The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Search Strategy and Inclusion Criteria
3. Results and Discussion
3.1. Rumen Digestion and Fermentation
3.2. Metabolism and Health
3.3. Milk Production and Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duffield, T.F.; Bagg, R.N. Use of Ionophores in Lactating Dairy Cattle: A Review. Can. Vet. J. 2000, 41, 7. [Google Scholar]
- Russell, J.B.; Strobel, H.J. Effect of Ionophores on Ruminal Fermentation. Appl. Environ. Microbiol. 1989, 55, 1. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Collaborating Centre for Drug Statistics and Methodology. Available online: https://www.whocc.no (accessed on 13 January 2021).
- European Council 2007. Council Regulation (EC) No 108/2007 of 5 February 2007 Amending Regulation (EC) No 1356/2004 as Regards the Conditions for Authorisation of the Feed Additive Elancoban, Belonging to the Group of Coccidiostats and Other Medicinal Substances (Text. with EEA Relevance). Off. J. Eur. Union 2007, 4–5. [Google Scholar]
- European Medicine Agency. European Public Assessment Reports (EPAR) European Medicine Agency. 2013. Available online: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/veterinary/medicines/002235/vet_med_000267.jsp&mid=WC0b01ac058001fa1c (accessed on 13 January 2021).
- Duffield, T.F.; Rabiee, A.R.; Lean, I.J. A Meta-Analysis of the Impact of Monensin in Lactating Dairy Cattle. Part 1. Metabolic Effects. J. Dairy Sci. 2008, 91, 1334–1346. [Google Scholar] [CrossRef]
- Duffield, T.F.; Rabiee, A.R.; Lean, I.J. A Meta-Analysis of the Impact of Monensin in Lactating Dairy Cattle. Part 2. Production Effects. J. Dairy Sci. 2008, 91, 1347–1360. [Google Scholar] [CrossRef]
- Duffield, T.F.; Rabiee, A.R.; Lean, I.J. A Meta-Analysis of the Impact of Monensin in Lactating Dairy Cattle. Part 3. Health and Reproduction. J. Dairy Sci. 2008, 91, 2328–2341. [Google Scholar] [CrossRef]
- Robinson, P.H. Impacts of Feeding Monensin Sodium on Production and the Efficiency of Milk Production in Dairy Cows Fed Total Mixed Rations: Evaluation of a Confounded Literature. Can. J. Anim. Sci. 2020. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- CAB International CAB Direct. Available online: https://www.cabdirect.org/ (accessed on 31 March 2021).
- Pubmed. National Center for Biotechnology Information (NCBI). Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 31 March 2021).
- Beckett, S.; Lean, I.; Dyson, R.; Tranter, W.; Wade, L. Effects of Monensin on the Reproduction, Health, and Milk Production of Dairy Cows. J. Dairy Sci. 1998, 81, 11. [Google Scholar] [CrossRef]
- Juchem, S.O.; Santos, F.A.P.; Imaizumi, H.; Pires, A.V.; Barnabé, E.C. Production and Blood Parameters of Holstein Cows Treated Prepartum with Sodium Monensin or Propylene Glycol1. J. Dairy Sci. 2004, 87, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, M.R.; Castillo, A.R.; Bargo, F.; Abdala, A.A.; Maciel, M.G.; Perez-Monti, H.; Castro, H.C.; Castelli, M.E. Monensin for Lactating Dairy Cows Grazing Mixed-Alfalfa Pasture and Supplemented with Partial Mixed Ration. J. Dairy Sci. 2005, 88, 644–652. [Google Scholar] [CrossRef]
- Melendez, P.; Goff, J.P.; Risco, C.A.; Archbald, L.F.; Littell, R.; Donovan, G.A. Effect of a Monensin Controlled-Release Capsule on Rumen and Blood Metabolites in Florida Holstein Transition Cows*. J. Dairy Sci. 2004, 87, 4182–4189. [Google Scholar] [CrossRef]
- Melendez, P.; Goff, J.P.; Risco, C.A.; Archbald, L.F.; Littell, R.C.; Donovan, G.A. Effect of Administration of a Controlled-Release Monensin Capsule on Incidence of Calving-Related Disorders, Fertility, and Milk Yield in Dairy Cows. Am. J. Vet. Res. 2006, 67, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential Effects of Monensin and a Blend of Essential Oils on Rumen Microbiota Composition of Transition Dairy Cows. J. Dairy Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef] [Green Version]
- Mezzetti, M.; Piccioli-Cappelli, F.; Bani, P.; Amadori, M.; Calamari, L.; Minuti, A.; Loor, J.J.; Bionaz, M.; Trevisi, E. Monensin Controlled-Release Capsule Administered in Late-Pregnancy Differentially Affects Rumination Patterns, Metabolic Status, and Cheese-Making Properties of the Milk in Primiparous and Multiparous Cows. Ital. J. Anim. Sci. 2019, 18, 1271–1283. [Google Scholar] [CrossRef] [Green Version]
- Drong, C.; Meyer, U.; von Soosten, D.; Frahm, J.; Rehage, J.; Breves, G.; Dänicke, S. Effect of Monensin and Essential Oils on Performance and Energy Metabolism of Transition Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2016, 100, 537–551. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.M.; Yasui, T.; Ryan, C.M.; Pelton, S.H.; Mechor, G.D.; Overton, T.R. Metabolism of Early-Lactation Dairy Cows as Affected by Dietary Starch and Monensin Supplementation. J. Dairy Sci. 2015, 98, 3351–3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullins, C.R.; Mamedova, L.K.; Brouk, M.J.; Moore, C.E.; Green, H.B.; Perfield, K.L.; Smith, J.F.; Harner, J.P.; Bradford, B.J. Effects of Monensin on Metabolic Parameters, Feeding Behavior, and Productivity of Transition Dairy Cows. J. Dairy Sci. 2012, 95, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Fairfield, A.M.; Plaizier, J.C.; Duffield, T.F.; Lindinger, M.I.; Bagg, R.; Dick, P.; McBride, B.W. Effects of Prepartum Administration of a Monensin Controlled Release Capsule on Rumen PH, Feed Intake, and Milk Production of Transition Dairy Cows. J. Dairy Sci. 2007, 90, 937–945. [Google Scholar] [CrossRef]
- Petersson-Wolfe, C.S.; Leslie, K.E.; Osborne, T.; McBride, B.W.; Bagg, R.; Vessie, G.; Dick, P.; Duffield, T.F. Effect of Monensin Delivery Method on Dry Matter Intake, Body Condition Score, and Metabolic Parameters in Transition Dairy Cows. J. Dairy Sci. 2007, 90, 1870–1879. [Google Scholar] [CrossRef] [PubMed]
- Zahra, L.C.; Duffield, T.F.; Leslie, K.E.; Overton, T.R.; Putnam, D.; LeBlanc, S.J. Effects of Rumen-Protected Choline and Monensin on Milk Production and Metabolism of Periparturient Dairy Cows. J. Dairy Sci. 2006, 89, 4808–4818. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Martin, A.; Duffield, T.; Bagg, R.; Dick, P.; McBride, B.W. Effect of a Prepartum Administration of Monensin in a Controlled-Release Capsule on Apparent Digestibilities and Nitrogen Utilization in Transition Dairy Cows. J. Dairy Sci. 2000, 83, 8. [Google Scholar] [CrossRef]
- Green, B.L.; McBride, B.W.; Sandals, D.; Leslie, K.E.; Bagg, R.; Dick, P. The Impact of a Monensin Controlled-Release Capsule on Subclinical Ketosis in the Transition Dairy Cow-1-S2.0-S0022030299752409-Main.Pdf. J. Dairy Sci. 1999, 82, 333–342. [Google Scholar] [CrossRef]
- Allen, M.S. Effects of Diet on Short-Term Regulation of Feed Intake by Lactating Dairy Cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Allen, M.S. Drives and Limits to Feed Intake in Ruminants. Anim. Prod. Sci. 2014, 54, 1513–1524. [Google Scholar] [CrossRef]
- Allen, M.S. Review: Control of Feed Intake by Hepatic Oxidation in Ruminant Animals: Integration of Homeostasis and Homeorhesis. Animal 2020, 14, s55–s64. [Google Scholar] [CrossRef] [Green Version]
- Simjee, S.; Heffron, A.-L.; Pridmore, A.; Shryock, T.R. Reversible Monensin Adaptation in Enterococcus Faecium, Enterococcus Faecalis and Clostridium Perfringens of Cattle Origin: Potential Impact on Human Food Safety. J. Antimicrob. Chemother. 2012, 67, 2388–2395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicine Agency Advice on Implementing Measures under Article 57(3) of Regulation (EU) 2019/6 on Veterinary Medicinal Products-Report on Specific Requirements for the Collection of Data on Antimicrobial Medicinal Products Used in Animals. 2019. Available online: https://www.ema.europa.eu/en/documents/report/advice-implementing-measures-under-article-573-regulation-eu-2019/6-veterinary-medicinal-products-report-specific-requirements-collection-data-antimicrobial-medicinal_en.pdf (accessed on 13 January 2021).
- Nesse, L.L.; Bakke, A.M.; Eggen, T.; Hoel, K.; Kaldhusdal, M.; Ringø, E.; Yazdankhah, S.P.; Lock, E.-J.; Olsen, R.E.; Ørnsrud, R.; et al. The Risk of Development of Antimicrobial Resistance with the Use of Coccidiostats in Poultry Diets. EJNFS 2015, 40–43. [Google Scholar] [CrossRef]
- Fiore, E.; Perillo, L.; Gianesella, M.; Giannetto, C.; Giudice, E.; Piccione, G.; Morgante, M. Comparison between Two Preventive Treatments for Hyperketonaemia Carried out Pre-Partum: Effects on Non-Esterified Fatty Acids, β-Hydroxybutyrate and Some Biochemical Parameters during Peripartum and Early Lactation. J. Dairy Res. 2021, 1–7. [Google Scholar] [CrossRef]
- Kasap, S.; Erturk, M.; Mecitoglu, Z.; Dulger, H.; Babaeski, S.; Kennerman, E. Determination of the Effect of Monensin Capsule (Continuous Release Capsule) on Metabolic Parameters in Transition Dairy Cows. Med. Weter. 2020, 76, 512–516. [Google Scholar] [CrossRef]
- Hausmann, J.; Deiner, C.; Patra, A.K.; Immig, I.; Starke, A.; Aschenbach, J.R. Effects of a Combination of Plant Bioactive Lipid Compounds and Biotin Compared with Monensin on Body Condition, Energy Metabolism and Milk Performance in Transition Dairy Cows. PLoS ONE 2018, 13, e0193685. [Google Scholar] [CrossRef]
- Markantonatos, X.; Varga, G.A. Effects of Monensin on Glucose Metabolism in Transition Dairy Cows. J. Dairy Sci. 2017, 100, 9020–9035. [Google Scholar] [CrossRef]
- Yasui, T.; McCarthy, M.M.; Ryan, C.M.; Gilbert, R.O.; Felippe, M.J.B.; Mechor, G.D.; Overton, T.R. Effects of Monensin and Starch Level in Early Lactation Diets on Indices of Immune Function in Dairy Cows. J. Dairy Sci. 2016, 99, 1351–1363. [Google Scholar] [CrossRef] [Green Version]
- Compton, C.; Young, L.; McDougall, S. Efficacy of Controlled-Release Capsules Containing Monensin for the Prevention of Subclinical Ketosis in Pasture-Fed Dairy Cows. New Zealand Vet. J. 2015, 63, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Arieli, A.; Dicken, U.; Dagoni, I.; Spirer, Y.; Zamwel, S. Production and Health of Cows Given Monensin Prepartum and a High-Energy Diet Postpartum. J. Dairy Sci. 2008, 91, 1845–1851. [Google Scholar] [CrossRef]
- McDougall, S.; Parker, K.I.; Weir, A.M.; Compton, C.W.R. Effect of Application of an External Teat Sealant and/or Oral Treatment with a Monensin Capsule Pre-Calving on the Prevalence and Incidence of Subclinical and Clinical Mastitis in Dairy Heifers. New Zealand Vet. J. 2008, 56, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Kennerman, E.; Sentürk, S.; Biricik, H. Effect of Monensin Controlled Release Capsules on Blood Metabolites in Periparturient Dairy Cows. Aust. Vet. J. 2006, 84, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Melendez, P.; Gonzalez, G.; Benzaquen, M.; Risco, C.; Archbald, L. The Effect of a Monensin Controlled-Release Capsule on the Incidence of Retained Fetal Membranes, Milk Yield and Reproductive Responses in Holstein Cows. Theriogenology 2006, 66, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.G.; Leslie, K.E.; Bagg, R.; Dick, C.P.; Duffield, T.F. The Impact of Controlled Release Capsules of Monensin on Postcalving Haptoglobin Concentrations in Dairy Cattle. Can. J. Vet. Res. 2005, 69, 208–214. [Google Scholar]
- Plaizier, J.C.; Fairfield, A.M.; Azevedo, P.A.; Nikkhah, A.; Duffield, T.F.; Crow, G.H.; Bagg, R.; Dick, P.; McBride, B.W. Effects of Monensin and Stage of Lactation on Variation of Blood Metabolites Within Twenty-Four Hours in Dairy Cows. J. Dairy Sci. 2005, 88, 3595–3602. [Google Scholar] [CrossRef] [Green Version]
- Duffield, T.F.; LeBlanc, S.; Bagg, R.; Leslie, K.; Ten Hag, J.; Dick, P. Effect of a Monensin Controlled Release Capsule on Metabolic Parameters in Transition Dairy Cows. J. Dairy Sci. 2003, 86, 1171–1176. [Google Scholar] [CrossRef]
- Duffield, T.; Bagg, R.; DesCoteaux, L.; Bouchard, E.; Brodeur, M.; DuTremblay, D.; Keefe, G.; LeBlanc, S.; Dick, P. Prepartum Monensin for the Reduction of Energy Associated Disease in Postpartum Dairy Cows. J. Dairy Sci. 2002, 85, 397–405. [Google Scholar] [CrossRef]
- Duffield, T.F.; Leslie, K.E.; Sandals, D.; Lissemore, K.; McBride, B.W.; Lumsden, J.H.; Dick, P.; Bagg, R. Effect of Prepartum Administration of Monensin in a Controlled-Release Capsule on Milk Production and Milk Components in Early Lactation. J. Dairy Sci. 1999, 82, 272–279. [Google Scholar] [CrossRef]
- Duffield, T.F.; Sandals, D.; Leslie, K.E.; Lissemore, K.; McBride, B.W.; Lumsden, J.H.; Dick, P.; Bagg, R. PHYSIOLOGY AND MANAGEMENT:-Efficacy of Monensin for the Prevention of Subclinical Ketosis in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2866–2873. [Google Scholar] [CrossRef]
- Duffield, T.F.; Sandals, D.; Leslie, K.E.; Lissemore, K.; McBride, B.W.; Lumsden, J.H.; Dick, P.; Bagg, R. Effect of Prepartum Administration of Monensin in a Controlled-Release Capsule on Postpartum Energy Indicators in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2354–2361. [Google Scholar] [CrossRef]
- Van der Werf, J.H.J.; Jonker, L.J.; Oldenbroek, J.K. Effect of Monensin on Milk Production by Holstein and Jersey Cows. J. Dairy Sci. 1998, 81, 427–433. [Google Scholar] [CrossRef]
- Suriyasathaporn, W.; Heuer, C.; Noordhuizen-Stassen, E.N.; Schukken, Y.H. Hyperketonemia and the Impairment of Udder Defense: A Review. Vet. Res. 2000, 31, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Lacetera, N.; Scalia, D.; Franci, O.; Bernabucci, U.; Ronchi, B.; Nardone, A. Short Communication: Effects of Nonesterified Fatty Acids on Lymphocyte Function in Dairy Heifers. J. Dairy Sci. 2004, 87, 1012–1014. [Google Scholar] [CrossRef]
- Drong, C.; Meyer, U.; von Soosten, D.; Frahm, J.; Rehage, J.; Schirrmeier, H.; Beer, M.; Dänicke, S. Effects of Monensin and Essential Oils on Immunological, Haematological and Biochemical Parameters of Cows during the Transition Period. J. Anim. Physiol. Anim. Nutr. 2017, 101, 791–806. [Google Scholar] [CrossRef]
- Duffield, T.F.; Leslie, K.E.; Sandals, D.; Lissemore, K.; McBride, B.W.; Lumsden, J.H.; Dick, P.; Bagg, R. Effect of a Monensin-Controlled Release Capsule on Cow Health and Reproductive Performance. J. Dairy Sci. 1999, 82, 2377–2384. [Google Scholar] [CrossRef]
- Raboisson, D.; Barbier, M.; Maigné, E. How Metabolic Diseases Impact the Use of Antimicrobials: A Formal Demonstration in the Field of Veterinary Medicine. PLoS ONE 2016, 11, e0164200. [Google Scholar] [CrossRef] [Green Version]
- Raboisson, D.; Barbier, M. Economic Synergy between Dry Cow Diet Improvement and Monensin Bolus Use to Prevent Subclinical Ketosis: An Experimental Demonstration Based on Available Literature. Front. Vet. Sci. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Gohary, K.; Overton, M.W.; Von Massow, M.; LeBlanc, S.J.; Lissemore, K.D.; Duffield, T.F. Economic Value of Ionophores and Propylene Glycol to Prevent Disease and Treat Ketosis in Canada. Can. Vet. J. 2016, 57, 733–740. [Google Scholar]
- Mammi, L.M.E.; Grazia, L.; Palmonari, A.; Canestrari, G.; Mordenti, A.; Vecchi, M.; Archilei, F.; Formigoni, A. Does the Dry Cow Treatment with Monensin Controlled Release Capsule Affect Parmigiano Reggiano Cheese Production? J. Dairy Sci. 2018, 101, 8847–8859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, M.M.; Yasui, T.; Ryan, C.M.; Mechor, G.D.; Overton, T.R. Performance of Early-Lactation Dairy Cows as Affected by Dietary Starch and Monensin Supplementation. J. Dairy Sci. 2015, 98, 3335–3350. [Google Scholar] [CrossRef] [PubMed]
- Phipps, R.H.; Wilkinson, J.I.D.; Jonker, L.J.; Tarrant, M.; Jones, A.K.; Hodge, A. Effect of Monensin on Milk Production of Holstein-Friesian Dairy Cows. J. Dairy Sci. 2000, 83, 2789–2794. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited Review: Inflammation during the Transition to Lactation: New Adventures with an Old Flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef] [PubMed]
Study | Cows, n | Dose 1 | Delivery Method | Outcomes Measured | References |
---|---|---|---|---|---|
Mezzetti et al., 2019 | 38 | 335 | CRC 2 | Rumen fluid: pH, ammonia, VFA 3, immunoglobulins, lymphocytes, myeloid cells | [19] |
Schären et al., 2017 | 60 | 335 | CRC | Rumen fluid: LPS, ammonia, VFA, microbiome characterization | [18] |
Drong et al., 2016 | 60 | 335 | CRC | Individual DMI, rumen pH, ammonia, VFA, protozoa count | [20] |
McCarthy et al., 2015b | 70 | 400 pre partum 450 post partum | Top-dressing | Individual DMI, total dry matter, NDF and starch digestibility | [21] |
Mullins et al., 2012 | 32 | 400 pre partum 450 post partum | Top-dressing | Individual DMI, meal frequency, rumen pH | [22] |
Fairfield et al., 2007 | 16 | 335 | CRC | Individual DMI, pH. | [23] |
Petersson-Wolfe et al., 2007 | 136 | 335 | CRC | Individual DMI | [24] |
Zahra et al., 2006 | 182 | 335 | CRC | Individual DMI | [25] |
Plaizier et al., 2000 | 16 | 335 | CRC | Individual DMI, NDF digestibility, rumen ammonia content | [26] |
Green et al., 1999 | 52 | 335 | CRC | Rumen ph, ammonia, VFA | [27] |
Study | Cows, n | Dose 1 | Delivery Method | Outcomes Measured | References |
---|---|---|---|---|---|
Fiore et al., 2021 | 100 | 335 | CRC 2 | Blood NEFA, BHB, glucose, urea, AST, ALT, GGT, TG 3, CHL 4, bilirubin, total protein, albumins, globulins, BCS. | [34] |
Kasap et al., 2020 | 50 | 335 | CRC | Blood NEFA, BHB, glucose and urea | [35] |
Mezzetti et al., 2019 | 38 | 335 | CRC | Blood NEFA, BHB, acute phase proteins, reactive oxygen species and disease incidence | [19] |
Hausmann et al., 2018 | 58 | 336 | CRC | Blood NEFA, BHB, glucose, urea, CHL, TG and bilirubin | [36] |
Markantonatos et al., 2017 | 8 | 300 | top-dressing | Glucose kinetic parameters | [37] |
Drong et al., 2016 | 60 | 335 | CRC | Blood NEFA, BHB, glucose and liver total lipids | [20] |
Yasui et al., 2016 | 70 | 400 pre partum 450 post partum | top-dressing | Blood immune functions | [38] |
Compton et al., 2015 | 837 | 335 | CRC | Blood BHB | [39] |
McCarthy et al., 2015 | 70 | 400 pre partum 450 post partum | top-dressing | Blood NEFA, BHB and glucose, liver TG and oxidative capacity | [21] |
Mullins et al., 2012 | 32 | 400 pre partum 450 post partum | top-dressing | Blood NEFA, BHB, glucose, insulin, haptoglobin and liver function. | [22] |
Arieli, et al., 2008 | 168 | 335 | CRC | Blood NEFA, BHB, Glucose, AST and BCS | [40] |
Duffield et al., 2008 a, c | Meta-analyses | Blood NEFA, BHB, glucose, urea, CHL, insulin, calcium, phosphorus, MUN | [6,8] | ||
McDougal et al., 2008 | 772 | 335 | CRC | Incidence of mastitis | [41] |
Peterson-Wolfe et al., 2007 | 136 | 335 | CRC | Blood NEFA, BHB, glucose, insulin, urea, AST, bilirubin, cortisol and BCS | [24] |
Kennermann et al., 2006 | 40 | 335 | CRC | Blood NEFA, BHB, glucose, urea, TG | [42] |
Melendez et al., 2006b | 2025 | 335 | CRC | Incidence of retained fetal membranes and reproductive performance | [43] |
Zahra et al., 2006 | 182 | 335 | CRC | Blood BHB, glucose, AST, ALT, urea | [25] |
Crawford et al., 2005 | 1010 | 335 | CRC | Serum haptoglobin | [44] |
Plaizier et al., 2005 | 16 | 335 | CRC | Blood NEFA, BHB, glucose and urea | [45] |
Duffield et al., 2003 | 251 | 335 | CRC | Blood NEFA, BHB, glucose, urea, CHL, calcium, phosphorus and BCS | [46] |
Duffield et al., 2002 | 1317 | 335 | CRC | Disease incidence | [47] |
Duffield et al., 1999a | 1010 | 335 | CRC | Disease incidence, culling rate, reproductive performance | [48] |
Duffield et al., 1998a, b | 1010 | 335 | CRC | Blood and milk BHB, glucose, AST, urea, total protein, calcium, phosphorus and BCS | [49,50] |
Green et al., 1999 | 52 | 335 | CRC | Blood BHB, glucose and BCS | [27] |
Van der Werf et al., 1998 | 58 | 300 | top-dressing | Blood BHB, glucose, acetoacetate, insulin | [51] |
Study | Cows, n | Dose 1 | Delivery Method | Outcomes Measured | References |
---|---|---|---|---|---|
Kasap et al., 2020 | 50 | 335 | CRC 2 | MY 3 | [35] |
Mezzetti et al., 2019 | 38 | 335 | CRC | MY, fat % and yield, protein % and yield, casein %, lactose %, urea, SCC, titrable acidity and cheesemaking properties | [19] |
Hausmann et al., 2018 | 58 | 336 | CRC | MY, ECM, Fat % and yield, protein % and yield, urea, SCC | [36] |
Mammi et al., 2018 | 91 | 335 | CRC | Fat %, protein %, casein %, lactose %, urea, SCC, titrable acidity, pH, total bacteria count and cheesemaking properties. Whey starter fermentative activity, cheese yield, composition, sensory profile and fatty acids. | [59] |
McCarthy et al., 2015a | 70 | 400 pre partum 450 post partum | top-dressing | MY, ECM, FCM, fat % and yield, protein % and yield, lactose % and yield, urea, SCS | [60] |
Mullins et al., 2012 | 32 | 400 pre partum 450 post partum | top-dressing | MY, fat %, protein %, lactose %, urea | [22] |
Arieli, et al., 2008 | 168 | 335 | CRC | MY, fat % and yield, protein % and yield, lactose % and yield, urea, SCC | [40] |
Duffield et al., 2008b | Meta-analysis | MY, fat % and yield, protein % and yield | [7] | ||
Fairfield et al., 2007 | 16 | 335 | CRC | MY, fat % and yield, protein % and yield, lactose % | [23] |
Melendez et al., 2006b | 2025 | 335 | CRC | MY | [43] |
Zahra et al., 2006 | 182 | 335 | CRC | MY, fat %, protein % | [25] |
Plaizier et al., 2000 | 16 | 335 | CRC | Milk nitrogen | [26] |
Phipps et al., 2000 4 | 98 | 300 | top-dressing | MY, fat % and yield, protein % and yield | [61] |
Duffield et al., 1999b | 1010 | 335 | CRC | MY, fat %, protein % | [48] |
Van der Werf et al., 1998 | 58 | 300 | top-dressing | MY, fat % and yield, protein % and yield | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mammi, L.M.E.; Guadagnini, M.; Mechor, G.; Cainzos, J.M.; Fusaro, I.; Palmonari, A.; Formigoni, A. The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals 2021, 11, 1988. https://doi.org/10.3390/ani11071988
Mammi LME, Guadagnini M, Mechor G, Cainzos JM, Fusaro I, Palmonari A, Formigoni A. The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals. 2021; 11(7):1988. https://doi.org/10.3390/ani11071988
Chicago/Turabian StyleMammi, Ludovica M. E., Marcello Guadagnini, Gerald Mechor, Juan M. Cainzos, Isa Fusaro, Alberto Palmonari, and Andrea Formigoni. 2021. "The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review" Animals 11, no. 7: 1988. https://doi.org/10.3390/ani11071988
APA StyleMammi, L. M. E., Guadagnini, M., Mechor, G., Cainzos, J. M., Fusaro, I., Palmonari, A., & Formigoni, A. (2021). The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals, 11(7), 1988. https://doi.org/10.3390/ani11071988