.; Clifford-Rathert, C.; Agca, Y. Comparison of cryoprotective effects of iodixanol, trehalose and cysteamine on ram semen. Anim. Reprod. Sci. 2013, 139, 38–44. [Google Scholar] [CrossRef]
- Ozmen, M.F.; Cirit, U.; Arici, R.; Demir, K.; Kurt, D.; Pabuccuoglu, S.; Ak, K. Evaluation of synergic effects of iodixanol and trehalose on cryosurvival of electroejaculated ram semen. Andrologia 2020, 52, e13656. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R.A.; Atreja, S.K. Effect of L-Arginine and spermine-NONOate on motility, viability, membrane integrity and lipid peroxidation of Murrah buffalo (Bubalus bubalis) spermatozoa. Livest. Sci. 2013, 153, 147–153. [Google Scholar] [CrossRef]
- Setyawan, E.M.N.; Kim, M.J.; Oh, H.J.; Kim, G.A.; Jo, Y.K.; Lee, S.H.; Choi, Y.B.; Lee, B.C. Spermine reduces reactive oxygen species levels and decreases cryocapacitation in canine sperm cryopreservation. Biochem. Biophys. Res. Commun. 2016, 479, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Olğaç, K.T.; Akçay, E. Effects of Spermine and Spermidine supplemented extenders on post-thaw Spermatological Parameters in Stallion Semen Cryopreservation. Cryobiology 2021, 100, 72–76. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Fang, X.; Bang, S.; Kim, M.J.; Cho, J. Effects of kinetin supplementation on the post-thaw motility, viability, and structural integrity of dog sperm. Cryobiology 2020, 95, 90–96. [Google Scholar] [CrossRef]
- Hashem, E.Z.; Eslami, M. Kinetin improves motility, viability and antioxidative parameters of ram semen during storage at refrigerator temperature. Cell Tissue Bank. 2018, 19, 97–111. [Google Scholar] [CrossRef]
- Inyawilert, W.; Rungruangsak, J.; Liao, Y.J.; Tang, P.C.; Paungsukpaibool, V. Melatonin supplementation improved cryopreserved Thai swamp buffalo semen. Reprod. Domest. Anim. 2021, 56, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, I.; Kohram, H.; Ardabili, F.F. Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. Anim. Reprod. Sci. 2013, 139, 25–30. [Google Scholar] [CrossRef] [PubMed]
- ChaithraShree, A.R.; Ingole, S.D.; Dighe, V.D.; Nagvekar, A.S.; Bharucha, S.V.; Dagli, N.R.; Kekan, P.M.; Kharde, S.D. Effect of melatonin on bovine sperm characteristics and ultrastructure changes following cryopreservation. Vet. Med. Sci. 2020, 6, 177–186. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, J.A.; Carbajal, F.J.; Martinez-De-Anda, R.; Alcantar-Rodriguez, A.; Medrano, A. Melatonin added to freezing diluent improves canine (Bulldog) sperm cryosurvival. J. Reprod. 2020, 1, 11–19. [Google Scholar] [CrossRef]
- Mehaisen, G.M.K.; Partyka, A.; Ligocka, Z.; Nizanski, W. Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Anim. Reprod. Sci. 2020, 212, 106238. [Google Scholar] [CrossRef]
- Lanconi, R.; Celeghini, E.C.C.; Alves, M.B.R.; Lemes, K.M.; Gonella-Diaza, A.M.; Oliveira, L.Z.; de Arruda, R.P. Melatonin Added to Cryopreservation Extenders Improves the Mitochondrial Membrane Potential of Postthawed Equine Sperm. J. Equine Vet. Sci. 2018, 69, 78–83. [Google Scholar] [CrossRef]
- Balao da Silva, C.M.; Macías-García, B.; Miró-Morán, A.; González-Fernández, L.; Morillo-Rodriguez, A.; Ortega-Ferrusola, C.; Gallardo-Bolaños, J.M.; Stilwell, G.; Tapia, J.A.; Peña, F. Melatonin reduces lipid peroxidation and apoptotic-like changes in stallion spermatozoa. J. Pineal Res. 2011, 51, 172–179. [Google Scholar] [CrossRef]
- El-Battawy, K. Preservation of goat semen at 5 C with emphasis on its freezability and the impact of melatonin. Int. J. Vet. Sci. Res. 2019, 5, 035–038. [Google Scholar] [CrossRef] [Green Version]
- Najafi, A.; Adutwum, E.; Yari, A.; Salehi, E.; Mikaeili, S.; Dashtestani, F.; Abolhassani, F.; Rashki, L.; Shiasi, S.; Asadi, E. Melatonin affects membrane integrity, intracellular reactive oxygen species, caspase3 activity and AKT phosphorylation in frozen thawed human sperm. Cell Tissue Res. 2018, 372, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Karimfar, M.H.; Niazvand, F.; Haghani, K.; Ghafourian, S.; Shirazi, R.; Bakhtiyari, S. The protective effects of melatonin against cryopreservation-induced oxidative stress in human sperm. Int. J. Immunopathol. Pharmacol. 2015, 28, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.L.; Sun, T.C.; Yu, K.; Wang, Z.P.; Zhang, B.L.; Zhang, Y.; Wang, X.X.; Lian, Z.X.; Liu, Y.X. Melatonin reduces oxidative damage and upregulates heat shock protein 90 expression in cryopreserved human semen. Free Radic. Biol. Med. 2017, 113, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.J.; Zhang, Y.; Jia, G.X.; Meng, Q.G.; Bunch, T.D.; Liu, G.S.; Zhu, S.E.; Xhou, G.B. Effect of melatonin supplementation on cryopreserved sperm quality in mouse. Cryo Lett. 2016, 37, 115–122. [Google Scholar]
- Zhu, Z.; Li, R.; Lv, Y.; Zeng, W. Melatonin protects rabbit spermatozoa from cryo-damage via decreasing oxidative stress. Cryobiology 2019, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Succu, S.; Berlinguer, F.; Pasciu, V.; Satta, V.; Leoni, G.G.; Naitana, S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J. Pineal Res. 2011, 50, 310–318. [Google Scholar] [CrossRef]
- Grandhaye, J.; Partyka, A.; Ligocka, Z.; Dudek, A.; Nizanski, W.; Jeanpierre, E.; Estienne, A.; Froment, P. Metformin Improves Quality of Post-Thaw Canine Semen. Animals 2020, 10, 287. [Google Scholar] [CrossRef] [Green Version]
- Bertoldo, M.J.; Guibert, E.; Tartarin, P.; Guillory, V.; Froment, P. Effect of metformin on the fertilizing ability of mouse spermatozoa. Cryobiology 2014, 68, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Shakouri, N.; Soleimanzadeh, A.; Rakhshanpour, A.; Bucak, M.N. Antioxidant effects of supplementation of 3,4-dihydroxyphenyl glycol on sperm parameters and oxidative markers following cryopreservation in canine semen. Reprod. Domest. Anim. 2021. [Google Scholar] [CrossRef] [PubMed]
- Arando, A.; Delgado, J.V.; Fernandez-Prior, A.; Leon, J.M.; Bermudez-Oria, A.; Nogales, S.; Perez-Marin, C.C. Effect of different olive oil-derived antioxidants (hydroxytyrosol and 3,4-dihydroxyphenylglycol) on the quality of frozen-thawed ram sperm. Cryobiology 2019, 86, 33–39. [Google Scholar] [CrossRef]
- Naguib, Y.M. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000, 48, 1150–1154. [Google Scholar] [CrossRef]
- Bennedsen, M.; Wang, X.; Willén, R.; Wadström, T.; Andersen, L.P. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol. Lett. 2000, 70, 185–189. [Google Scholar] [CrossRef]
- Foo, Y.Z.; Rhodes, G.; Simmons, L.W. The carotenoid beta-carotene enhances facial color, attractiveness and perceived health, but not actual health, in humans. Behav. Ecol. 2017, 28, 570–578. [Google Scholar] [CrossRef]
- Almbro, M.; Dowling, D.K.; Simmons, L.W. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol. Lett. 2011, 14, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Tizkar, B.; Kazemi, R.; Alipour, A.; Seidavi, A.; Naseralavi, G.; Ponce-Palafox, J.T. Effects of dietary supplementation with astaxanthin and β-carotene on the semen quality of goldfish (Carassius auratus). Theriogenology 2015, 84, 1111–1117. [Google Scholar] [CrossRef]
- Bahmanzadeh, M.; Vahidinia, A.; Mehdinejadiani, S.; Shokri, S.; Alizadeh, Z. Dietary supplementation with astaxanthin may ameliorate sperm parameters and DNA integrity in streptozotocin-induced diabetic rats. Clin. Exp. Reprod. Med. 2016, 43, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keogh, L.M.; Byrne, P.G.; Silla, A.J. Effect of long-term dietary beta-carotene supplementation on sperm concentration and motility in an endangered amphibian. Anim. Reprod. Sci. 2018, 195, 259–265. [Google Scholar] [CrossRef]
- King, R.E.; Bomser, J.A.; Min, D.B. Bioactivity of resveratrol. Compr. Rev. Food Sci. Food Saf. 2006, 5, 65–70. [Google Scholar] [CrossRef]
- Erenpreiss, J.; Spano, M.; Erenpreisa, J.; Bungum, M.; Giwercman, A. Sperm chromatin structure and male fertility: Biological and clinical aspects. Asian J. Androl. 2006, 8, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Ay, M.; Charli, A.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Quercetin. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 749–755. [Google Scholar]
- Korosi, T.; Barta, C.; Rokob, K.; Torok, T. Physiological Intra-Cytoplasmic Sperm Injection (PICSI) outcomes after oral pretreatment and semen incubation with myo-inositol in oligoasthenoteratozoospermic men: Results from a prospective, randomized controlled trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 66–72. [Google Scholar]
- Palmieri, M.; Papale, P.; Della Ragione, A.; Quaranta, G.; Russo, G.; Russo, S. In Vitro Antioxidant Treatment of Semen Samples in Assisted Reproductive Technology: Effects of Myo-Inositol on Nemaspermic Parameters. Int. J. Endocrinol. 2016, 2016, 2839041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevilacqua, A.; Carlomagno, G.; Gerli, S.; Montanino Oliva, M.; Devroey, P.; Lanzone, A.; Soulange, C.; Facchinetti, F.; Carlo Di Renzo, G.; Bizzarri, M.J.G.E. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology–assisted reproduction technology. Gynecol. Endocrinol. 2015, 31, 441–446. [Google Scholar] [CrossRef]
- Chauvin, T.R.; Griswold, M.D. Characterization of the expression and regulation of genes necessary for myo-inositol biosynthesis and transport in the seminiferous epithelium. Biol. Reprod. 2004, 70, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, X.; Wang, Z.; Wang, D. Is transcription in sperm stationary or dynamic? J. Reprod. Dev. 2017, 2016–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef] [PubMed]
- Banfi, B.; Molnar, G.; Maturana, A.; Steger, K.; Hegedus, B.; Demaurex, N.; Krause, K.H. A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 2001, 276, 37594–37601. [Google Scholar] [CrossRef] [Green Version]
- Spencer, C.M.; Goa, K.L. Iodixanol. A review of its pharmacodynamic and pharmacokinetic properties and diagnostic use as an x-ray contrast medium. Drugs 1996, 52, 899–927. [Google Scholar] [CrossRef]
- Kjeken, R.; Mousavi, S.A.; Brech, A.; Gjoen, T.; Berg, T. Fluid phase endocytosis of [I-125]iodixanol in rat liver parenchymal, endothelial and Kupffer cells. Cell Tissue Res. 2001, 304, 221–230. [Google Scholar] [CrossRef]
- Stuhtmann, G.; Oldenhof, H.; Peters, P.; Klewitz, J.; Martinsson, G.; Sieme, H. Iodixanol density gradient centrifugation for selecting stallion sperm for cold storage and cryopreservation. Anim. Reprod. Sci. 2012, 133, 184–190. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, H.; Kvist, U.; Ernerudh, J.; Sanz, L.; Calvete, J.J. Seminal plasma proteins: What role do they play? Am. J. Reprod. Immunol. 2011, 66, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Pegg, A.E. The function of spermine. IUBMB Life 2014, 66, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Stănescu, M.; Bîrţoiu, A.I. Comparative Studies of Canine Semen Freezing Protocols; Bulletin of University: Cook County, IL, USA, 2010. [Google Scholar] [CrossRef]
- Mann, T.; Lutwak-Mann, C. Male Reproductive Function and Semen: Themes and Trends in Physiology, Biochemistry and Investigative Andrology; Springer Science & Business Media: London, UK, 2012. [Google Scholar] [CrossRef]
- Barciszewski, J.; Massino, F.; Clark, B.F. Kinetin—A multiactive molecule. J. Int. J. Biol. Macromol. 2007, 40, 182–192. [Google Scholar] [CrossRef]
- Won, C.; Park, S.K.; Cho, S.G.; Min, B.M.; Roh, S. Kinetin enhances in vitro development of parthenogenetic and nuclear transfer porcine embryos. Mol. Reprod. Dev. 2008, 75, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Hacışevki, A.; Baba, B. An overview of melatonin as an antioxidant molecule: A biochemical approach. J. Melatonin Mol. Biol. Clin. Pharm. Approaches 2018, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Marshall, K.A.; Reiter, R.J.; Poeggeler, B.; Aruoma, O.I.; Halliwell, B. Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol. Med. 1996, 21, 307–315. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; He, Y.; Jia, L.; Yang, C.S.; Reiter, R.J.; Zhang, J. Antioxidant and Pro-Oxidant Activities of Melatonin in the Presence of Copper and Polyphenols In Vitro and In Vivo. Cells 2019, 8, 903. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.M.; Wang, N.; Hao, H.S.; Li, C.Y.; Zhao, Y.H.; Yan, C.L.; Wang, H.Y.; Du, W.H.; Wang, D.; Liu, Y.; et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J. Pineal Res. 2018, 64, e12445. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.H.; Ridlo, M.R.; Lee, B.C.; Kim, G.A. Melatonin-Nrf2 Signaling Activates Peroxisomal Activities in Porcine Cumulus Cell-Oocyte Complexes. Antioxidants 2020, 9, 1080. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, H.; Wang, X.; Haire, A.; Zhang, X.; Zhang, J.; Wu, Y.; Lian, Z.; Fu, J.; Liu, G.; et al. Melatonin improves the efficiency of super-ovulation and timed artificial insemination in sheep. PeerJ 2019, 7, e6750. [Google Scholar] [CrossRef]
- Medrano, A.; Contreras, C.F.B.; Herrera, F.M.; Alcantar-Rodriguez, A.M. Melatonin as an antioxidant preserving sperm from domestic animals. J. Asian Pacific J. Reprod. 2017, 6, 241. [Google Scholar] [CrossRef]
- Cebrián-Pérez, J.A.; Casao, A.; González-Arto, M.; dos Santos Hamilton, T.; Pérez-Pé, R.; Muiño-Blanco, T. Melatonin in sperm biology: Breaking paradigms. J. Reprod. Domest. Anim. 2014, 49, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Luboshitzky, R.; Shen-Orr, Z.; Nave, R.; Lavi, S.; Lavie, P. Melatonin administration alters semen quality in healthy men. J. Androl. 2002, 23, 572–578. [Google Scholar] [PubMed]
- Fang, Y.; Zhao, C.; Xiang, H.; Zhao, X.; Zhong, R. Melatonin Inhibits Formation of Mitochondrial Permeability Transition Pores and Improves Oxidative Phosphorylation of Frozen-Thawed Ram Sperm. Front. Endocrinol. 2019, 10, 896. [Google Scholar] [CrossRef] [Green Version]
- Pezo, F.; Zambrano, F.; Uribe, P.; Moya, C.; de Andrade, A.F.C.; Risopatron, J.; Yeste, M.; Burgos, R.A.; Sanchez, R. Oxidative and nitrosative stress in frozen-thawed pig spermatozoa. I: Protective effect of melatonin and butylhydroxytoluene on sperm function. Res. Vet. Sci. 2021, 136, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Puyt, J.D.; Faliu, L.; Keck, G.; Gedfrain, J.C.; Pinault, L.; Tainturier, D. Fatal poisoning of sheep by Galega officinalis (French honeysuckle). Vet. Hum. Toxicol. 1981, 23, 410–412. [Google Scholar]
- Keeler, R.F.; Baker, D.C.; Evans, J.O. Individual animal susceptibility and its relationship to induced adaptation or tolerance in sheep to Galega officinalis L. Vet. Hum. Toxicol. 1988, 30, 420–423. [Google Scholar]
- Rasekh, H.R.; Nazari, P.; Kamli-Nejad, M.; Hosseinzadeh, L. Acute and subchronic oral toxicity of Galega officinalis in rats. J. Ethnopharmacol. 2008, 116, 21–26. [Google Scholar] [CrossRef]
- Bailey, C.J.; Day, C. Metformin: Its botanical background. J. Pract. Diabetes Int. 2004, 21, 115–117. [Google Scholar] [CrossRef]
- Dowling, R.J.O.; Goodwin, P.J.; Stambolic, V. Understanding the benefit of metformin use in cancer treatment. BMC Med. 2011, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faure, M.; Bertoldo, M.J.; Khoueiry, R.; Bongrani, A.; Brion, F.; Giulivi, C.; Dupont, J.; Froment, P. Metformin in Reproductive Biology. Front. Endocrinol. 2018, 9, 675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, G.; Rodriguez, R.; Fernandez-Bolanos, J.; Guillen, R.; Jimenez, A. Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenyl glycol from olive oil waste. Eur. Food Res. Technol. 2007, 224, 733–741. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Pillet, E.; Duchamp, G.; Batellier, F.; Beaumal, V.; Anton, M.; Desherces, S.; Schmitt, E.; Magistrini, M. Egg yolk plasma can replace egg yolk in stallion freezing extenders. Theriogenology 2011, 75, 105–114. [Google Scholar] [CrossRef]
- Dalal, J.; Chandolia, R.K.; Pawaria, S.; Kumar, A.; Kumar, D.; Selokar, N.L.; Andonissamy, J.; Yadav, P.S.; Kumar, P. Low-density lipoproteins protect sperm during cryopreservation in buffalo: Unraveling mechanism of action. Mol. Reprod. Dev. 2020, 87, 1231–1244. [Google Scholar] [CrossRef]
- Peruma, P. Low density lipoprotein in cryopreservation of semen. J. Asian Pacific J. Reprod. 2018, 7, 103. [Google Scholar] [CrossRef]
- Bergeron, A.; Manjunath, P. New insights towards understanding the mechanisms of sperm protection by egg yolk and milk. Mol. Reprod. Dev. 2006, 73, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, N.; Di Iorio, M.; Rosato, M.P.; Manchisi, A. Cryopreservation of rabbit semen using non-permeable cryoprotectants: Effectiveness of different concentrations of low-density lipoproteins (LDL) from egg yolk versus egg yolk or sucrose. Anim. Reprod. Sci. 2014, 151, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Shahverdi, A.; Sharafi, M.; Gourabi, H.; Yekta, A.A.; Esmaeili, V.; Sharbatoghli, M.; Janzamin, E.; Hajnasrollahi, M.; Mostafayi, F. Fertility and flow cytometric evaluations of frozen-thawed rooster semen in cryopreservation medium containing low-density lipoprotein. Theriogenology 2015, 83, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Moustacas, V.; Zaffalon, F.; Lagares, M.; Loaiza-Eccheverri, A.; Varago, F.; Neves, M.; Heneine, L.; Arruda, R.; Henry, M.J.T. Natural, but not lyophilized, low density lypoproteins were an acceptable alternative to egg yolk for cryopreservation of ram semen. Theriogenology 2011, 75, 300–307. [Google Scholar] [CrossRef]
- Corcini, C.D.; Goularte, K.L.; Bongalhardo, D.C.; Lucia, T., Jr.; Jardim, R.D.; Varela Junior, A.S. Effect of egg yolk plasma on dog sperm cryopreservation. Andrologia 2016, 48, 114–115. [Google Scholar] [CrossRef]
- Belala, R.; Briand-Amirat, L.; Martinot, A.; Thorin, C.; Michaud, S.; Desherces, S.; Youngs, C.R.; Bencharif, D. A comparison of liquid and lyophilized egg yolk plasma to low density lipoproteins for freezing of canine spermatozoa. Reprod. Domest. Anim. 2019, 54, 1131–1138. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Wang, T. Soybean lecithin fractionation and functionality. J. Am. Oil Chem Soc. 2003, 80, 319–326. [Google Scholar] [CrossRef]
- List, G. Soybean lecithin: Food, industrial uses, and other applications. J. Polar Lipids 2015, 1–33. [Google Scholar] [CrossRef]
- Gil, J.; Rodriguez-Irazoqui, M.; Lundeheim, N.; Söderquist, L.; Rodríguez-Martínez, H. Fertility of ram semen frozen in Bioexcell® and used for cervical artificial insemination. Theriogenology 2003, 59, 1157–1170. [Google Scholar] [CrossRef]
- Fukui, Y.; Kohno, H.; Togari, T.; Hiwasa, M.; Okabe, K. Fertility after artificial insemination using a soybean-based semen extender in sheep. J. Reprod. Dev. 2008, 54, 286–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouzanfar, M.; Sharafi, M.; Hosseini, S.M.; Ostadhosseini, S.; Hajian, M.; Hosseini, L.; Abedi, P.; Nili, N.; Rahmani, H.R.; Nasr-Esfahani, M.H. In vitro comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of ram semen. Theriogenology 2010, 73, 480–487. [Google Scholar] [CrossRef]
- Aires, V.A.; Hinsch, K.D.; Mueller-Schloesser, F.; Bogner, K.; Mueller-Schloesser, S.; Hinsch, E. In vitro and in vivo comparison of egg yolk-based and soybean lecithin-based extenders for cryopreservation of bovine semen. Theriogenology 2003, 60, 269–279. [Google Scholar] [CrossRef]
- Papa, F.O.; Felicio, G.B.; Melo-Ona, C.M.; Alvarenga, M.A.; De Vita, B.; Trinque, C.; Puoli-Filho, J.N.; Dell’Aqua, J.A., Jr. Replacing egg yolk with soybean lecithin in the cryopreservation of stallion semen. Anim. Reprod. Sci. 2011, 129, 73–77. [Google Scholar] [CrossRef]
- Zhang, S.S.; Hu, J.H.; Li, Q.W.; Jiang, Z.L.; Zhang, X.Y. The cryoprotective effects of soybean lecithin on boar spermatozoa quality. Afr. J. Biotechnol. 2009, 8, 6476–6480. [Google Scholar]
- Jeyendran, R.S.; Acosta, V.C.; Land, S.; Coulam, C.B. Cryopreservation of human sperm in a lecithin-supplemented freezing medium. Fertil. Steril. 2008, 90, 1263–1265. [Google Scholar] [CrossRef]
- Emamverdi, M.; Zhandi, M.; Zare Shahneh, A.; Sharafi, M.; Akbari-Sharif, A. Optimization of Ram semen cryopreservation using a chemically defined soybean lecithin-based extender. Reprod. Domest. Anim. 2013, 48, 899–904. [Google Scholar] [CrossRef]
- Axner, E.; Lagerson, E. Cryopreservation of Dog Semen in a Tris Extender with 1% or 2% Soya Bean Lecithin as a Replacement of Egg Yolk. Reprod. Domest. Anim. 2016, 51, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Hermansson, U.; Johannisson, A.; Axner, E. Cryopreservation of dog semen in a Tris extender with two different 1% soybean preparations compared with a Tris egg yolk extender. Vet. Med. Sci. 2021, 7, 812–819. [Google Scholar] [CrossRef]
- Beccaglia, M.; Anastasi, P.; Luvoni, G.C. Freezing of canine semen in an animal-free protein extender. Vet. Res. Commun. 2009, 33 (Suppl. 1), 77–80. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, W.; Wu, C.; Zhang, S.; Dai, J.; Zhang, D. Effect of substituting different concentrations of soybean lecithin and egg yolk in tris-based extender on goat semen cryopreservation. Cryobiology 2020, 92, 146–150. [Google Scholar] [CrossRef]
- Vidal, A.H.; Batista, A.M.; da Silva, E.C.B.; Gomes, W.A.; Pelinca, M.A.; Silva, S.V.; Guerra, M.M.P. Soybean lecithin-based extender as an alternative for goat sperm cryopreservation. Small Ruminant. Res. 2013, 109, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Lucio, C.F.; Regazzi, F.M.; Silva, L.C.G.; Angrimani, D.S.R.; Nichi, M.; Vannucchi, C.I. Oxidative stress at different stages of two-step semen cryopreservation procedures in dogs. Theriogenology 2016, 85, 1568–1575. [Google Scholar] [CrossRef]
- Nakagata, N. Cryopreservation of mouse spermatozoa. Mamm. Genome 2000, 11, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Dorado, J.; Rodriguez, I.; Hidalgo, M. Cryopreservation of goat spermatozoa: Comparison of two freezing extenders based on post-thaw sperm quality and fertility rates after artificial insemination. Theriogenology 2007, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, P. New insights into the understanding of the mechanism of sperm protection by extender components. Animal Reproduction 2018, 9, 809–815. [Google Scholar]
- Abe, Y.; Lee, D.S.; Sano, H.; Akiyama, K.; Yanagimoto-Ueta, Y.; Asano, T.; Suwa, Y.; Suzuki, H. Artificial insemination with canine spermatozoa frozen in a skim milk/glucose-based extender. J. Reprod. Dev. 2008, 54, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Knight, C.A.; Wen, D.; Laursen, R.A. Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 1995, 32, 23–34. [Google Scholar] [CrossRef]
- Nabeel, A.H.T.; Jeon, Y.; Yu, I.J. Use of polyvinyl alcohol as a chemically defined compound in egg yolk-free extender for dog sperm cryopreservation. Reprod. Domest. Anim. 2019, 54, 1449–1458. [Google Scholar] [CrossRef]
- Fan, X.L.; Zhang, Y.; Li, X.; Fu, Q.L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol. Life Sci. 2020, 77, 2771–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sensebe, L.; Krampera, M.; Schrezenmeier, H.; Bourin, P.; Giordano, R. Mesenchymal stem cells for clinical application. Vox Sang. 2010, 98, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Doorn, J.; Moll, G.; Le Blanc, K.; van Blitterswijk, C.; de Boer, J. Therapeutic applications of mesenchymal stromal cells: Paracrine effects and potential improvements. Tissue Eng. Part B Rev. 2012, 18, 101–115. [Google Scholar] [CrossRef]
- Chen, J.; Crawford, R.; Chen, C.; Xiao, Y. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng. Part B Rev. 2013, 19, 516–528. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, H.; Xu, W.; Wang, B.; Wu, H.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; Yan, Y.; et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013, 4, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazeli, Z.; Abedindo, A.; Omrani, M.D.; Ghaderian, S.M.H. Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: A Systematic Review. Stem Cell Rev. Rep. 2018, 14, 1–12. [Google Scholar] [CrossRef]
- Cakici, C.; Buyrukcu, B.; Duruksu, G.; Haliloglu, A.H.; Aksoy, A.; Isik, A.; Uludag, O.; Ustun, H.; Subasi, C.; Karaoz, E. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. Biomed. Res. Int. 2013, 2013, 529589. [Google Scholar] [CrossRef]
- Malard, P.F.; Peixer, M.A.S.; Grazia, J.G.; Brunel, H.; Feres, L.F.; Villarroel, C.L.; Siqueira, L.G.B.; Dode, M.A.N.; Pogue, R.; Viana, J.H.M.; et al. Intraovarian injection of mesenchymal stem cells improves oocyte yield and in vitro embryo production in a bovine model of fertility loss. Sci. Rep. 2020, 10, 8018. [Google Scholar] [CrossRef]
- Liu, C.H.; Yin, H.Q.; Jiang, H.; Du, X.; Wang, C.L.; Liu, Y.C.; Li, Y.; Yang, Z.L. Extracellular Vesicles Derived from Mesenchymal Stem Cells Recover Fertility of Premature Ovarian Insufficiency Mice and the Effects on their Offspring. Cell Transplant. 2020, 29, 0963689720923575. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, M.; Giudice, M.G.; Del Vento, F.; Wyns, C. Role of stem cells in fertility preservation: Current insights. Stem Cells Cloning 2019, 12, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.Y.; Fang, X.; Kim, M.J.; Cho, J. Improved Post-Thaw Quality of Canine Semen after Treatment with Exosomes from Conditioned Medium of Adipose-Derived Mesenchymal Stem Cells. Animals 2019, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.Y.; Fang, X.; Kim, M.J.; Cho, J. Improved viability and fertility of frozen-thawed dog sperm using adipose-derived mesenchymal stem cells. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mahiddine, F.Y.; Qamar, A.Y.; Kim, M.J. Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium. J. Anim. Reprod. Biotechnol. 2020, 35, 268–272. [Google Scholar] [CrossRef]
- Mahiddine, F.Y.; Kim, J.W.; Qamar, A.Y.; Ra, J.C.; Kim, S.H.; Jung, E.J.; Kim, M.J. Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals 2020, 10, 1899. [Google Scholar] [CrossRef]
- Mokarizadeh, A.; Rezvanfar, M.A.; Dorostkar, K.; Abdollahi, M. Mesenchymal stem cell derived microvesicles: Trophic shuttles for enhancement of sperm quality parameters. Reprod. Toxicol. 2013, 42, 78–84. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Nazarian, H.; Ghaffari Novin, M.; Shams Mofarahe, Z.; Eini, F.; Piryaei, A. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell-conditioned media. J. Cell. Biochem. 2018, 119, 10365–10375. [Google Scholar] [CrossRef]
- Ling, B.; Feng, D.Q.; Zhou, Y.; Gao, T.; Wei, H.M.; Tian, Z.G. Effect of conditioned medium of mesenchymal stem cells on the in vitro maturation and subsequent development of mouse oocyte. Braz. J. Med. Biol. Res. 2008, 41, 978–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiasi, M.; Fazaely, H.; Asaii, E.; Sheykhhasan, M.J.V. In Vitro Maturation of Human Oocytes using Conditioned Medium of Mesenchymal Stem Cells and Formation of Embryo by Use of ICSI. Vitro 2014, 41, 978–985. [Google Scholar]
- Maldonado, M.; Huang, T.; Chen, J.; Zhong, Y. Differentiation Potential of Human Wharton’s Jelly-Derived Mesenchymal Stem Cells and Paracrine Signaling Interaction Contribute to Improve the In Vitro Maturation of Mouse Cumulus Oocyte Complexes. Stem Cells Int. 2018, 2018, 7609284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, C.H.; Ji, A.T.; Chang, C.C.; Chien, M.H.; Lee, L.M.; Ho, J.H. Mesenchymal stem cells restore the sperm motility from testicular torsion-detorsion injury by regulation of glucose metabolism in sperm. Stem Cell Res. Ther. 2019, 10, 270. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Peng, J.; He, D.; Lin, T.; Zhu, J.; Li, X.; Zhang, Y.; Wei, G. Potential spermatogenesis recovery with bone marrow mesenchymal stem cells in an azoospermic rat model. Int. J. Mol. Sci. 2014, 15, 13151–13165. [Google Scholar] [CrossRef] [PubMed]
- Eilts, B.E. Theoretical aspects of canine semen cryopreservation. Theriogenology 2005, 64, 692–697. [Google Scholar] [CrossRef]
- Brito, M.M.; Lucio, C.F.; Angrimani, D.S.; Losano, J.D.; Dalmazzo, A.; Nichi, M.; Vannucchi, C.I. Comparison of Cryopreservation Protocols (Single and Two-steps) and Thawing (Fast and Slow) for Canine Sperm. Anim. Biotechnol. 2017, 28, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Murase, T.; Asano, M.; Tsubota, T. Effects of final dilution rate, sperm concentration and times for cooling and glycerol equilibration on post-thaw characteristics of canine spermatozoa. J. Vet. Med. Sci. 2004, 66, 1359–1364. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Schulz, K.; Heggland, I.; Aschner, M.; Syversen, T. The use of fluorescence for detecting MeHg-induced ROS in cell cultures. Toxicol. Vitr. 2008, 22, 1392–1398. [Google Scholar] [CrossRef]
- Saeki, K.; Yuo, A.; Kato, M.; Miyazono, K.; Yazaki, Y.; Takaku, F. Cell density-dependent apoptosis in HL-60 cells, which is mediated by an unknown soluble factor, is inhibited by transforming growth factor β1 and overexpression of Bcl-2. J. Biol. Chem. 1997, 272, 20003–20010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Loecker, W.; Koptelov, V.A.; Grischenko, V.I.; De Loecker, P. Effects of cell concentration on viability and metabolic activity during cryopreservation. Cryobiology 1998, 37, 103–109. [Google Scholar] [CrossRef]
- Pegg, D.E. The effect of cell concentration on the recovery of human erythrocytes after freezing and thawing in the presence of glycerol. Cryobiology 1981, 18, 221–228. [Google Scholar] [CrossRef]
- Phelps, J.; Sanati-Nezhad, A.; Ungrin, M.; Duncan, N.A.; Sen, A. Bioprocessing of Mesenchymal Stem Cells and Their Derivatives: Toward Cell-Free Therapeutics. Stem Cells Int. 2018, 2018, 9415367. [Google Scholar] [CrossRef] [Green Version]
- Rani, S.; Ryan, A.E.; Griffin, M.D.; Ritter, T. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Mol. Ther. 2015, 23, 812–823. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res. Ther. 2018, 9, 63. [Google Scholar] [CrossRef]
- Katsuda, T.; Kosaka, N.; Takeshita, F.; Ochiya, T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics 2013, 13, 1637–1653. [Google Scholar] [CrossRef] [PubMed]
- Diomede, F.; Gugliandolo, A.; Scionti, D.; Merciaro, I.; Cavalcanti, M.F.; Mazzon, E.; Trubiani, O. Biotherapeutic Effect of Gingival Stem Cells Conditioned Medium in Bone Tissue Restoration. Int. J. Mol. Sci. 2018, 19, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thery, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef]
- Cordeiro, L.; Lin, H.H.; Vitorino Carvalho, A.; Grasseau, I.; Uzbekov, R.; Blesbois, E. First insights on seminal extracellular vesicles in chickens of contrasted fertility. Reproduction 2021, 161, 489–498. [Google Scholar] [CrossRef]
- Murdica, V.; Giacomini, E.; Alteri, A.; Bartolacci, A.; Cermisoni, G.C.; Zarovni, N.; Papaleo, E.; Montorsi, F.; Salonia, A.; Viganò, P. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation. Fertil. Steril. 2019, 111, 897–908. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zeng, Z.C.; Sun, J.; Zeng, H.Y.; Huang, Y.; Zhang, Z.Y. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells. J. Radiat. Res. 2015, 56, 700–708. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Shibata, R.; Yamamoto, N.; Nishikawa, M.; Hibi, H.; Tanigawa, T.; Ueda, M.; Murohara, T.; Yamamoto, A. Dental pulp-derived stem cell conditioned medium reduces cardiac injury following ischemia-reperfusion. Sci. Rep. 2015, 5, 16295. [Google Scholar] [CrossRef] [Green Version]
- Ra, K.; Oh, H.J.; Kim, G.A.; Kang, S.K.; Ra, J.C.; Lee, B.C. High Frequency of Intravenous Injection of Human Adipose Stem Cell Conditioned Medium Improved Embryo Development of Mice in Advanced Maternal Age through Antioxidant Effects. Animals 2020, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.I.; Amorim, M.G.; Gadelha, C.; Milic, I.; Welsh, J.A.; Freitas, V.M.; Nawaz, M.; Akbar, N.; Couch, Y.; Makin, L.; et al. Technical challenges of working with extracellular vesicles. Nanoscale 2018, 10, 881–906. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, T.N.A.; Rahman, M.T.; Abdullah, B.J.J.; Abu Kasim, N.H. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J. Tissue Eng. Regen. Med. 2019, 13, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.N.; Shumilin, I.A.; Digilio, L.C.; Chertihin, O.; Zheng, H.; Schmitz, G.; Visconti, P.E.; Flickinger, C.J.; Minor, W.; Herr, J.C. Biochemical and structural characterization of apolipoprotein AI binding protein, a novel phosphoprotein with a potential role in sperm capacitation. Endocrinology 2008, 149, 2108–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardini, A.; Hozbor, F.; Sanchez, E.; Fornes, M.W.; Alberio, R.H.; Cesari, A. Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage. Theriogenology 2011, 76, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Milardi, D.; Grande, G.; Vincenzoni, F.; Messana, I.; Pontecorvi, A.; De Marinis, L.; Castagnola, M.; Marana, R. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil. Steril. 2012, 97, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Arner, E.S.J.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef]
- Gasdaska, J.R.; Berggren, M.; Powis, G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995, 6, 1643–1650. [Google Scholar]
- Uysal, O.; Bucak, M.N. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 2007, 76, 383–390. [Google Scholar] [CrossRef]
Antioxidant | Species | Dosage | Results |
---|---|---|---|
Astaxanthin | Boar | 2 μM | Protected post-thaw sperm motility, membrane and acrosome integrity. Inhibited lipid peroxidation. Regulation of membrane fatty acid composiion. Enhanced IVF efficiency and embryonic development [28]. Supplementation of 0.5 μM decreased apoptotic-like changes. Supplementation of 15 μM had a negative effect on sperm parameters [29]. |
Canine | 1 µM | Protected post-thaw sperm kinematic parameters, viability, mitochondrial activity, plasma membrane, chromatin and acrosome integrity [30]. | |
Miniature Pig | 500 µM | Protected post-thaw sperm motility and progressive motility. Reduced ROS production [31]. | |
Sheep | 2 µM, 4 µM | Protected post-thaw sperm viability and plasma membrane integrity. Decreased acrosome abnormalities and malondialdehyde formation [32]. | |
Resveratrol | Boar | 50 µM | Protected post-thaw sperm progressive motility, membrane and acrosome integrity, mitochondrial activity, activities of enzymatic antioxidants, and phosphorylation of AMPK [33]. |
Bovine | 50 μM | Protected membrane integrity and antioxidant capacity. Decreased ROS production, and capacitation-like changes. Improved in vitro fertilizing ability [34]. | |
Canine | 200 µM | Protected post-thaw sperm motility, viability, plasma membrane, acrosome and chromatin integrity, and mitochondrial activity [35]. | |
Equine | 5 μM | Protected post-thaw DNA and membrane integrity, total and progressive motility, and viability in subfertile stallions [36]. | |
Human | 0.1 mM, 1.0 mM, 10.0 mM | Prevented lipid damage in a non dose-dependent manner [37]. | |
Quercetin | Bovine | 25 μg/mL | Protected post-thaw DNA integrity. No effects on post-thaw sperm kinematic parameters, and plasma membrane integrity [38]. |
Canine | 5 μg/mL | Protected post-thaw kinematic parameters and fertility [39]. | |
Equine | 0.1 mM | Protected post-thaw total and progressive motility. Reduced oxidative stress [40] | |
Human | 50 μM | Protected post-thaw kinematic parameters, viability, and DNA integrity [41]. | |
Myoinositol | Canine | 1 mg/mL | Protected sperm motility, kinematic parameters, and membrane integrity. Reduced chromatin damage and apoptosis-like changes [42]. |
Equine | 30 mM | Amplitude of lateral head displacement increased [43]. | |
Human | 2 mg/mL | Progressive motility percentage protected in normozoospermic, oligo-astheno-teratozoospermic men. Mitochondrial function improvement in patients with impaired sperm parameters. Decreased DNA fragmentation and lipid peroxidation [44,45,46]. | |
1 mg/mL | Increased cryosurvival rate [47]. | ||
Sheep | 5 mM, 10 mM | No significant enhancement [48]. | |
Curcumin | Boar | 0.25 mmol/L, 0.50 mmol/L | Protected post-thaw progressive motility and acrosome integrity [49]. |
Bovine | 0.5 mM | Protected post-thaw plasma membrane integrity and oxidative defense. Reduced percentage of abnormal sperm [50]. | |
Canine | 2.50 mM | Protected post-thaw DNA integrity and oxidative defense [51]. | |
Human | 20 μM | Protected post-thaw progressive motilty. Reduced DNA fragmentation and intracellular ROS [52]. | |
Iodixanol | Bovine | 2.50% | Protected post-thaw motility, progressive motility, viability, and acrosome and membrane integrity [53,54]. Protection against oxidative stress [55]. |
Canine | 1.50% | Protected frozen–thawed motility. Decreased capacitation, protamine deficiency, and apoptosis-like changes. Reduced mitochondrial reactive oxygen production [56]. | |
Equine | 5% | Protected post-thaw progressive motility, plasma membrane, and DNA integrity [57]. | |
Rat | 1%, 2% | Protected post thaw motility [58]. | |
Sheep | 5% | Protected post-thaw progressive motility, morphology, and acrosome and membrane integrity [59,60]. | |
Spermine | Bovine | Associated with a nitric acid donor, 10 μM | Protected frozen–thawed sperm motility, viability, membrane integrity, and decreased lipid peroxidation [61]. |
Canine | 5.0 mM | Protected post-thaw kinematic parameters, and membrane integrity. Decreased reactive oxygen species production, and cryocapacitation [62]. | |
Equine | 1 mg/mL, 2 mg/mL | Decreased capacitation and DNA fragmentation index [63]. | |
Kinetin | Canine | 50 μM | Reduced sperm post-thaw oxidative damages. Protected post-thaw motility, viability, and membrane integrity [64]. |
Sheep | 50 μM, 100 μM | Protected cooled sperm antioxidant activity, kinematic parameters, viability, and plasma membrane. Decreased lipid peroxidation [65]. | |
Melatonin | Bovine | 1 mM, 2mM, 3 mM | Protected post-thaw motility, and antioxidant capacity. Reduced lipid peroxidation [66,67]. |
0.1 mM | Protected post-thaw plasma membrane, acrosome region, and ultrastructure integrity [68]. | ||
Canine | 0.1 mM, 0.25 mM | Protected post-thaw membrane and acrosome integrity [69]. | |
Chicken | 10−3, 10−6 M | Decreased lipid peroxidation, DNA fragmentation, and apoptosis-like changes. Protected post-thaw motility [70]. | |
Equine | 1 μM | Higher mitochondrial membrane potentials, and protected membrane integrity [71]. Reduced lipid peroxidation [72]. | |
Goat | 20.0 µg | Protected post-thaw motility [73]. | |
Human | 0.01 mM, 3 mM | Protected post-thaw motility, progressive motility, and viability. Decreased intracellular reactive oxygen species, malondialdehyde, and caspase-3 activity [74,75,76]. | |
Mouse | 0.125 mg/mL [77] | Protected post-thaw progressive motility, and anti-apoptotic gene expression [77]. | |
Rabbits | 0.1 mM | Protected post-thaw motility, membrane and acrosome integrity, and mitochondrial membrane potential [78]. | |
Sheep | 1 mM | Protected post-thaw motility, viability, intracellular ATP concentrations, and DNA integrity [79]. | |
Metformin | Canine | 50 µM | Protected post-thaw motility, oxidative stress defense, and quality-related markers [80]. |
Mouse | 5000 µM | Enhanced AMPK activity, and in vitro fertilization success [81]. | |
Olive-derived antioxidants | Canine | 10 μg/mL, 30 μg/mL, 50 μg/mL and 70 μg/mL | Protected post-thaw kinematic parameters, viability, plasma membrane integrity, and oxidative defense. Reduced DNA damage [82] |
Sheep | 10 μg/mL, 30 μg/mL, 50 μg/mL and 70 μg/mL | No effects on post-thaw sperm kinematic parameters. Reduced lipid peroxidation [83]. |
Mesenchymal Stem Cells | Form | Species | Treatment Type | Effects on Sperm |
---|---|---|---|---|
Adipose-derived MSCs | Cells | Canine | Cryopreservation | Protected post-thaw sperm motility, viability, membrane, and acrosome and chromatin integrity [171]. |
Cells | Rats | Infertility | Reestablishment of spermatogenesis, and restoration of fertility [166]. | |
Cells | Rats | Testicular injury | Protected progressive motility and vitality. Activated Akt/GSK3 axis and stimulated glucolysis [179]. | |
Exosomes | Canine | Cryopreservation | Protected post-thaw sperm plasma membrane and chromatin integrity, motility, and viability [170]. | |
Amniotic-membrane-derived MSCs | Conditioned medium | Canine | Cryopreservation | Protected post-thaw sperm plasma membrane integrity, motility, mitochondrial activity, and viability [173]. |
Exosomes | Canine | Cryopreservation | No effects on post-thaw sperm quality-related parameters [172]. | |
Bone-marrow-derived MSCs | Cells | Rats | Infertility | Restoration of fertility [180]. |
Microvesicles | Rats | Cryopreservation | Protected post-thaw sperm viability, progressive motility, and antioxidant capacity. Reduced levels of necrosis, and apoptosis. Increased expression of surface adhesion molecules [174]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahiddine, F.Y.; Kim, M.-J. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals 2021, 11, 1930. https://doi.org/10.3390/ani11071930
Mahiddine FY, Kim M-J. Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals. 2021; 11(7):1930. https://doi.org/10.3390/ani11071930
Chicago/Turabian StyleMahiddine, Feriel Yasmine, and Min-Jung Kim. 2021. "Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation" Animals 11, no. 7: 1930. https://doi.org/10.3390/ani11071930
APA StyleMahiddine, F. Y., & Kim, M. -J. (2021). Overview on the Antioxidants, Egg Yolk Alternatives, and Mesenchymal Stem Cells and Derivatives Used in Canine Sperm Cryopreservation. Animals, 11(7), 1930. https://doi.org/10.3390/ani11071930