Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Potential Animal Welfare Impacts of the COVID-19 Pandemic
1.2. Predicting Susceptibilities: TMPRSS2 and ACE2
2. Nonhuman Animal Transmission and Susceptibility
2.1. Nonhuman Primates
2.2. The Mustelidae: Ferrets and Mink
2.3. The Suidae
2.4. Other Hooved Species
2.5. The Felidae
2.6. The Canidae
2.7. The Rodentia
2.8. Putative Source and Intermediate Host Species: Bats, Pangolin, and Palm Civets
3. Discussion
3.1. Protecting the Welfare of Livestock and Food Animals during the Pandemic
3.2. Protecting the Welfare Companion Animals
3.3. Protecting the Welfare of Animals in Zoos and Aquariums
3.4. Protecting the Welfare of Wildlife
3.5. Protecting the Welfare of Research Animals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention. Asian Lineage Avian Influenza A (H7N9) Virus. Available online: https://www.cdc.gov/flu/avianflu/h7n9-virus.htm (accessed on 30 March 2021).
- Majeed, Z. People in China throw Out Pets from Apartments over Coronavirus Spread Fears. Available online: https://www.republicworld.com/world-news/rest-of-the-world-news/chinese-throw-pets-from-high-rise-windows-over-misinformation-of-coro.html (accessed on 30 March 2021).
- Carbanaro, G. How Do You Kill 17m Mink Sick with a COVID-19 Mutation? Available online: https://newseu.cgtn.com/news/2020-11-06/How-do-you-kill-17m-mink-sick-with-a-COVID-19-mutation--Vb9hjGXbwI/index.html (accessed on 30 March 2021).
- Gorman, S. Gorillas at San Diego Zoo Safari Park Diagnosed with COVID-19. Available online: https://www.usnews.com/news/us/articles/2021-01-11/two-gorillas-at-san-diego-zoo-test-positive-for-covid-10 (accessed on 30 March 2021).
- Kochhar, R. Unemployment Rose Higher in Three Months of COVID-19 than it Did in Two Years of the Great Recession. Available online: https://www.pewresearch.org/fact-tank/2020/06/11/unemployment-rose-higher-in-three-months-of-covid-19-than-it-did-in-two-years-of-the-great-recession/ (accessed on 30 March 2021).
- Reeder, J. Americans are Starting to Give up Their Pets Because of COVID-19 Hardships. Available online: https://www.today.com/pets/americans-are-starting-give-pets-during-covid-19-crisis-t192819 (accessed on 30 March 2021).
- Schrotenboer, B. “I don’t want these dogs to suffer:” Pet Surrenders Becoming Tragic Part of Pandemic. Available online: https://www.usatoday.com/story/money/2020/10/29/surrendered-pets-another-sad-part-pandemic-but-there-hope/6013668002/ (accessed on 30 March 2021).
- Kevany, S. Millions of US Farm Animals to be culled by Suffocation drowning and Shooting. 2020. Available online: https://www.theguardian.com/environment/2020/may/19/millions-of-us-farm-animals-to-be-culled-by-suffocation-drowning-and-shooting-coronavirus (accessed on 4 August 2020).
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959; Available online: https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique (accessed on 1 June 2021).
- Basu, B.; Murphy, E.; Molter, A.; Sarkar Basu, A.S.; Sannigrahi, S.; Belmonte, M.; Pilla, F. Investigating Changes in Noise Pollution Due to the COVID-19 Lockdown: The Case of Dublin, Ireland. Sustain. Cities Soc. 2021, 65, 102597. [Google Scholar] [CrossRef]
- Derrybery, E.P.; Phillips, J.N.; Derrybery, G.E.; Blum, M.J.; Luther, D. Singing in a Silent Spring: Birds Respond to a Half-century Soundscape Reversion During the COVID-19 Shutdown. Science 2020, 370, 575–579. [Google Scholar] [CrossRef]
- Arora, S.; Bhaukhandi, K.D.; Mishra, P.K. Coronavirus Lockdown Helped the Environment to Bounce Back. Sci. Tot. Environ. 2020, 742, 140573. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does Lockdown Reduce Air Pollution? Evidence from 44 Cities in Northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Copernicus Atmosphere Monitoring Service (CAMS). Amid Coronavirus Outbreak: Copernicus Monitors Reduction in Particulate Matter (PM2.5) over China. Available online: https://atmosphere.copernicus.eu/amid-coronavirus-outbreak-copernicus-monitors-reduction-particulate-matter-pm25-over-china (accessed on 15 May 2021).
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect Effects of COVID-19 on the Environment. Sci. Tot. Environ. 2020, 728, 138813. [Google Scholar] [CrossRef] [PubMed]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, Á.; Mazzzei, V.; et al. Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Sahagun, L. Coyotes, Falcons, Deer, and Other Wildlife are Reclaiming L.A. Territory as Humans Stay Home. Available online: https://www.latimes.com/environment/story/2020-04-21/wildlife-thrives-amid-coronavirus-lockdown (accessed on 17 March 2021).
- Silva-Rodríguez, E.A.; Gálvez, N.; Swan, G.J.F.; Cusack, J.J.; Moreira-Arce, D. Urban Wildlife in Times of COVID-19: What Can we infer from Novel Carnivore Records in Urban Areas? Sci. Tot. Environ. 2021, 765, 142713. [Google Scholar] [CrossRef]
- Zellmer, A.J.; Wood, E.M.; Surasinghe, T.; Putman, B.J.; Pauly, G.B.; Magle, S.B.; Lewis, J.S.; Kay, C.A.M.; Fidino, M. What Can we Learn from Wildlife Sightings During the COVID-19 Global Shutdown? Ecosphere 2020, 11, e03215. [Google Scholar] [CrossRef] [PubMed]
- Lopucki, R.; Kitowski, I.; Perlińska-Teresiak, M.; Klich, D. How is Wildlife Affected by the COVID-19 Pandemic? Lockdown Effect on the Road Mortality of Hedgehogs. Animals 2021, 11, 868. [Google Scholar] [CrossRef]
- Horton, H. Pet Shops and Shelters Cleared of Animals as British People Seek Company During Coronavirus Lockdown. Available online: https://www.telegraph.co.uk/news/2020/03/25/pet-shops-shelters-cleared-hamsters-dogs-cats-british-people/ (accessed on 17 May 2021).
- Morgan, L.; Protopopova, A.; Birkler, R.I.D.; Itin-Shwartz, B.; Sutton, G.S.; Gamliel, A.; Yakobson, B.; Raz, T. Human-dog Relationships During the COVID-19 Pandemic: Booming Dog Adoption During Social Isolation. Hum. Soc. Sci. Comm. 2020, 7, 155. [Google Scholar] [CrossRef]
- Van Evra, J. Pet Shelters Brace for Influx of Animals, but Adoptions on the Rise as People Stay Home. Available online: https://www.cbc.ca/news/canada/british-columbia/spca-covid-19-adoptions-1.5511102 (accessed on 11 May 2021).
- Lewis, S. China Reclassifies Dogs as Pets, not Livestock, in Wake of Coronavirus. Available online: https://www.cbsnews.com/news/coronavirus-china-reclassifies-dogs-pets-not-livestock/ (accessed on 17 May 2021).
- Zhong, S.; Crang, M.; Guojun, Z. Constructing Freshness: The Vitality of Wet Markets in Urban China. Agri. Hum. Values 2020, 37, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Su, A. Why China’s Wildlife Ban is not enough to Stop Another Virus Outbreak. Available online: https://www.latimes.com/world-nation/story/2020-04-02/why-china-wildlife-ban-not-enough-stop-coronavirus-outbreak (accessed on 17 May 2021).
- Liu, S.; Ma, Z.M.; Zhang, Y.; Zhang, Y. Attitudes Towards Wildlife Consumption Inside and Outside Hubei Province, China, in Relation to the SARS and COVID-19 Outbreaks. Hum. Ecol. Interdiscip. J. 2020. [Google Scholar] [CrossRef]
- Wildlife Justice Commission. Rapid Assessment of the Impact of COVID-19 on Wildlife Trafficking. Available online: https://wildlifejustice.org/wp-content/uploads/2020/04/WJC_Impact-of-COVID19-on-wildlife-trafficking_April2020.pdf (accessed on 17 May 2020).
- Canadian Wildlife Health Cooperative. Wildlife health and COVID-19 in Canada: Bats. Available online: http://cwhc-rcsf.ca/docs/miscellaneous/CWHC%20Bat%20health%20and%20Covid-19%20(Version%201.0%20April%2023%202020).pdf (accessed on 31 May 2021).
- Gilby, B.L.; Henderson, C.J.; Olds, A.D.; Ballantyne, J.A.; Bingham, E.L.; Elliott, B.B.; Jones, T.R.; Kimber, O.; Mosman, J.D.; Schlacher, T.A. Potentially Negative Ecological Consequences of Animal Redistribution on Beaches During COVID-19 Lockdown. Biol. Conserv. 2021, 253, 108926. [Google Scholar] [CrossRef]
- Daniels, K.F. Animal Humane Experts Estimate Tens of Thousands of Pets have been Abandoned, Killed in China During Coronavirus Crisis. Available online: https://www.nydailynews.com/coronavirus/ny-coronavirus-thousands-of-pets-abandoned-killed-in-china-crisis-20200316-3avi3u6osvdltnfttiqbfdttsi-story.html (accessed on 17 May 2021).
- Kim, A. Cats and Dogs Abandoned at the Start of the Coronavirus Outbreak are Now Starving or Being Killed. Available online: https://www.cnn.com/2020/03/15/asia/coronavirus-animals-pets-trnd/index.html (accessed on 11 May 2021).
- Villanueva-Saz, S.; Giner, J.; Tobajas, A.P.; Pérez, M.D.; González-Ramírez, A.M.; Marcías-León, J.; González, A.; Verde, M.; Yzuel, A.; Hertado-Guerrero, R.; et al. Serological Evidence of SARS-CoV-2 and Co-infections in Stray Cats in Spain. Transb. Emerg. Dis. 2021, 1–9. [Google Scholar] [CrossRef]
- Goumenou, M.; Spandidos, D.A.; Tsatsakis, A. Editorial Possibility of Transmission Through Dogs Being a Contributing Factor to the Extreme COVID-19 Outbreak in North Italy. Mol. Med. Rep. 2020, 21, 2293–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, E.M.; Gouilh, M.A.; Brugére-Picoux, J. The Risk of SARS-CoV-2 Transmission to Pets and Other Wild and Domestic Animals Strongly Mandates a One-health Strategy to Control the COVID-19 Pandemic. One Health 2020, 10, 100133. [Google Scholar] [CrossRef] [PubMed]
- Bittel, J. Experts Urge People All Over the World to Stop Killing Bats Out of Fears of Coronavirus. Available online: https://www.nrdc.org/stories/experts-urge-people-all-over-world-stop-killing-bats-out-fears-coronavirus (accessed on 15 May 2021).
- Calvet, G.A.; Pereira, S.A.; Ogrezwalska, M.; Pauvolid-Corrêa, A.; Resende, P.A.; de Souza Tassiari, W.; de Pina Costa, A.; Keidel, L.O.; Barreto da Rocha, A.S.; Borges da Silva, M.F.; et al. Investigation of SARS-CoV-2 Infection in Dogs and Cats of Humans Diagnosed with COVID-19 in Rio de Janeiro Brazil. PLoS ONE 2021. [Google Scholar] [CrossRef]
- Klaus, J.; Meli, M.L.; Willi, B.; Nadeau, S.; Beisel, C.; Stadler, T.; Eth Sars-CoV-Sequencing Team; Egberink, H.; Zhao, S.; Lutz, H.; et al. Detection and Genome Sequencing of SARS-CoV-2 in a Domestic Cat with Respiratory Signs in Switzerland. Viruses 2021, 13, 496. [Google Scholar] [CrossRef] [PubMed]
- Hosie, M.J.; Hoffmann-Lehmann, R.; Hartmann, K.; Egberink, H.; Truyen, U.; Addie, D.D.; Belák, S.; Boucraut-Baralon, C.; Frymus, T.; Lloret, A.; et al. Anthropogenic Infection of Cats During the 2020 COVID-19 Pandemic. Viruses 2021, 13, 185. [Google Scholar] [CrossRef]
- Parry, N.M.A. COVID-19 and Pets: When Pandemic Meets Panic. Forensic Sci. Int. Rep. 2020, 2, 100090. [Google Scholar] [CrossRef]
- Bartlett, S.L.; Diel, D.G.; Wang, L.; Zec, S.; Laverack, M.; Martins, M.; Caserta, L.C.; Killian, M.L.; Terio, K.; Olmstead, C.; et al. SARS-CoV-2 Infection and Longitudinal Fecal Screening in Malayan Tigers (Panthera tigris jacksoni), Amur Tigers (Panthera tigris altaica), and African Lions (Panthera leo krugeri) at the Bronx Zoo, New York, USA. J. Zoo. Wildl. Med. 2021, 51, 733–744. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Animal and Plant Health Inspection Service. USDA Statement on the Confirmation of COVID-19 in a Tiger in New York. 2020. Available online: https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19 (accessed on 17 May 2021).
- United States Department of Agriculture, Animal and Plant Health Inspection Service. Confirmation of COVID-19 in Gorillas at a California Zoo. 2021. Available online: https://content.govdelivery.com/accounts/USDAAPHIS/bulletins/2b5837f/ (accessed on 17 May 2021).
- Munnink, B.B.O.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaar, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on Mink Farms Between Humans and Mink and Back to Humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Corder, M. Scientists Study Coronavirus Outbreaks Among Minks in Europe. Available online: https://apnews.com/article/virus-outbreak-netherlands-animals-international-news-health-44f67bb28bf299a58add73e8ce243319 (accessed on 17 May 2021).
- DeLiberto, D. Coronavirus Disease 2019 Update (5360: Animal, USA (Utah) Wild Mink, First Case. Fri 11 Dec. 2020. ProMed mail post. Available online: https://promedmail.org/promed-post/?id=8015608 (accessed on 17 May 2021).
- Aguiló-Gisbert, J.; Padilla-Blanco, M.; Lizana, V.; Maiques, E.; Muñoz-Baquero, M.; Chillida-Martínez, E.; Cardelis, J.; Rubio-Guerri, C. First Description of Natural SARS-CoV-2 Infection in Two Wild American Minks (Neovision vison). Animals 2021, 11, 1422. [Google Scholar] [CrossRef]
- Shriner, S.A.; Ellis, J.W.; Root, J.J.; Roug, A.; Stopak, S.R.; Wiscomb, G.W.; Zierenberg, J.R.; Ip, H.S.; Torchetti, M.K.; DeLiberto, T.J. SARS-CoV-2 Exposure in Escaped Mink, Utah, USA. Emerg. Infect. Dis. 2021, 27, 988–990. [Google Scholar] [CrossRef]
- Roth, A. Wildlife Deaths from Coronavirus Disinfectant Use Alarm Scientists. Available online: https://www.nationalgeographic.com/animals/article/disinfectant-public-cities-pandemic-urban-wildlife-cvd (accessed on 17 May 2021).
- Barr, S. Coronavirus Pandemic Sees Huge Increase in Cat and Dog Adoptions. Available online: https://www.independent.co.uk/life-style/coronavirus-dog-cat-pet-adoption-battersea-rehome-covid-19-a9426741.html (accessed on 11 May 2021).
- Surkes, S. More Pets Abandoned, and More Adopted, Since Coronavirus Outbreak. Available online: https://www.timesofisrael.com/more-pets-abandoned-and-more-adopted-since-coronavirus-outbreak/ (accessed on 11 May 2021).
- University of Florida College of Veterinary Medicine. Florida Animal Shelters Set Lifesaving Record in 2020. Available online: https://sheltermedicine.vetmed.ufl.edu/research-studies/current-studies/florida-animal-sheltering/ (accessed on 11 May 2021).
- Grimm, D. It’s heartbreaking.’ Labs are Euthanizing Thousands of Mice in Response to the Coronavirus Pandemic. Available online: https://www.sciencemag.org/news/2020/03/it-s-heartbreaking-labs-are-euthanizing-thousands-mice-response-coronavirus-pandemic (accessed on 11 May 2021).
- Campbell, A.M. An Increasing Risk of Family Violence during the Covid-19 Pandemic: Strengthening Community Collaborations to Save Lives. Forensic Sci. Int. Rep. 2020, 2, 100089. [Google Scholar] [CrossRef]
- Campbell, C. The Pandemic Has Seen Global Spikes in Pet Abandonment. Here’s How One Shelter in China Has Been Coping. Available online: https://time.com/5916962/animal-shelter-wuhan-china-pets-coronavirus/ (accessed on 17 May 2021).
- Saitone, T.L.; Aleks Schaefer, K.; Scheitrum, D.P. COVID-19 Morbidity and Mortality in U.S. Meatpacking Counties. Food Policy 2021, 101, 102072. [Google Scholar] [CrossRef] [PubMed]
- Marchant-Forde, J.N.; Boyle, L.A. COVID-19 Effects on Livestock Production: A One Welfare Issue. Front. Vet. Sci. 2020, 7, 585787. [Google Scholar] [CrossRef] [PubMed]
- Carmody, J.; Perpitch, N. Coronavirus Outbreak on Live Export Ship in Fremantle Doubles in Size as More Crew Test Positive. Available online: https://www.abc.net.au/news/2020-05-28/coronavirus-ship-outbreak-doubles-as-six-crew-test-positive/12295716 (accessed on 31 May 2021).
- Australian Associated Press. Coronavirus Crisis: Sick Al Kuwait Crew Given All Clear as WA’s Active COVID Cases Tally is Reduced to Two. Available online: https://thewest.com.au/news/coronavirus/coronavirus-crisis-sick-al-kuwait-crew-given-all-clear-as-was-active-covid-cases-tally-is-reduced-to-two-ng-b881578552z (accessed on 31 May 2021).
- Düpjan, S.; Krause, A.; Moscovice, L.R.; Nawroth, C. Emotional Contagion and its Implications for Animal Welfare. CAB Rev. 2020, 15, 046. [Google Scholar] [CrossRef]
- Buttner, A.P.; Thompson, G.; Strasser, R.; Santo, J. Evidence for a Synchronization of Hormonal States between Humans and Dogs during Competition. Physiol. Behav. 2015, 147, 54–62. [Google Scholar] [CrossRef]
- Katayama, M.; Kubo, T.; Yamakawa, T.; Fujiwara, K.; Nomoto, K.; Ikeda, K.; Mogi, K.; Nagasawa, M.; Kikusui, T. Emotional Contagion from Humans to Dogs is Facilitated by Duration of Ownership. Front. Psychol. 2019, 10, 1678. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.M.; Randle, H.; Marlin, D. COVID-19: Impact on United Kingdom Horse Owners. Animals 2020, 10, 1862. [Google Scholar] [CrossRef]
- Williams, E.; Carter, A.; Rendle, J.; Ward, S.J. Impacts of COVID-19 on Animals in Zoos: A Longitudinal Multi-species Analysis. J. Zool. Bot. Gard. 2021, 2, 130–145. [Google Scholar] [CrossRef]
- Sahu, U.; Biswas, D.; Singh, A.K.; Khare, P. Mechanism Involved in the Pathogenesis and Immune Response against SARS-CoV-2 Infection. Virusdisease 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T.; Rouse, R.C.; Stone, E.; Greenhough, A. Interacting Proteins, Polymorphisms and the Susceptibility of Animals to SARS-CoV-2. Animals 2021, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infections. J. Virol. 2019, 93, e01815-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiktorczyk-Kapischke, N.; Grudlewska-Buda, K.; Walecka-Zacharska, E.; Kwiecinska-Pirog, J.; Radtke, L.; Gospodarek-Komkowska, E.; Skowron, K. SARS-CoV-2 in the Environment—Non-droplet Spreading Routes. Sci. Tot. Envir. 2021, 770, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Devaux, C.; Pinault, L.; Osman, I.O.; Raoult, D. Can ACE2 Receptor Polymorphism Predict Species Susceptibility to SARS-CoV-2? Front. Publ. Health 2021, 8. [Google Scholar] [CrossRef]
- Conceicao, C.; Thakur, N.; Human, S.; Kelly, J.T.; Logan, L.; Bialy, D.; Bhat, S.; Stevenson-Leggett, P.; Zagrajek, A.K.; Hollinghurst, P.; et al. The SARS-CoV-2 Spike Protein Has a Broad Tropism for Mammalian ACE2 Proteins. PLoS Biol. 2020, 18. [Google Scholar] [CrossRef]
- Xu, X.G.; Wang, H.; Wang, S.Y.; Zhang, J.; Sun, C.; Wei, M.X.; Yan, J.; Mao, G.X. Predictive Analysis of Susceptibility of Different Species to SARS-CoV-2 Based on ACE2 Receptors. Biomed. Environ. Sci. 2020, 33, 877–881. [Google Scholar]
- Hassan, S.S.; Ghose, S.; Attrish, D.; Choudhury, P.P.; Aljabali, A.A.; Uhal, B.D.; Lundstrom, K.; Rezaei, N.; Uversky, V.N.; Seyran, M.; et al. Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features. Molecules 2020, 25, 5906. [Google Scholar] [CrossRef]
- Olivieri, E.R.; Heller, L.K.; Gillim-Ross, L.; Wentworth, D.E. Analysis of SARS-CoV Receptor Activity of ACE2 Orthologs. Advs. Exper. Med. Biol. 2006, 581, 277–280. [Google Scholar]
- Irham, L.M.; Chou, W.H.; Calkins, M.J.; Adikusuma, W.; Hsieh, S.L.; Chang, W.C. Genetic Variants that Influence SARS-CoV-2 Receptor TMPRSS2 Expression among Population Cohorts from Multiple Continents. Biochem. Biophys. Res. Commun. 2020, 529, 263–269. [Google Scholar] [CrossRef]
- Chen, W.; Yan, M.; Yang, L.; Ding, B.; He, B.; Wang, Y.; Liu, X.; Liu, C.; Zhu, H.; You, B.; et al. SARS-associated Coronavirus Transmitted from Human to Pig. Emerg Infect Dis. 2005, 11, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of Ferrets, Cats, Dogs, and Other Domesticated Animals to SARS-coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- Luan, J.; Lu, Y.; Jin, X.; Zhang, L. Spike Protein Recognition of Mammalian ACE2 Predicts the Host Range and an Optimized ACE2 for SARS-CoV-2 Infection. Biochem. Biophys. Res. Commun. 2020, 526, 165–169. [Google Scholar] [CrossRef]
- Gurumurthy, C.B.; Quadros, R.M.; Richardson, G.P.; Poluektova, L.Y.; Mansour, S.L.; Ohtsuka, M. Genetically Modified Mouse Models to Help Fight COVID-19. Nature 2020, 15, 3777–3787. [Google Scholar]
- Centers for Disease Control and Prevention. Symptoms of COVID-19. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html (accessed on 20 May 2021).
- Hou, Y.; Zhao, J.; Martin, W.; Kallianpur, A.; Chung, M.K.; Jehi, L.; Sharifi, N.; Erzurum, S.; Eng, C.; Cheng, F. New Insights into Genetic Susceptibility of COVID-19: An ACE2 and TMPRSS2 Polymorphism Analysis. BMC Med. 2020, 18, 216 . [Google Scholar] [CrossRef]
- Tiwari, R.; Dhama, K.; Sharun, K.; Yatoo, M.; Malik, Y.; Singh, R.; Michalak, I.; Sah, R.; Bonilla-Aldana, K.; Rodriguez-Morales, A. COVID-19: Animals, Veterinary and Zoonotic Links. Vet. Q. 2020, 40, 169–182. [Google Scholar] [CrossRef]
- Akhmetzhanov, A.R.; Linton, N.M.; Nishiura, H. Rising Evidence of COVID-19 Transmission Potential to and Between Animals: Do we need to be concerned? MedRxiv 2020. [Google Scholar] [CrossRef]
- McNamara, T.; Richt, J.A.; Glickman, L.A. Critical Needs Assessment for Research in Companion Animals and Livestock Following the Pandemic of COVID-19 in Humans. Vect. Borne Zoonot. Dis. 2020, 20, 393–405. [Google Scholar] [CrossRef]
- Sit, T.; Brackman, C.; Ip, S.; Tam, K.; Law, P.; To, E.; Yu, V.; Sims, L.; Tsang, D.; Chu, D.; et al. Infection of Dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef]
- Younes, S.; Younes, N.; Shurrab, F.; Nasrallah, G.K. Severe Acute Respiratory Syndrome Coronavirus-2 Natural Animal Reservoirs and Experimental Models: Systematic Review. Rev. Med. Vir. 2021, e2196. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.S.; Abdelwhab, E.M. Evidence for SARS-CoV-2 Infection of Animal Hosts. Pathogens 2020, 9, 529. [Google Scholar] [CrossRef]
- Mahdy, M.; Younis, W.; Ewaida, Z. An Overview of SARS-CoV-2 and Animal Infection. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Cleary, S.; Pitchford, S.C.; Amison, R.T.; Carrington, R.; Cabrera, C.L.R.; Magnen, M.; Looney, M.R.; Gray, E.; Page, C.P. Animal Models of SARS-CoV-2 Infection and Mechanisms of COVID-19. Br. J. Pharmacol. 2020, 177, 4851–4865. [Google Scholar] [CrossRef]
- Li, X.; Xiao, K.; Chen, X.; Liang, X.; Zhang, X.; Zhang, Z.; Zhai, J.; Wang, R.; Zhou, N.; Chen, Z.-J.; et al. Pathogenicity, Tissue Tropism and Potential Vertical Transmission of SARSr-CoV-2 in Malayan Pangolins. Microbiology 2020. [Google Scholar] [CrossRef]
- Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.-J.; Li, N.; Guo, Y.; Li, X.; Shen, X.; et al. Isolation and Characterization of 2019-NCoV-like Coronavirus from Malayan Pangolins. Microbiology 2020. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture. Annual Report Animal Usage by Fiscal Year. Fiscal Year 2018. Available online: https://www.aphis.usda.gov/animal_welfare/downloads/reports/Annual-Report-Animal-Usage-by-FY2017.pdf (accessed on 14 March 2021).
- San Diego Zoo Wildlife Alliance. Monkey. Available online: https://animals.sandiegozoo.org/animals/monkey (accessed on 30 March 2021).
- Morgan, K.N. A survey of Species Popularity at a Medium-Sized Zoo. Unpublished work.
- Moss, A.; Esson, M. Visitor Interest in Zoo Animals and the Implications for Collection Planning and Zoo Education Programmes. Zoo Biol. 2010, 29, 715–731. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.; Lee, D.R. Primate Conservation: The Prevention of Disease Transmission. Int. J. Primatol. 1999, 20, 803–826. [Google Scholar] [CrossRef]
- Negrey, J.D.; Reddy, R.B.; Schully, E.J.; Phillips-Garcia, S.; Owens, L.A.; Langergraber, K.E.; Mitani, J.C.; Thompson, M.E.; Wrangham, R.A.; Muller, M.N.; et al. Simultaneous Outbreaks of Respiratory Disease in Wild Chimpanzees Caused by Distinct Viruses of Human Origin. Emerg. Microb. Infect. 2019, 8, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Zmora, P.; Molau-Blazejewska, P.; Bertram, S.; Walendy-Gnirβ, K.; Nehlmeier, I.; Hartleib, A.; Moldenhauer, A.-S.; Konzok, S.; Dehmel, S.; Sewald, K.; et al. Non-human Primate Orthologues of TMPRSS2 Cleave and Activate the Influenza Virus Hemagglutinin. PLoS ONE 2017, 12, e0176597. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Bergey, C.M.; Jasinska, A.J.; Ramensky, V.; Burt, F.; Svardal, H.; Jorgensen, M.J.; Freimer, N.B.; Grobler, J.P.; Turner, T.R. ACE2 and TMPRSS2 Variation in Savanna Monkeys (Chlorocebus spp.): Potential Model for Functional Studies. PLoS ONE 2020. [Google Scholar] [CrossRef]
- Singh, H.; Choudhari, R.; Nema, V.; Khan, A.A. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its impact on COVID-19 disease. Microb. Pathog. 2021, 150. [Google Scholar] [CrossRef]
- Melin, A.D.; Janiak, M.C.; Marrone, F., III; Arora, P.S.; Higham, J.P. Comparative ACE2 Variation and Primate COVID-19 Risk. Commun. Biol. 2020, 3. [Google Scholar] [CrossRef]
- Rockx, B.; Kuiken, T.; Herfst, S.; Bestebroer, T.; Lamers, M.M.; de Meulder, D.; van Amerongen, G.; van den Brand, J.; Okba, N.M.A.; Schipper, D.; et al. Comparative Pathogenesis of COVID-19, MERS and SARS in a Non-human Primate Model. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Guebre-Xabier, M.; Patel, N.; Tian, J.-H.; Zhou, B.; Maciejewski, S.; Lam, K.; Portnoff, A.D.; Massare, M.J.; Frieman, M.B.; Piedra, P.A.; et al. NVX-CoV2373 Vaccine Protects Cynomolgus Macaque Upper and Lower Airways Against SARS-CoV-2 Challenge. BioRxiv 2020, 38. [Google Scholar] [CrossRef]
- Böszörményi, K.P.; Stammes, M.A.; Fagrouch, Z.C.; Kiemenyi-Kayere, G.; Niphuis, H.; Mortier, D.; van Driel, N.; Nieuwenhuis, I.; Zuiderwijk-Sick, E.; Meijer, L.; et al. Comparison of SARS-CoV-2 Infection in Two Non-human Primate Species: Rhesus and Cynomolgus Macaques. BioRxiv 2020. [Google Scholar] [CrossRef]
- Bao, L.; Deng, W.; Gao, H.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Lii, J.; Yu, P.; Xu, Y.; et al. Reinfection Could Not Occur in SARS-CoV-2 Infected Rhesus Macaques. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Song, T.-Z.; Zheng, H.-Y.; Han, J.-B.; Jin, L.; Yang, X.; Liu, F.-L.; Luo, R.-H.; Tian, R.-R.; Cai, H.-R.; Feng, X.-L.; et al. Delayed Severe Cytokine Storm and Immune Cell Infiltration in SARS-CoV-2-infected Aged Chinese Rhesus Macaques. Zool. Res. 2020, 41, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; Feldmann, F.; Williamson, B.N.; van Doremalen, N.; Pérez-Pérez, L.; Schultz, J.; Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; et al. Respiratory Disease in Rhesus Macaques Inoculated with SARS-CoV-2. Nature 2020, 585, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhao, Y.; Yu, W.; Yang, Y.; Gao, J.; Wang, J.; Kuang, D.; Yang, M.; Yang, J.; Ma, C.; et al. Comparison of SARS-CoV-2 Infections Among 3 Species of Non-human Primates. BioRxiv 2020. [Google Scholar] [CrossRef]
- Cross, R.W.; Agans, K.N.; Prasad, A.N.; Borisevich, V.; Woolsey, D.; Deer, D.J.; Dobias, N.S.; Geisbert, J.B.; Fenton, K.A.; Geisbert, T. Intranasal Exposure of African Green Monkeys to SARS-CoV-2 Results in Acute Phase Pneumonia with Shedding and Lung Injury Still Present in the Early Convalescence Phase. Virol. J. 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Woolsey, C.; Borisevich, V.; Prasad, A.N.; Agans, K.N.; Deer, D.L.; Dobias, N.S.; Heymann, J.C.; Foster, S.L.; Leveine, C.B.; Medina, L.; et al. Establishment of an African Green Monkey Model for COVID-19 and Protection Against Re-infection. Nature Immunol. 2021, 22, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Salguero, F.J.; White, A.D.; Slack, G.S.; Fotheringham, S.A.; Bewley, K.R.; Gooch, K.E.; Longet, S.; Humphries, H.E.; Watson, R.J.; Hunter, L.; et al. Comparison of Rhesus and Cynomolgus Macaques as an Infection Model for COVID-19. Nat. Comm. 2021, 12, 1260. [Google Scholar] [CrossRef]
- Johnson, S.C.; Ricks, K.M.; Jay, A.; Raymond, J.L.; Rossi, F.; Zeng, X.; Scruggs, J.; Dyer, D.; Frick, O.; Koehler, J.W.; et al. Development of a Coronavirus Disease 2019 Nonhuman Primate Model Using Airborne Exposure. PLoS ONE 2021, 16, e0246366. [Google Scholar]
- Glasser, D.B.; Goldberg, T.L.; Guma, N.; Balyesiima, G.; Agaba, H.; Gessa, S.J.; Rothman, J.M. Opportunities for Respiratory Disease Transmission from People to Chimpanzees at an East African Tourism Site. Am. J. Primatol. 2021, 83, e23228. [Google Scholar] [CrossRef]
- Spelman, L.H.; Gilardi, K.V.K.; Lukasik-Braum, M.; Kinani, J.-F.; Nyirakaragire, E.; Lowenstine, L.J.; Cranfield, M.R. Respiratory Disease in Mountain Gorillas (Gorilla beringei beringei) in Rwanda, 1990–2012: Outbreaks, Clinical Course, and Medical Management. J. Zoo. Wildl. Med. 2013, 44, 1027–1035. [Google Scholar] [CrossRef]
- Daly, N. First Great Apes at U.S. Zoo Receive COVID-19 Vaccine Made for Animals. Available online: https://www.nationalgeographic.com/animals/article/first-great-apes-at-us-zoo-receive-coronavirus-vaccine-made-for-animals (accessed on 30 March 2021).
- American Veterinary Medical Association. U.S. Pet Ownership Statistics. Available online: https://www.avma.org/resources-tools/reports-statistics/us-pet-ownership-statistics (accessed on 24 May 2021).
- Humane Society International. The Fur Trade. Available online: https://www.hsi.org/news-media/fur-trade/ (accessed on 24 May 2021).
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 Infection in Farmed Minks, the Netherlands, April and May 2020. Euro Surveill. 2020, 25. [Google Scholar] [CrossRef]
- Dyer, O. Covid-19: Denmark to Kill 17 Million Minks over Mutation that could Undermine Vaccine Effort. BMJ 2020, 371, m4338. [Google Scholar] [CrossRef]
- Enserink, M. Coronavirus Rips through Dutch Mink Farms, Triggering Culls. Science 2020, 368, 1169. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, M. SARS-CoV-2 and the Human-Animal Interface: Outbreaks on Mink Farms. Lancet Infect. Dis. 2021, 21, 18–19. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Detection of New SARS-CoV-2 Variants Related to Mink: Rapid Risk Assessment. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/RRA-SARS-CoV-2-in-mink-12-nov-2020.pdf (accessed on 30 May 2021).
- Lassaunière, R.; Fonager, J.; Rasmussen, M. SARS-CoV-2 Spike Mutations Arising in Danish Mink and Their Spread to Humans. Available online: https://files.ssi.dk/Mink-cluster-5-short-report_AFO2 (accessed on 30 May 2021).
- Kim, Y.-I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Cheng, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709. [Google Scholar] [CrossRef]
- Richard, M.; Kok, A.; de Meulder, S.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.M.A.; van Vlissingen, M.F.; Rocx, B.; Haagmans, B.L.; Koopmans, M.P.G.; et al. SARS-CoV-2 is transmitted Via Contact and Via the Air Between Ferrets. Nat. Commun. 2020, 11, 3496. [Google Scholar] [CrossRef] [PubMed]
- Giner, J.; Villanueva-Saz, S.; Tobajas, A.P.; Pérez, M.D.; Gonzáles, A.; Verde, M.; Yzuel, A.; García-García, A.; Taleb, V.; Lira-Navarret, E.; et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustella putorius furo). Animals 2021, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- New York Times. Spain Coronavirus Map and Case Count. Available online: https://www.nytimes.com/interactive/2020/world/europe/spain-coronavirus-cases.html (accessed on 19 May 2021).
- Gortázar, C.; Barrosa-Arévalo, S.; Ferreras-Colino, E.; Isla, J.; de la Fuente, G.; Rivera, B.; Domínguez, L.; de la Fuente, J.; Sánchez-Vizcaíno, J.M. Natural SARS-CoV-2 Infection in Kept Ferrets, Spain. BioRxiv 2021. [Google Scholar] [CrossRef]
- Boklund, A.; Hammer, A.S.; Quaade, M.J.; Rasmussen, T.B.; Lohse, L.; Strandbygaard, B.; Jorgensen, C.S.; Olesen, A.S.; Hjerpe, G.B.; Petersen, H.H.; et al. SARS-CoV-2 in Danish Mink arms: Course of the Epidemic and a Descriptive Analysis of the Outbreaks in 2020. Animals 2021, 11, 164. [Google Scholar] [CrossRef]
- Shuai, L.; Zhong, G.; Yuan, Q.; Wen, Z.; Wang, C.; He, X.; Liu, R.; Wangl, J.; Zhao, Q.; Liu, Y.; et al. Replication, Pathogenicity, and Transmission of SARS-CoV-2 in Minks. Nat. Sci. Rev. 2021, 8. [Google Scholar] [CrossRef]
- Sharun, K.; Dhama, K.; Pawde, A.M.; Gortázar, C.; Tiwari, R.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J.; de la Fuente, J.; Michalak, I.; Attia, Y.A. SARS-CoV-2 in Animals: Potential for Unknown Reservoir Hosts and Public Health Implications. Vet. Q. 2021, 41, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, L.V.; Dagnaes-Hansen, F.; Herskin, M.S. Welfare Assessment in Porcine Biomedical Research: Suggestion for an Operational Tool. Res. Vet. Sci. 2011, 91. [Google Scholar] [CrossRef]
- Camacho, P.; Fan, H.M.; Liu, Z.M.; He, J.Q. Large Mammalian Animal Models of Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heegaard, P.M.H.; Sturek, M.; Alloosh, M.; Belsham, G.J. Animal Models for COVID-19: More to the Picture than ACE2, Rodents, Ferrets, and Non-human Primates. A case for Porcine Respiratory Coronavirus and the Obese Ossabaw Pig. Front. Microbio. 2020, 11, 573756. [Google Scholar] [CrossRef] [PubMed]
- Weingartl, H.M.; Copps, J.; Drebot, M.A.; Marszal, P.; Smith, G.; Gren, J.; Andonova, M.; Pasick, J.; Kitching, P.; Czub, M. Susceptibility of Pigs and Chickens to SARS Coronavirus. Emerg. Infect. Dis. 2004, 10, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hu, G.; Wang, Y.; Ren, W.; Zhao, X.; Ji, F.; Zhu, Y.; Feng, F.; Gong, M.; Ju, X.; et al. Functional and Genetic Analysis of Viral Receptor ACE2 Orthologs Reveals a Broad Potential Host Range of SARS-CoV-2. Proc. Nat. Acad. Sci. USA 2021, 118, e2025373118. [Google Scholar] [CrossRef]
- Meekins, D.A.; Morozov, I.; Trujillo, J.D.; Gaudreault, N.N.; Bold, D.; Carossino, N.; Artiaga, B.L.; Indran, S.B.; Kwon, T.; Balaraman, V.; et al. Susceptibility of Swine Cells and Domestic Pigs to SARS-CoV-2. Emerg. Microb. Infect. 2020, 9, 2278–2288. [Google Scholar] [CrossRef]
- Delgado Blanco, J.; Hernandez-Alias, X.; Cianferoni, D.; Serrano, L. SARS-CoV-2 Inactivity in Different Species. PLoS Comput. Biol. 2020, 16, e1008450. [Google Scholar]
- Chu, H.; Chan, J.F.-W.; Yuen, T.T.-T.; Shuai, H.; Yuan, S.; Wang, Y.; Hu, B.; Yip, C.C.-Y.; Tsang, J.O.-L.; Huang, X.; et al. Comparative Tropism, Replication Kinetics, and Cell Damage Profiling of SARS-CoV-2 and SARS-CoV with Implications for Clinical Manifestations, Transmissibility, and Laboratory Studies of COVID-19: An Observational Study. Lancet Microbe 2020, 1, e14–e23. [Google Scholar] [CrossRef]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Hoper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in Fruit Bats, Ferrets, Pigs, and Chickens: An Experimental Transmission Study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef]
- Pickering, B.S.; Smith, G.; Pinette, M.M.; Embury-Hyatt, C.; Moffat, E.; Marszal, P.; Lewis, C.E. Susceptibility of Domestic Swine to Experimental Infection with Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2021, 27, 104–112. [Google Scholar] [CrossRef]
- Wick, N. Number of Hogs Euthanized Due to COVID-19 Impacts Still Unknown. Available online: https://www.agri-pulse.com/articles/14018-number-of-hogs-euthanized-due-to-covid-19-impacts-still-unknown (accessed on 1 June 2021).
- Pig333.com. Emergency Depopulation and Disposal Webinar from the National Pork Board. Available online: https://www.pig333.com/company_news/national-pork-board-emergency-depopulation-and-disposal-webinar_16113/ (accessed on 28 June 2021).
- Associated Press. Millions of Healthy Pigs Euthanized After COVID-19 Pandemic Closes Processing Facilities. Available online: https://fox59.com/news/millions-of-healthy-pigs-euthanized-after-covid-19-pandemic-closes-processing-facilities/ (accessed on 28 June 2021).
- Victor, K.; Barnard, A.; Phil, D. Slaughtering for a Living: A Hermeneutic Phenomenological Perspective on the Well-being of Slaughterhouse Employees. Int. J. Qual. Stud. Health Well Being 2016, 11, 30266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullins, C.R.; Pairis-Garcia, M.D.; George, K.A.; Anthony, R.; Johnson, A.K.; Coleman, G.J.; Rault, J.-L.; Millman, S.T. Determination of Swine Euthanasia Criteria and Analysis of Barriers to Euthanasia in the United States Using Expert Opinion. Anim. Welfare 2017, 26, 449–459. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT: Live Animals. 2021. Available online: http://www.fao.org/faostat/en/#data/QA/visualize (accessed on 17 May 2021).
- Bonilauri, P.; Rugna, G. Animal Coronaviruses and SARS-CoV-2 in Animals, What Do we Actually Know? Life 2021, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Damas, J.; Hughes, G.M.; Keough, K.C.; Painter, C.A.; Persky, N.S.; Corbo, M.; Hiller, M.; Koepfli, K.-P.; Pfenning, A.R.; Zhao, H.; et al. Broad Host Range of SARS-CoV-2 Predicted by Comparative and Structural Analysis of ACE2 in Vertebrates. Proceed. Nat. Acad. Sci. USA 2020, 117, 22311–22322. [Google Scholar] [CrossRef] [PubMed]
- Bouricha, E.M.; Hakmi, M.; Akachar, J.; Belyamani, L.; Ibrahimi, A. In silico Analysis of ACE2 Orthologues to Predict Animal Host Range with High Susceptibility to SARS-CoV-2. 3 Biotechnology 2020, 10, 483. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.R.; Schoeder, C.T.; Brown, J.A.; Smart, C.D.; Moth, C.; Wikswo, J.P.; Capra, J.A.; Meiler, J.; Chen, W.; Madhur, M.S. Predicting Susceptibility to SARS-CoV-2 Infection Based on Structural Differences in ACE2 Across Species. FASEB J. 2020, 34, 15946–15960. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, G.D.; Valleriani, F.; Puglia, I.; Monaco, F.; Pancrazio, C.D.; Luciani, M.; Krasteva, I.; Petrini, A.; Marcacci, M.; D’Alterio, N.; et al. SARS-CoV-2 Replicates in Respiratory ex vivo Organ Cultures of Domestic Ruminant Species. Vet. Microbiol. 2021, 252, 108933. [Google Scholar] [CrossRef]
- Ulrich, L.; Wernike, K.; Hoffmann, D.; Mettenleiter, T.C.; Beer, M. Experimental Infection of Cattle with SARS-CoV-2. Emerg. Infec. Diseases 2020, 26, 2979–2981. [Google Scholar] [CrossRef]
- Falkenberg, S.; Buckley, A.; Laverack, M.; Martins, M.; Palmer, M.V.; Lager, K.; Diel, D.G. Experimental Inoculation of Young Calves with SARS-CoV-2. Viruses 2021, 13, 441. [Google Scholar] [CrossRef]
- Palmer, M.V.; Martins, M.; Falkenberg, S.; Buckley, A.; Caserta, L.C.; Mitchell, P.K.; Cassmann, E.D.; Rollins, A.; Zylich, N.C.; Renshaw, R.W.; et al. Susceptibility of White-tailed Deer (Odocoileus virginianus) to SARS-CoV-2. J. Virol. 2021, 95, e00083-21. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Animal and Plant Health Inspection Service. Cases of SARS-CoV-2 in Animals in the United States. 30 April 2021. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/sa_one_health/sars-cov-2-animals-us (accessed on 18 May 2021).
- Chouchane, L.; Grivel, J.-C.; Abd Farag, E.A.B.; Pavlovski, I.; Maacha, S.; Sathappan, A.; Al Romaihi, H.E.; Abuaqul, S.W.J.; Ata, M.M.A.; Ismail Chouchane, A.; et al. Dromedary Camels as a Natural Source of Neutralizing Nanobodies Against SARS-CoV-2. JCI Insight 2021, 6, e145785. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.W.; Poon, L.L.M.; Gomaa, M.M.; Shehata, M.M.; Ranawaka, A.P.M.; Perera, D.A.Z.; El Rifay, A.S.; Siu, L.Y.; Guan, Y.; Webby, R.J.; et al. MERS Coronaviruses in Dromedary Camels, Egypt. Emerg. Infect. Dis. 2014, 20, 1049–1053. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Huang, B.; Jia, Z.; Wang, B.; Kankanamalage, S.G.; Titong, A.; Liu, Y. Development of Multi-specific Humanized Llama Antibodies Blocking SARS-CoV-2/ACE2 Interaction with High Affinity and Avidity. Emerg. Microb. Infect. 2020, 9, 1034–1036. [Google Scholar] [CrossRef]
- Nagy, P.; Wernery, U.; Burger, P.; Juhasz, J.; Faye, B. The Impact of COVID-19 on Old World Camelids and Their Potential Role to Combat a Human Pandemic. Anim. Front. 2021, 11, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Cima, G. Slaughter Delays Lead to Depopulation: Farms Short of Room as Processors Halt or Slow Meat Production Because of COVID-19. Available online: https://www.avma.org/javma-news/2020-06-15/slaughter-delays-lead-depopulation (accessed on 17 May 2021).
- Pedrosa, A.L.; Bitencourt, L.; Fróes, A.C.F.; Cazumbá, M.L.B.; Campos, R.G.B.; Camilo, S.B.; de Brio, S.; Simões e Silva, A.C. Emotional, Behavioral, and Psychological Impact of the COVID-19 Pandemic. Front. Psychol. 2020, 11, 566212. [Google Scholar] [CrossRef] [PubMed]
- Scopa, C.; Contalbrigo, L.; Greco, A.; Lanatà, A.; Scilingo, E.P.; Baragli, P. Emotional Transfer in Human-Horse Interaction: New Perspectives on Equine Assisted Interventions. Animals 2019, 9, 1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trösch, M.; Pellon, S.; Cuzol, F.; Parias, C.; Nowak, R.; Calandreau, L.; Lansade, L. Horses Feel Negative Emotions When They Watch Positive and Negative Horse-Human Interactions in a Video and Transpose What They Saw to Real Life. Anim. Cogn. 2020, 23, 643–653. [Google Scholar] [CrossRef]
- Davies, E.; McCon-Palfreyman, W.; Williams, J.M.; Lovell, G.P. The Impact of COVID-19 on Staff Working Practices in UK Horseracing. Animals 2020, 10, 2003. [Google Scholar] [CrossRef]
- Mattson, K. COVID-19 may Cause an Increase in Horse Surrenders. 22 July 2020. Available online: https://www.avma.org/javma-news/2020-08-15/covid-19-may-cause-increase-horse-surrenders (accessed on 17 May 2021).
- Hockenhull, J.; Furtado, T. Escaping the Gilded Cage: Could COVID-19 Lead to Improved Equine Welfare? A Review of the Literature. Appl. Anim. Behav. Sci. 2021, 237, 105303. [Google Scholar] [CrossRef]
- Bedford, E. Global Dog and Cat Pet Population 2018. Available online: https://www.statista.com/statistics/1044386/dog-and-cat-pet-population-worldwide/ (accessed on 1 June 2021).
- Roebling, A.D.; Johnson, D.; Blanton, J.D.; Levin, M.; Slate, D.; Fenwick, G.; Rupprecht, C.E. Rabies Prevention and Management of Cats in the Context of Trap-Neuter-Vaccinate-Release Programmes. Zoonoses Pub. Health 2014, 61, 290–296. [Google Scholar] [CrossRef] [Green Version]
- International Fund for Animal Welfare. Available online: https://www.ifaw.org/projects/big-cats-in-captivity-rescue-and-advocacy-united-states#:~:text=In%20the%20United%20States%2C%20there,with%20little%20oversight%20or%20accountability (accessed on 30 March 2021).
- Koley, T.; Madaan, S.; Chowdhury, S.R.; Kumar, M.; Kaur, P.; Singh, T.P.; Ethayathulla, A.S. Structural Analysis of COVID-19 Spike Protein in Recognizing the ACE2 Receptor of Different Mammalian Species and its Susceptibility to Viral Infection. 3 Biotechnology 2021, 11. [Google Scholar] [CrossRef]
- Stout, A.E.; André, N.M.; Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Coronaviruses in Cats and Other Companion Animals: Where Does SARS-CoV-2/COVID-19 Fit? Vet. Microbiol. 2020, 247, 108777. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Liu, C.; Xu, R.; Ruan, Z.; Zhao, S.; Zhang, H.; Wang, W.; Huang, X.; Yang, L.; Tang, Y.; et al. Predicting the Animal Susceptibility and Therapeutic Drugs to SARS-CoV-2 Based on Spike Glycoprotein Combined with ACE2. Front. Genet. 2020, 11, 575012. [Google Scholar] [CrossRef] [PubMed]
- Rendon-Marin, S.; Martinez-Gutierrez, M.; Whittaker, G.R.; Jaimes, J.A.; Ruiz-Saenz, J. SARS CoV-2 Spike Protein in silico Interaction with ACE2 Receptors from Wild and Domestic Species. Front. Genet. 2021, 12, 571707. [Google Scholar] [CrossRef]
- Chiocchetti, R.; Galiazzo, G.; Fracassi, F.; Giancola, F.; Pietra, M. ACE2 Expression in the Cat and the Tiger Gastrointestinal Tracts. Front. Vet. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Sun, K.; Gu, L.; Ma, L.; Duan, Y. Atlas of ACE2 Gene Expression in Mammals Reveals Novel Insights in Transmission of SARS-Cov-2. Heliyon 2020, 7, e05850. [Google Scholar] [CrossRef]
- Barrs, V.R.; Peiris, M.; Tam, K.W.S.; Law, P.Y.T.; Brackman, C.J.; To, E.M.W.; Yu, V.Y.T.; Chu, D.K.W.; Perera, R.A.P.M.; Sit, T.H.C. SARS-CoV-2 in Quarantined Domestic Cats from COVID-19 Households or Close Contacts, Hong Kong, China. Emerg Infec Dis. 2020, 26, 3071–3074. [Google Scholar] [CrossRef] [PubMed]
- Michelitsch, A.; Hoffmann, D.; Wernike, K.; Beer, M. Occurrence of Antibodies against SARS-CoV-2 in the Domestic Cat Population of Germany. Vaccines 2020, 8, 772. [Google Scholar] [CrossRef]
- Patterson, E.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.I.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of Exposure to SARS-CoV-2 in Cats and Dogs from Households in Italy. Nat. Comm. 2020, 11, 6231. [Google Scholar] [CrossRef]
- Temmam, S.; Barbarino, A.; Maso, D.; Behillil, S.; Enouf, V.; Huon, C.; Jaraud, A.; Chevallier, L.; Backovic, M.; Perot, P.; et al. Absence of SARS-CoV-2 Infection in Cats and Dogs in Close Contact with a Cluster of COVID-19 Patients in a Veterinary Campus. One Health 2020, 10, 100164. [Google Scholar] [CrossRef]
- Klaus, J.; Palizzotto, C.; Zini, E.; Meli, M.L.; Leo, C.; Egberink, H.; Zhao, S.; Hofmann-Lehmann, R. SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-cell Lymphoma. Viruses 2020, 13, 527. [Google Scholar] [CrossRef]
- Chiba, S.; Halfmann, P.J.; Hatta, M.; Maemura, T.; Fan, S.; Armbrust, T.; Swartley, O.M.; Crawford, L.K.; Kawaoka, Y. Protective Immunity and Persistent Lung Sequelae in Domestic Cats after SARS-CoV-2 Infection. Emerg Infec Dis. 2021, 27, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Song, Z.; Xue, J.; Gao, H.; Liu, J.; Wang, J.; Guo, Q.; Zhao, B.; Qu, Y.; Qi, F.; et al. Susceptibility and Attenuated Transmissibility of SARS-CoV-2 in Domestic Cats. J. Infect. Dis. 2021, 233, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Halfmann, P.J.; Hatta, M.; Chiba, S.; Maemura, T.; Fan, S.; Takeda, M.; Kinoshita, N.; Hattori, S.; Tagawa, Y.S.; Iwatsuki-Horimoto, K.; et al. Transmission of SARS-CoV-2 in Domestic Cats. N. Engl. J. Med. 2020, 383, 592–594. [Google Scholar] [CrossRef]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Porter, S.M.; Gordy, P.W.; Nehring, M.; Byas, A.D.; VandeWoude, S.; Ragan, I.K.; Maison, R.M.; Bowen, R.A. Experimental Infection of Domestic Dogs and Cats with SARS-CoV-2: Pathogenesis, Transmission, and Response to Reexposure in Cats. Proc. Natl. Acad. Sci. USA 2020, 117, 26382–26388. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Trujillo, J.D.; Carossino, M.; Meekins, D.A.; Morozov, I.; Madden, D.W.; Idran, S.V.; Bold, D.; Balaraman, V.; Kwon, T.; et al. SARS-CoV-2 Infection, Disease and Transmission in Domestic Cats. Emerg Microbes Infect. 2020, 9, 2322–2332. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Huang, K.; Yang, Y.; Hui, X.; Gao, J.; He, X.; Li, C.; Gong, W.; Zhang, Y.; et al. SARS-CoV-2 Neutralizing Serum Antibodies in Cats: A Serological Investigation. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Spada, E.; Vitale, F.; Bruno, F.; Castelli, G.; Reale, S.; Perego, R.; Baggiani, L.; Proverbio, D. A Pre- and During Pandemic Survey of SARS-CoV-2 Infection in Stray Colony and Shelter Cats from a High Endemic Area of Northern Italy. Viruses 2021, 13, 618. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, G.; Xu, Y.; Pu, L.; Wang, Q.; Wang, L.; Wang, W.; Song, Y.; Chen, M.; Wang, L.; et al. SARS-CoV-2-Positive Sputum and Feces after Conversion of Pharyngeal Samples in Patients with COVID-19. Ann. Intern. Med. 2020, 172, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.S.; Hung, I.F.N.; Chan, P.P.Y.; Lung, K.C.; Tso, E.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.H.; Tam, A.R.; et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef]
- Gupta, S.; Parker, J.; Smits, S.; Underwood, J.; Dolwani, S. Persistent Viral Shedding of SARS-CoV-2 in Faeces—A Rapid Review. Colorectal Dis. 2020, 22, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Harder, J. Lockdown Unleashed a Runaway Pandemic Puppy Economy. Is it here to Stay? Available online: https://www.bostonglobe.com/2021/06/03/magazine/lockdown-unleashed-runaway-pandemic-puppy-economy-is-it-here-stay/ (accessed on 6 June 2021).
- Hohenhaus, A. Has the COVID-19 Pandemic Resulted in More Pets? Available online: https://www.amcny.org/blog/2021/01/06/covid19-pandemic-pet-ownership/# (accessed on 6 June 2021).
- Mueller, M.K.; Richer, A.M.; Callina, K.S.; Charmaraman, L. Companion Animal Relationships and Adolescent Loneliness during COVID-19. Animals 2021, 11, 885. [Google Scholar] [CrossRef] [PubMed]
- Holland, K.E.; Owczarczak-Garstecka, S.C.; Anderson, K.L.; Casey, R.A.; Christley, R.M.; Harris, L.; McMillan, K.M.; Mead, R.; Murray, J.K.; Samet, L.; et al. “More Attention than Usual”: A Thematic Analysis of Dog Ownership Experiences in the UK during the First COVID-19 Lockdown. Animals 2021, 11, 240. [Google Scholar] [CrossRef]
- Christley, R.M.; Murray, J.K.; Anderson, K.L.; Buckland, E.L.; Casey, R.A.; Harvey, N.D.; Harris, L.; Holland, K.E.; McMillan, K.M.; Mead, R.; et al. Impact of the First COVID-19 Lockdown on Management of Pet Dogs in the UK. Animals 2021, 11, 5. [Google Scholar] [CrossRef]
- Rodríguez-Barranco, M.; Rivas-García, L.; Quiles, J.L.; Redondo-Sánchez, D.; Aranda-Ramírez, P.; Llopis-Gonzáles, J.; Perez, M.J.S.; Sánchez-González, C. The Spread of SARS-CoV-2 in Spain: Hygiene Habits, Sociodemographic Profile, Mobility Patterns and Comorbidities. Environ. Res. 2021, 192, 110223. [Google Scholar] [CrossRef]
- Erles, K.; Brownlie, J. Canine Respiratory Coronavirus: An Emerging Pathogen in the Canine Infectious Respiratory Disease Complex. Vet. Clin. North. Am. Small Anim. Pract. 2008, 38, 815–825. [Google Scholar] [CrossRef]
- Priestnall, S.L. Canine Respiratory Coronavirus: A Naturally Occurring Model of COVID-19? Vet. Pathol. 2020, 57, 467–471. [Google Scholar] [CrossRef]
- Thunders, M.; Delahunt, B. Gene of the Month: TMPRSS2 (Transmembrane Serine Protease 2). J. Clin. Pathol. 2020, 73, 773–776. [Google Scholar] [CrossRef]
- Mathavarajah, S.; Dellarie, G. Lions, Tigers, and Kittens too: ACE2 and Susceptibility to COVID-19. Evol. Med. Publ. Health 2020, 3, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, L. Key Components of Inflammasome and Pyroptosis Pathways are Deficient in Canines and Felines, Possibly Affecting Their Response to SARS-CoV2 Infection. Front. Immunol. 2021, 11, 592622. [Google Scholar] [CrossRef]
- O’ Connor, A.M.; Totton, S.C.; Sargeant, J.M. A Rapid Review of Evidence of Infection of Pets and Livestock with Human-Associated Coronavirus Diseases, SARS, MERS, and COVID-19, and Evidence of the Fomite Potential of Pets and Livestock. Available online: http://www.syrea.org/wp-content/uploads/2020/04/Rapid-Review-of-pets-as-fomites_3.pdf (accessed on 5 July 2021).
- Fritz, M.; Rosolen, B.; Krafft, E.; Becquart, P.; Elguero, E.; Vratskikh, O.; Denolly, S.; Boson, B.; Vanhomwegen, J.; Ar Gouilh, M.; et al. High Prevalence of SARS-CoV-2 Antibodies in Pets from COVID-19+Households. One Health 2021, 11, 100192. [Google Scholar] [CrossRef]
- Hamer, S.A.; Pauvolid-Correa, A.; Zecca, I.B.; Davila, E.; Auckland, L.D.; Roundy, C.M.; Tang, W.; Torchetti, M.L.; Jenkins-Moore, M.; Mozingo, K.; et al. SARS-CoV-2 Infections and Viral Isolations among Serially Tested Cats and Dogs in Households with Infected Owners in Texas, USA. Viruses 2021, 13, 938. [Google Scholar] [CrossRef]
- Decaro, N.; Balboni, A.; Bertolotti, L.; Martino, P.A.; Mazzei, M.; Mira, F.; Pagnini, U. SARS-CoV-2 Infection in Dogs and Cats: Facts and Speculations. Front. Vet. Sci. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, J.; Collis, G.M. Dogs as Catalysts for Social Interactions: Robustness of the Effect. Br. J. Psychol. 2000, 91, 61–70. [Google Scholar] [CrossRef]
- Hoffman, C.L. The Experience of Teleworking with Dogs and Cats in the United States during COVID-19. Animals 2021, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Bulbena, A.; Fatjó, J. The Value of Companion Dogs as a Source of Social Support for Their Owners: Findings from a Pre-pandemic Representative Sample and a Convenience Sample Obtained During the COVID-19 Lockdown in Spain. Front. Psychiatry 2021, 12, 622060. [Google Scholar] [CrossRef]
- Applebaum, J.W.; Tomlinson, C.A.; Matijczak, A.; McDonald, S.E.; Zsembik, B.A. The Concerns, Difficulties, and Stressors of Caring for Pets during COVID-19: Results from a Large Survey of U.S. Pet Owners. Animals 2020, 10, 1882. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, D. Rise in Aggressive Dog Cases since COVID-19 Pandemic. Available online: https://www.prnewswire.com/news-releases/rise-in-aggressive-dog-cases-since-covid-19-pandemic-301134698.html (accessed on 6 June 2021).
- Dixon, C.A.; Mistry, R.D. Dog Bites in Children Surge during Coronavirus Disease-2019: A Case for Enhanced Prevention. J. Pediatr. 2020, 225, 231–232. [Google Scholar] [CrossRef]
- Gray, A. Impending Dog Behaviour Crisis Following COVID-19 Lockdown. Vet. Record 2020, 187, e56. [Google Scholar] [CrossRef]
- Freuling, C.M.; Breithaupt, A.; Müller, T.; Sehl, J.; Balkema-Buschmann, A.; Rissmann, M.; Klein, A.; Wylezich, C.; Höper, D.; Wernike, K.; et al. Susceptibility of Raccoon Dogs for Experimental SARS-CoV-2 Infection. Emerg. Infec. Dis. 2020, 26. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L. Estimating Mouse and Rat Use in American Laboratories by Extrapolation from Animal Welfare Act-regulated Species. Sci. Rep. 2021, 11. [Google Scholar] [CrossRef]
- Martinez-Hernández, F.; Isaak-Delgado, A.B.; Alfonso-Toledo, J.A.; Muñoz-Garcia, C.I.; Villalobos, G.; Aréchiga-Ceballos, N.; Rendón-Franco, E. Assessing the SARS-CoV-2 Threat to Wildlife: Potential Risk to a Broad Range of Animals. Perspec Ecol Conserv. 2020, 18, 223–234. [Google Scholar]
- Gu, H.; Chen, Q.; Yang, G.; He, L.; Fan, H.; Deng, Y.-Q.; Wang, Y.; Teng, Y.; Zhao, Z.; Cui, Y.; et al. Rapid Adaptation of SARS-CoV-2 in BALB/c Mice: Novel Mouse Model for Vaccine Efficacy. BioRxiv 2020. [Google Scholar] [CrossRef]
- Oladunni, S.; Park, J.G.; Pino, P.A.; Gonzalez, O.; Akheter, A.; Allué-Guardia, A.; Olmo-Fontánez, A.; Gautam, S.; Garcia-Vilanova, A.; Ye, C.J.; et al. Lethality of SARS-CoV-2 Infection in K18 Human Angiotensin-converting Enzyme 2 Transgenic Mice. Nature Comm 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; et al. The Pathogenicity of SARS-CoV-2 in Transgenic Mice. Nature 2020, 583, 830–833. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.S.; Luo, C.M.; Aihara, H.; Geng, Q.B.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sia, S.F.; Yan, L.-M.; Chin, A.W.H.; Fung, K.; Choy, K.-T.; Wong, A.Y.L.; Kaewpreedee, P.; Perera, R.A.P.M.; Poon, L.L.M.; Nicholls, J.M.; et al. Pathogenesis and Transmission of SARS-CoV-2 in Golden Hamsters. Nature 2020, 583, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.-W.; Zhang, A.J.; Yuan, S.; Poon, V.K.-M.; Chan, C.C.-S.; Lee, A.C.-Y.; Chan, W.-M.; Fan, Z.; Tsoi, H.-W.; Wen, L.; et al. Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clin. Infec. Diseas 2020, 71, 2428–2446. [Google Scholar] [CrossRef]
- Imai, M.; Iwatsuki-Horimoto, K.; Hatta, M.; Loeber, S.; Halfmann, P.J.; Nakajima, N.; Watanabe, T.; Ujie, M.; Takahashi, K.; Ito, M.; et al. Syrian Hamsters as a Small Animal Model for SARS-CoV-2 Infection and Countermeasure Development. Proc. Natl. Acad. Sci. USA 2020, 117, 16587–16595. [Google Scholar] [CrossRef]
- Bryche, B.; St Albin, A.; Murri, S.; Lacôte, S.; Pulido, C.; Ar Gouilh, M.; Lesellier, S.; Servat, A.; Wasniewski, N.; Picard-Meyer, E.; et al. Massive Transient Damage of the Olfactory Epithelium Associated with Infection of Sustentacular Cells by SARS-CoV-2 in Golden Syrian Hamsters. Brain Behav. Immun. 2020, 89, 579–586. [Google Scholar]
- Bertzbach, L.D.; Vladimirova, D.; Dietert, K.; Abdelgawad, A.; Gruber, A.D.; Osterrieder, N.; Trimpert, J. SARS-CoV-2 Infection of Chinese Hamsters (Cricetulus griseus) Reproduces COVID-19 Pneumonia in a Well-Established Small Animal Model. Transbound. Emerg. Dis. 2020, 68, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
- Trimpert, J.; Vladimirova, D.; Dietert, K.; Abdelgawad, A.; Kunec, D.; Dökel, S.; Gruber, A.; Bertzbach, L.; Osterrieder, N. The Roborovski Dwarf Hamster—A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-1 Infection. Cell Reports 2020, 33, 108488. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, L.; Michelitsch, A.; Halwe, N.; Wernike, K.; Hoffmann, D.; Beer, M. Experimental SARS-CoV-2 Infection of Bank Voles. Emerg. Infect. Diseases. 2021, 27, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Fagre, A.; Lewis, J.; Eckley, M.; Zhan, S.; Rocha, S.M.; Sexton, N.R.; Burke, B.; Geiss, B.; Peersen, O.; Bass, T.; et al. SARS-CoV-2 Infection, Neuropathogenesis and Transmission Among Deer Mice: Implications for Spillback to New World Rodents. PLoS Pathog. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Cross-species Transmission of the Newly Identified Coronavirus 2019-nCoV. J. Med. Virol. 2020, 92, 433–440. [Google Scholar] [CrossRef]
- Paraskevis, D.; Kostaki, E.G.; Magiorkinis, G.; Panayiotakopoulos, G.; Sourvinos, G.; Tsiodras, S. Full-genome Evolutionary Analysis of the Novel Corona Virus (2019-nCoV) Rejects the Hypothesis of Emergence as a Result of a Recent Recombination Event. Infect. Genet. Evol. 2020, 79. [Google Scholar] [CrossRef]
- Cohen, J. Mining Coronavirus Genomes for Clues to the Outbreak’s Origins. Available online: https://www.sciencemag.org/news/2020/01/mining-coronavirus-genomes-clues-outbreak-s-origins (accessed on 6 June 2021).
- Sun, D.-L.; Gao, Y.-Z.; Ge, X.-Y.; Shi, Z.-L.; Zhou, N.-Y. Special Features of Bat Microbiota Differ from Those of Terrestrial Mammals. Front. Microbiol. 2020, 11, 1040. [Google Scholar] [CrossRef]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.-P.; Swanepoel, R. Fruit Bats as Reservoirs of Ebola virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef]
- Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Cramiri, G.; Hu, Z.; Zhang, J.; et al. Bats are Natural Reservoirs of SARS-like Coronaviruses. Science 2005, 310, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Olival, K.J.; Hosseini, P.R.; Zambran-Torrelio, C.; Ross, N.; Boglich, T.L.; Daszak, P. Host and Viral Traits Predict Zoonotic Spillover from Mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef]
- Wang, L.-F.; Anderson, D.E. Viruses in Bats and Potential Spillover to Animals and Humans. Cur. Op. Virol. 2019, 34, 79–89. [Google Scholar] [CrossRef]
- Luo, J.; Liang, S.; Jin, F. Gut Microbiota in Antiviral Strategy from Bats to Humans: A Missing Link in COVID-19. Sci. China Life Sci. 2021, 64, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kunzmann, K. WHO, China Report Suggests COVID-19 Passed from Bats to Humans Through Another Animal. Available online: https://www.contagionlive.com/view/who-china-report-covid-19-passed-bats-humans-animal (accessed on 6 June 2021).
- MacLean, O.A.; Lytras, S.; Weaver, S.; Singer, J.B.; Boni, M.F.; Lemey, P.; Kosalakovsky Pond, S.L.; Robertson, D.L. Natural Selection in the Evolution of SARS-CoV-2 in Bats Created a Generalist Virus and Highly Capable Human Pathogen. PLoS Biol. 2021, 19, e3001115. [Google Scholar] [CrossRef] [PubMed]
- Cota, R. All 8 Pangolin Species Threatened with Extinction; 2 Species Now “Critically Endangered”. Available online: https://www.pangolins.org/tag/endangered-species/ (accessed on 6 June 2021).
- Cites.org. World’s Wildlife Trade Regulator Focused on Front-line Action. Pangolins, Whales, Elephants, Precious Timber on the Priority List for 2018. Available online: https://cites.org/eng/CITES_SC69_worlds_wildlife_trade_regulator_focused_front-line_action_04122017 (accessed on 6 June 2021).
- Lam, T.T.-Y.; Jia, N.; Zhang, Y.-W.; Shum, M.H.-h.; Jiang, J.-F.; Zhu, H.-C.; Tong, Y.-G.; Shi, Y.-X.; Ni, X.-B.; Liao, Y.S.; et al. Identifying SARS-CoV-2-related Coronaviruses in Malayan Pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Friend, T.; Stebbing, J. What is the Intermediate Host Species of SARS-CoV-2? Future Virol. 2021. [Google Scholar] [CrossRef]
- Zhao, J.; Cui, W.; Tian, B.-P. The Potential Intermediate Hosts for SARS-CoV-2. Front. Microbiol. 2020, 11, 580137. [Google Scholar] [CrossRef]
- Turcios-Casco, M.A.; Gatti, R.C. Do Not Blame Bats and Pangolins! Global Consequences for Wildlife Conservation after the SARS-CoV-2 Pandemic. Biodivers. Conserv. 2020. [Google Scholar] [CrossRef]
- Duckworth, J.W.; Timmins, R.J.; Chutipong, W.; Choudhury, A.; Mathai, J.; Willcox, D.H.A.; Ghimirey, Y.; Chan, B.; Ross, J. Paguma larvata. The IUCN Red List of Threatened Species 2016. Available online: https://www.iucnredlist.org/species/41692/45217601 (accessed on 6 June 2021).
- Shi, Z.; Hu, Z. A Review of Studies on Animal Reservoirs of the SARS Coronavirus. Virus Res. 2008, 133, 74–87. [Google Scholar] [CrossRef]
- Wang, M.; Yan, M.; Xu, H.; Liang, W.; Kan, B.; Zheng, B.; Chen, H.; Zheng, H.; Xu, Y.; Zhang, E.; et al. SARS-CoV Infection in a Restaurant from Palm Civet. Emerg Infect. Dis. 2005, 11, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.; Acharya, A.; Mohan, M.; Ng, C.L.; Reid, S.P.; Byrareddy, S.N. Animal Models for SARS-CoV-2 Research: A Comprehensive Literature Review. Transbound. Emerg. Dis. 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Fontela, C.; Dowling, W.E.; Funnell, S.G.P.; Gsell, P.-S.; Riveros-Balta, R.A.; Albrecht, H.A.; Baric, R.S.; Carroll, M.W.; Cavaleri, M.; Qin, C.; et al. Animal models for COVID-19. Nature 2020, 586, 509–515. [Google Scholar] [CrossRef]
- Ehaideb, S.N.; Abdullah, M.L.; Abuyassin, B.; Bouchama, A. Evidence of a Wide Gap between COVID-19 in Humans and Animal Models: A Systemic Review. Crit. Care 2020, 24, 594. [Google Scholar] [CrossRef] [PubMed]
- .Singh, A.; Singh, R.S.; Sarma, P.; Batra, G.; Joshi, R.; Kaur, H.; Sharma, A.R.; Prakash, A.; Medhi, B. A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol. Sin. 2020, 35, 290–304. [Google Scholar] [CrossRef]
- Messenger, A.M.; Barnes, A.N.; Gray, G.C. Reverse Zoonotic Disease Transmission (Zooanthroponosis): A Systematic Review of Seldom-Documented Human Biological Threats to Animals. PLoS ONE 2014, 9, e89055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandin, T. Methods to Prevent Future Severe Animal Welfare Problems Caused by COVID-19 in the Pork Industry. Animals 2021, 11, 830. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, A.; Ho, J.; Sparagano, O.A.E.; Zia, U.-U.-R. Economic and Social Impacts of COVID-19 on Animal Welfare and Dairy Husbandry in Central Punjab, Pakistan. Front. Vet. Sci. 2020, 7, 589971. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M.; González-Buines, A.; Rodriguez-Morales, A.J. Animal Welfare and Livestock Supply Chain Sustainability under the COVID-19 Outbreak: A Review. Front. Vet. Sci. 2020, 7, 582528. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.; Mishra, A.; Joshi, R.; Sharma, A.R.; Upadhyay, S.; Sarma, P.; Prakash, A.; Medhi, B. Human Animal Interface of SARS-CoV-2 (COVID-19) Transmission: A Critical Appraisal of Scientific Evidence. Vet. Res. Commun. 2020, 44, 119–130. [Google Scholar] [CrossRef]
- Coe, J.B.; Young, I.; Lambert, K.; Dysart, L.; Borden, L.N.; Rajic, A. A Scoping Review of Published Research on the Relinquishment of Companion Animals. J. App. Anim. Welf. Sci. 2014, 17, 253–273. [Google Scholar] [CrossRef]
- Friend, J.R.; Bench, C.J. Evaluating Factors Influencing Dog Post-adoptive Return in a Canadian Animal Shelter. Animal Welfare 2020, 29, 399–410. [Google Scholar] [CrossRef]
- Raudies, C.; Waiblinger, S.; Arhant, C. Characteristics and Welfare of Long-term Shelter Dogs. Animals 2021, 11, 194. [Google Scholar] [CrossRef]
- Hemy, M.; Rand, J.; Morton, J.; Paterson, M. Characteristics and Outcomes of Dogs Admitted to Queensland RSPCA Shelters. Animals 2017, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Piotti, P.; Karagiannis, C.; Satchell, L.; Michelazzi, M.; Albertini, M.; Alleva, E.; Pirrone, F. Use of the Milan Pet Quality of Life Instrument (MPQL) to Measure Pets’ Quality of Life during COVID-19. Animals 2021, 11, 1336. [Google Scholar] [CrossRef] [PubMed]
- Hrenchir, T. Vets Say Dogs are at Higher Risk of Anxiety as the Pandemic Winds Down and Owners are Out of the House More. Available online: https://www.cjonline.com/story/lifestyle/pets/2021/03/21/covid-19-winds-down-pets-rising-risk-feeling-separation-anxiety/4699256001/ (accessed on 8 June 2021).
- Tynes, V. Separation Anxiety: Treating Dogs in the Wake of COVID-19. Available online: https://www.veterinarypracticenews.com/separation-anxiety-treating-dogs-in-the-wake-of-covid-19/ (accessed on 8 June 2021).
- United States Department of Agriculture, Animal and Plant Health Inspection Service. Guidance for Zoos and Captive Wildlife Facilities: Protecting Susceptible Animals from SARS-CoV-2 infection. Available online: https://www.aphis.usda.gov/animal_welfare/downloads/ac-tech-note-covid-animals.pdf (accessed on 20 May 2021).
- Centers for Disease Control and Prevention. COVID-19 and Animals. Available online: https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/animals.html (accessed on 7 June 2021).
- Davey, G. Visitors’ Effects on the Welfare of Animals in the Zoo: A Review. J. Appl. Anim. Welf. Sci. 2007, 10, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.M.G.; Thyssen, A.; Laevens, H.; Vervaecke, H. The Influence of Zoo Visitor Numbers on the Behaviour of Harbour Seals (Phoca vitulina). J. Zoo Aquar. Res. 2013, 1, 31–34. [Google Scholar]
- Larsen, M.J.; Sherwin, S.L.; Rault, J. Number of Nearby Visitors and Noise Level Affect Vigilance in Captive Koalas. Appl. Anim. Behav. Sci. 2014, 154, 76–82. [Google Scholar] [CrossRef]
- Hosey, G.R. Zoo Animals and Their Human Audiences: What is the Visitor Effect? Anim. Welf. 2000, 9, 343–357. [Google Scholar]
- Miller, M.E.; Robinson, C.M.; Margulis, S.W. Behavioral Implications of the Complete Absence of Guests on a Zoo-Housed Gorilla Troop. Animals 2021, 11, 1346. [Google Scholar] [CrossRef] [PubMed]
- Sexton-McGrath, K.; Mounter, B. Marine Biologists Say Some Species of Fish in Aquariums are Exhibiting Signs of ‘Loneliness’. Available online: https://www.abc.net.au/news/2020-05-12/sad-fish-missing-human-interaction-at-aquariums/12235054 (accessed on 8 June 2021).
- Chaves, A.; Montecino-Latorre, D.; Alcazar, P.; Suzan, G. Wildlife Rehabilitation Centers as a Potential Source of Transmission of SARS-CoV-2 into Native Wildlife of Latin America. Biotropica 2021, 1–7. [Google Scholar] [CrossRef]
- Gryseels, S.; De Bruyn, L.; Gyselings, R.; Calvignac-Spencer, S.; Leendertz, F.H.; Leirs, H. Risk of Human-to-Wildlife Transmission of SARS-CoV-2. Mamm. Rev. 2021, 51, 272–292. [Google Scholar] [CrossRef]
- Moorhouse, T.P.; D’Cruze, N.C.; Macdonald, D.W. The Pandemic as a Conservation Marketing Intervention: Could COVID-19 Lower Global Demand for Wildlife Products? Front. Ecol. Evol. 2021, 9, 609558. [Google Scholar] [CrossRef]
- Yuan, J.; Lu, Y.; Cao, X.; Cui, H. Regulating Wildlife Conservation and Food Safety to Prevent Human Exposure to Novel Virus. Ecosyst. Health Sustain. 2020, 6, 1741325. [Google Scholar] [CrossRef] [Green Version]
Species | ACE2 Genetic Polymorphisms |
---|---|
Human (Homo sapiens) | A291P, (D346-348), N90, Y41, K353, K31 [70] |
Chinese rufous horseshoe bat (Rhinolophus sinicus) | K31, Y41H, N82, N90, K353 [70] |
Greater horseshoe bat (Rhinolophus ferrumequinum) | K31D, Y41H, N82, N90, K353 [70] |
Domestic cat (Felis catus) | T27, F28, D30, K31, H34, D38, Y41, Q42, M82, E329, K353, G354, D355 [70] |
Domestic dog (Canis familiaris) | K353 [74] |
Domestic pig (Sus scrofa) | TGF, BJ01 [76] |
Domestic ferret (Mustela furo) | DPP4, BMP2, NFIA, AXIN2, DAAM1, ZNF608, ME1, MGLL, LGR4, ABHD6, and ACADM, K31, K353 [70,77] |
Rhesus macaque (Macaca mulatta) | K31, E35, D38, M82, K353, N90, Y41 [70] |
Golden Syrian hamster (Mesocricetus auratus) | K31, E35, D38, M82, K353 [70,78] |
Sunda pangolin (Manis javanica) | K31, E35, D38, M82, K353 [70,78] |
Mink (Neovison vison) | K353 [74] |
Mouse (Mus musculus) | K31, M82, and K353 are present in genetically engineered mouse models as part of their human hACE2 [79] |
Species | Reported Susceptibility | Reported Symptoms | Predicted Transmissibility to Humans |
---|---|---|---|
Human (Homo sapiens) | High [70] | Fever, cough, shortness of breath/difficulty breathing, fatigue, muscle body aches, loss of taste and/or smell [80] | High [81] |
Chinese rufous horseshoe bat (Rhinolophus sinicus) | High [70] | No symptoms of pathology, transformation, of gut microbiome [82,83] | High |
Mink (Neovison vison) | High [84] | Lung lesions, interstitial pneumonia [85] | High |
Domestic dog (Canis familiaris) | Low [85] | No clinical symptoms [86] | Low |
Domestic pig (Sus scrofa) | Low [85,87] | No clinical symptoms [85] | Low |
Domestic ferret (Mustela furo) | High [87] | Severe lung inflammation, reduced activity, occasionally cough [87], elevated body temperature and loss of appetite [77] | Low |
Rhesus macaque (Macaca mulatta) | High [70] | Weight loss with rapid respiration associated with moderate interstitial pneumonia and virus replication both in the upper and lower respiratory tract [88] | Low |
Golden Syrian hamster (Mesocricetus auratus) | High [88,89] | Severe alveolar flooding, lung consolidation, increased respiratory rate, weight loss, resolving inflammation [88,89] | Low |
Sunda pangolin (Manis javanica) | High [70,86] | Intestinal Pneumonia, severe congestion and infiltration of inflammatory cells in the liver, kidney, lymph nodes, minor hemorrhage in alveolar ducts, and epithelial surface of bladder [90,91] | Low |
Domestic cat (Felis catus) | High [70] | Ocular discharge, wheezing, coughing, and sneezing, mild respiratory, and digestive complications [83,84] | Low |
Mouse (Mus musculus) | Low [79] | No clinical symptoms [79] | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekstrand, K.; Flanagan, A.J.; Lin, I.E.; Vejseli, B.; Cole, A.; Lally, A.P.; Morris, R.L.; Morgan, K.N. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals 2021, 11, 2044. https://doi.org/10.3390/ani11072044
Ekstrand K, Flanagan AJ, Lin IE, Vejseli B, Cole A, Lally AP, Morris RL, Morgan KN. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals. 2021; 11(7):2044. https://doi.org/10.3390/ani11072044
Chicago/Turabian StyleEkstrand, Kimberly, Amanda J. Flanagan, Ilyan E. Lin, Brendon Vejseli, Allicyn Cole, Anna P. Lally, Robert L. Morris, and Kathleen N. Morgan. 2021. "Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic" Animals 11, no. 7: 2044. https://doi.org/10.3390/ani11072044
APA StyleEkstrand, K., Flanagan, A. J., Lin, I. E., Vejseli, B., Cole, A., Lally, A. P., Morris, R. L., & Morgan, K. N. (2021). Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals, 11(7), 2044. https://doi.org/10.3390/ani11072044