Effects of Concentrate and Bypass Fat Supplementations on Growth Performance, Blood Profile, and Rearing Cost of Feedlot Buffaloes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement of Animals Rights
2.2. Study Area
2.3. Experimental Animals
2.4. Experimental Design
2.5. Data Collection
2.6. Blood and Serum Collection
2.7. Cost of Feeding
2.8. Statistical Analysis
3. Results
3.1. Dry Matter Intake
3.2. Body Weight Pattern
3.3. Average Daily Gain (ADG)
3.4. Overall Intake and Growth Performance
3.5. Body Condition Score
3.6. Serum Biochemical and Hormonal Profiles
3.7. Analysis of the Cost of Feeding
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- NRC National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Pasha, T.N. Prospect of nutrition and feeding for sustainable buffalo production. Buffalo Bull. 2013, 32, 91–110. [Google Scholar]
- Franzolin, R. Feed efficiency: A comparison between cattle and buffalo. Buffalo J. 1994, 2, 39–50. [Google Scholar]
- Sarwar, M.; Khan, M.A.; Iqbal, Z. Status paper feed resources for livestock in Pakistan. Int. J. Agric. Biol. 2002, 4, 186–192. [Google Scholar]
- Jabbar, M.A.; Anjum, M.I.; Rehman, S.; Shahzad, W. Comparative efficiency of sunflower meal and cottonseed cakes in the feed of crossbred calves for meat production. Ratio 2006, 26, 126–128. [Google Scholar]
- Qureshi, M.S.; Habib, G.; Samad, H.A.; Siddiqui, M.M.; Ahmad, N.; Syed, M. Reproduction-nutrition relationship in dairy buffaloes. I. Effect of intake of protein, energy and blood metabolites levels. Asian-Australas. J. Anim. Sci. 2002, 15, 330–339. [Google Scholar] [CrossRef]
- Othman, R.; Bakar, M.Z.A.; Kasim, A.; Zamri–Saad, M. Improving the reproductive performance of buffaloes in Sabah, Malaysia. J. Anim. Health Prod. 2014, 2, 1–4. [Google Scholar] [CrossRef]
- Mohd Azmi, A.F.; Abu Hassim, H.; Mohd Nor, N.; Ahmad, H.; Meng, G.Y.; Abdullah, P.; Zamri-Saad, M. Comparative Growth and Economic Performances between Indigenous Swamp and Murrah Crossbred Buffaloes in Malaysia. Animals 2021, 11, 957. [Google Scholar] [CrossRef]
- Razzaque, M.A.; Mohammed, S.A.; Al-Mutawa, T. Dairy heifer rearing in hot arid zone: An economic assessment. Am. J. Appl. Sci. 2010, 7, 466–472. [Google Scholar] [CrossRef]
- Fiaz, M.; Abdullah, M.; Pasha, T.N.; Jabbar, M.A.; Babar, M.E.; Bhatti, J.A.; Nasir, M. Evaluating varying dietary energy levels for optimum growth and early puberty in Sahiwal heifers. Pak. J. Zool. 2012, 44, 625–634. [Google Scholar]
- Tauqir, N.A.; Shahzad, M.A.; Nisa, M.; Sarwar, M.; Fayyaz, M.; Tipu, M.A. Response of growing buffalo calves to various energy and protein concentrations. Livest. Sci. 2011, 137, 66–72. [Google Scholar] [CrossRef]
- Kumar, B.; Thakur, S.S. Effect of supplementing bypass fat on the performance of buffalo calves. Indian J. Anim. Nutr. 2007, 24, 233–236. [Google Scholar]
- Kumar, S. Effect of protein supplementation on growth performance of Buffalo calves. J. Pharmacogn. Phytochem. 2018, 7, 697–700. [Google Scholar]
- Antunović, Z.; Šperanda, M.; Amidžić, D.; Šerić, V.; Stainer, Z.; Domačinović, M.; Boli, F. Probiotic application in lambs nutrition. Krmiva: Časopis O Hranidbi ŽivotinjaProizv. I Tehnol. Krme 2006, 48, 175–180. [Google Scholar]
- Whitley, N.C.; Cazac, D.; Rude, B.J.; Jackson-O’Brien, D.; Parveen, S. Use of a commercial probiotic supplement in meat goats. J. Anim. Sci. 2009, 87, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Santra, A.; Karim, S.A. Effect of dietary roughage and concentrate ratio on nutrient utilization and performance of ruminant animals. Anim. Nutr. Feed Technol. 2009, 9, 113–135. [Google Scholar]
- Chen, Y.; Oba, M. Variation of bacterial communities and expression of Toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Vet. Microbiol. 2012, 159, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L. The feeding value of fats. In Feed Science; Orskov, E.R., Ed.; Elsevier Science: Amsterdam, The Netherlands, 1988; pp. 293–311. [Google Scholar]
- Ranjan, A.; Sahoo, B.; Singh, V.K.; Srivastava, S.; Singh, S.P.; Pattanaik, A.K. Effect of bypass fat supplementation on productive performance and blood biochemical profile in lactating Murrah (Bubalus bubalis) buffaloes. Trop. Anim. Health Prod. 2012, 44, 1615–1621. [Google Scholar] [CrossRef]
- Ban-Tokuda, T.; Orden, E.A.; Barrio, A.N.; Lapitan, R.M.; Delavaud, C.; Chilliard, Y.; Kanai, Y. Effects of species and sex on plasma hormone and metabolite concentrations in crossbred Brahman cattle and crossbred water buffalo. Livest. Sci. 2007, 107, 244–252. [Google Scholar] [CrossRef]
- Bulbul, T. Energy and nutrient requirements of buffaloes. Kocatepe Vet. Derg. 2010, 3, 55–64. [Google Scholar]
- Basra, M.J.; Nisa, M.; Khan, M.A.; Riaz, M.; Tuqeer, N.A.; Saeed, M.N. Nili-ravi buffalo III. Energy and protein requirements of 12–15 months old calves. Int. J. Agric. Biol. 2003, 5, 382–383. [Google Scholar]
- Association of Official Analytical Chemists AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Association of Official Analytical Chemists AOAC. Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1990; p. 1117. [Google Scholar]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef] [Green Version]
- Anitha, A.; Rao, K.S.; Suresh, J.; Moorthy, P.S.; Reddy, Y.K. A body condition score (BCS) system in Murrah buffaloes. Buffalo Bull. 2011, 30, 79–96. [Google Scholar]
- Lapitan, R.M.; Del Barrio, A.N.; Katsube, O.; Tokuda, T.; Orden, E.A.; Robles, A.Y.; Kanai, Y. Comparison of feed intake, digestibility and fattening performance of Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis). Anim. Sci. J. 2004, 75, 549–555. [Google Scholar] [CrossRef]
- Iqbal, Z.M.; Abdullah, M.; Javed, K.; Jabbar, M.A.; Ahmad, N.; Ditta, Y.A.; Mustafa, H.; Shahzad, F. Effect of varying levels of concentrate on growth performance and feed economics in Nili-Ravi buffalo heifer calves. Turk. J. Vet. Anim. Sci. 2017, 41, 775–780. [Google Scholar] [CrossRef]
- Lopes, L.S.; Ladeira, M.M.; Machado Neto, O.R.; da Silveira, A.R.M.C.; Reis, R.P.; Campos, F.R. Economical viability of finishing Nellore and Red Norte bulls in feedlot, in Lavras-MG region. Ciência E Agrotecnologia 2011, 35, 774–780. [Google Scholar] [CrossRef]
- Raval, A.J.; Sorathiya, L.; Kharadi, V.B.; Patel, M.D.; Tyagi, K.K.; Patel, V.R. Choubey, M. Effect of calcium salt of palm fatty acid supplementation on production performance, nutrient utilization and blood metabolites in Surti buffaloes (Bubalus bubalis). Indian J. Anim. Sci. 2017, 87, 1124–1129. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1994. [Google Scholar]
- Abd Ellah, M.R.; Hamed, M.I.; Derar, R.I. Serum biochemical and haematological reference values for midterm pregnant buffaloes. J. Appl. Anim. Res. 2013, 41, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Ashmawy, N.A. Blood metabolic profile and certain hormones concentrations in Egyptian buffalo during different physiological states. Asian J. Anim. Vet. Adv. 2015, 10, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Goswami, T.K.; Shukla, D.C. An enzyme-linked immunosorbent assay (ELISA) to measure growth hormone level in serum and milk of buffaloes (Bubalus bubalis). Indian J. Exp. Biol. 2007, 45, 594–598. [Google Scholar]
- Archer, J.A.; Richardson, E.C.; Herd, R.M.; Arthur, P.F. Potential for selection to improve efficiency of feed use in beef cattle: A review. Aust. J. Agric. Res. 1999, 50, 147–162. [Google Scholar] [CrossRef]
- Situmorang, P.; Sitepu, P. Comparative growth performance, semen quality and draught capacity of Indonesian swamp buffalo and its crosses. ACIAR Proc. 1991, 34, 102–112. [Google Scholar]
- Kamonpatana, M.; Sophon, S.; Jetana, T.; Sravasi, S.; Tongpan, R.; Thasipoo, K. A Comparative Study of Reproductive performance and Growth of Female Swamp and Murrah × Swamp Buffalo under Village Conditions. In Proceedings of the Buffalo and Goats in Asia, Genetic Diversity and Its Application, Kuala Lumpur, Malaysia, 10–14 February 1991; Volume 76. [Google Scholar]
- Salas, R.C.D.; van der Lende, T.; Udo, H.M.; Mamuad, F.V.; Garillo, E.P.; Cruz, L.C. Comparison of growth, milk yield and draughtability of murrah-Philippine crossbred and Philippine native buffaloes. Asian-Australas. J. Anim. Sci. 2000, 13, 580–586. [Google Scholar] [CrossRef]
- Burque, A.R.; Abdullah, M.; Babar, M.E.; Javed, K.; Nawaz, H. Effect of urea feeding on feed intake and performance of male buffalo calves. J. Anim. Plant. Sci. 2008, 18, 1–6. [Google Scholar]
- Mahmoudzadeh, H.; Fazaeli, H. Growth response of yearling buffalo male calves to different dietary energy levels. Turk. J. Vet. Anim. Sci. 2009, 33, 447–454. [Google Scholar]
- Ahmad, M.; Javed, K.; Rehman, A. Environmental factors affecting some growth traits in Nili-Ravi buffalo calves. In Proceedings of the 7th Word Congress Genetics Applied to Livestock Production, Montpellier, France, 18–23 August 2002. [Google Scholar]
- Vaz, R.Z.; Lobato, J.F.P.; Restle, J. Influence of weaning age on the reproductive efficiency of primiparous cows. Rev. Bras. De Zootec. 2010, 39, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Serafy, A.M.; Ashry, A.M. The nutrition of Egyptian water buffaloes from birth to milk and meat production. Rumin. Prod. Dry Subtrop. 1989, 38, 230–243. [Google Scholar]
- Punia, B.S.; Singh, S. Buffalo calf feeding and management. EH Int. Buffalo Inf. Cent. 2001, 20, 3–11. [Google Scholar]
- Jiao, H.P.; Dale, A.J.; Carson, A.F.; Murray, S.; Gordon, A.W.; Ferris, C.P. Effect of concentrate feed level on methane emissions from grazing dairy cows. J. Dairy Sci. 2014, 97, 7043–7053. [Google Scholar] [CrossRef] [PubMed]
- Marinova, P.; Banskalieva, V.; Alexandrov, S.; Tzvetkova, V.; Stanchev, H. Carcass composition and meat quality of kids fed sunflower oil supplemented diet. Small Rumin. Res. 2001, 42, 217–225. [Google Scholar] [CrossRef]
- Haddad, S.G.; Younis, H.M. The effect of adding ruminally protected fat in fattening diets on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2004, 113, 61–69. [Google Scholar] [CrossRef]
- Nawaz, H.; Ali, M. Effect of supplemental fat on dry matter intake, nutrient digestibility, milk yield and milk composition of ruminants. Pak. J. Agric. Sci. 2016, 53, 271–275. [Google Scholar]
- Andrew, S.M.; Tyrrell, H.F.; Reynolds, C.K.; Erdman, R.A. Net energy for lactation of calcium salts of long-chain fatty acids for cows fed silage-based diets. J. Dairy Sci. 1991, 74, 2588–2600. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Sklan, D.; Chalupa, W.V.; Kronfeld, D.S. Effects of hard fats on in vitro and in vivo rumen fermentation, milk production, and reproduction in dairy cows. J. Dairy Sci. 1990, 73, 2864–2879. [Google Scholar] [CrossRef]
- Naik, P.K. Bypass fat in dairy ration-a review. Anim. Nutr. Feed Technol. 2013, 13, 147–163. [Google Scholar]
- Duckett, S.K.; Andrae, J.G.; Owens, F.N. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci. 2002, 80, 3353–3360. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, G.; Carvalho, I.P.C.; Messana, J.D.; Castagnino, P.S.; Berndt, A.; Canesin, R.C.; Berchielli, T.T. Effect of lipid sources with different fatty acid profiles on the intake, performance, and methane emissions of feedlot Nellore steers. J. Anim. Sci. 2014, 92, 1613–1620. [Google Scholar] [CrossRef] [Green Version]
- Saijpaul, S.; Naik, P.K.; Rani, N. Effects of rumen protected fat on in vitro dry matter degradability of dairy rations. Indian J. Anim. Sci. 2010, 80, 993. [Google Scholar]
- Naik, P.K.; Saijpaul, S.; Rani, N. Preparation of rumen protected fat and its effect on nutrient utilization in buffaloes. Indian J. Anim. Nutr. 2007, 24, 212–215. [Google Scholar]
- Reddy, Y.R.; Krishna, N.; Rao, E.R.; Reddy, T.J. Influence of dietary protected lipids on intake and digestibility of straw based diets in Deccani sheep. Anim. Feed Sci. Technol. 2003, 106, 29–38. [Google Scholar] [CrossRef]
- NRC National Research Council. Nutrient Requirements of Beef Cattle; National Academy of Sciences: Washington, DC, USA, 1996. [Google Scholar]
- Baruah, K.K.; Ranjhan, S.K.; Pathak, N.N. Feed intake, nutrient utilization and growth in male buffalo calves fed different levels of protein and energy. Buffalo J. 1988, 22, 131–138. [Google Scholar]
- Yunus, A.W.; Khan, A.G.; Alam, Z.; Sultan, J.I.; Riaz, M. Effects of substituting cottonseed meal with sunflower meal in rations for growing buffalo calves. Asian-Australas. J. Anim. Sci. 2004, 17, 659–662. [Google Scholar] [CrossRef]
- Barman, K.; Mohini, M. Nutrient utilization for growth and cost of feeding in buffalo calves as influence by rumens in supplementation. Buffalo J. 2002, 18, 71–82. [Google Scholar]
- Nair, P.V.; Verma, A.K.; Dass, R.S.; Mehra, U.R. Growth and nutrient utilization in buffalo calves fed ammoniated wheat straw supplemented with sodium sulphate. Asian-Australas. J. Anim. Sci. 2004, 17, 325–329. [Google Scholar] [CrossRef]
- Freitas Júnior, J.E.D.; Rocha Júnior, V.R.; Rennó, F.P.; Mello, M.T.P.D.; Carvalho, A.P.D.; Caldeira, L.A. Effect of body condition score at calving on productive performance of crossbred Holstein-Zebu cows. Rev. Bras. De Zootec. 2008, 37, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Ghani, A.A.A.; Shahudin, M.S.; Zamri-Saad, M.; Zuki, A.B.; Wahid, H.; Kasim, A.; Hassim, H.A. Enhancing the growth performance of replacement female breeder goats through modification of feeding program. Vet. World 2017, 10, 630. [Google Scholar] [CrossRef] [Green Version]
- Katiyar, G.S.; Mudgal, V.; Sharma, R.K.; Bharadwaj, A.; Phulia, S.K.; Jerome, A.; Singh, I. Effect of rumen-protected nutrients on feed intake, body weights, milk yield, and composition in Murrah buffaloes during early lactation. Trop. Anim. Health Prod. 2019, 51, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, C.; Herrera, D.; Hube, S.; Morales, J.; Ungerfeld, E.M. Effects of dietary concentrate supplementation on enteric methane emissions and performance of late lactation dairy cows. Chil. J. Agric. Res. 2018, 78, 429–437. [Google Scholar] [CrossRef]
- Mohsin, I.; Shahid, M.Q.; Haque, M.N.; Ahmad, N. Effect of bypass fat on growth and body condition score of male Beetal goats during summer. South. Afr. J. Anim. Sci. 2019, 49, 810–814. [Google Scholar] [CrossRef]
- Jabbar, L.; Cheema, A.M.; Jabbar, M.A.; Riffat, S. Effect of different dietary energy levels, season and age on hematological indices and serum electrolytes in growing buffalo heifers. J. Anim. Plant. Sci. 2012, 22, 279–283. [Google Scholar]
- Singh, A.K.; Chaturvedi, V.B.; Gupta, S.; Kumar, M. Effect of feeding TMR with different ratio of concentrate and roughages on blood biochemical changes in crossbred cattle and buffaloes. Q. J. Sci. Agric. Eng. 2018, 8, 288–291. [Google Scholar]
- Cutrignelli, M.I.; Calabrò, S.; Bovera, F.; Tudisco, R.; D’Urso, S.; Marchiello, M.; Infascelli, F. Effects of two protein sources and energy level of diet on the performance of young Marchigiana bulls. 2. Meat quality. Ital. J. Anim. Sci. 2008, 7, 271–285. [Google Scholar] [CrossRef]
- Eguinoa, P.; Brocklehurst, S.; Arana, A.; Mendizabal, J.A.; Vernon, R.G.; Purroy, A. Lipogenic enzyme activities in different adipose depots of Pirenaican and Holstein bulls and heifers taking into account adipocyte size. J. Anim. Sci. 2003, 81, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Fayed, A.K.; El-Sayed, A.; Ashmawy, N.A.; Ashour, G. Blood metabolites and hormone levels as indicators for growth performance in Egyptian buffalo calves. In Proceedings of the 2nd International Conference on Biotechnology Application in Agriculture (ICBAA), Hurghada, Egypt, 8–12 April 2014; Volume 17, p. 17. [Google Scholar]
- Rashid, M.A.; Pasha, T.; Jabbar, M.; Ijaz, A. Changes in blood metabolites of early weaned nili-ravi buffalo (Bubalus bubalis) calves. J. Anim. Plant. Sci. 2013, 23, 1067–1071. [Google Scholar]
- Hammon, H.M.; Schiessler, G.; Nussbaum, A.; Blum, J.W. Feed intake patterns, growth performance, and metabolic and endocrine traits in calves fed unlimited amounts of colostrum and milk by automate, starting in the neonatal period. J. Dairy Sci. 2002, 85, 3352–3362. [Google Scholar] [CrossRef]
- Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Kim, S.B.; Ki, K.S.; Choi, Y.J. Pre-and postweaning performance of Holstein female calves fed milk through step-down and conventional methods. J. Dairy Sci. 2007, 90, 876–885. [Google Scholar] [CrossRef]
- Son, J.; Grant, R.J.; Larson, L.L. Effects of tallow and escape protein on lactational and reproductive performance of dairy cows. J. Dairy Sci. 1996, 79, 822–830. [Google Scholar] [CrossRef]
- Tyagi, N.; Thakur, S.S.; Shelke, S.K. Effect of bypass fat supplementation on productive and reproductive performance in crossbred cows. Trop. Anim. Health Prod. 2010, 42, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Giridharan, N.V. Glucose & energy homeostasis: Lessons from animal studies. Indian J. Med. Res. 2008, 148, 659. [Google Scholar]
- Curi, R.A.; De Oliveira, H.N.; Silveira, A.C.; Lopes, C.R. Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livest. Prod. Sci. 2005, 94, 159–167. [Google Scholar] [CrossRef]
- Purchas, R.W.; Macmillan, K.L.; Hafs, H.D. Pituitary and plasma growth hormone levels in bulls from birth to one year of age. J. Anim. Sci. 1970, 31, 358–363. [Google Scholar] [CrossRef]
- Trenkle, A.; Topel, D.G. Relationship of some endocrine measurements to growth and carcass composition of cattle. J. Anim. Sci. 1978, 46, 1604–1609. [Google Scholar] [CrossRef] [Green Version]
- Irvin, R.; Trenkle, A. Influences of age, breed and sex on plasma hormones in cattle. J. Anim. Sci. 1971, 32, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Shingu, H.; Hodate, K.; Kushibiki, S.; Ueda, Y.; Watanabe, A.; Shinoda, M.; Matsumoto, M. Profiles of growth hormone and insulin secretion, and glucose response to insulin in growing Japanese Black heifers (beef type): Comparison with Holstein heifers (dairy type). Comp. Biochem. Physiol. Part. C 2001, 130, 259–270. [Google Scholar] [CrossRef]
- Andersen, J.B.; Friggens, N.C.; Larsen, T.; Vestergaard, M.; Ingvartsen, K.L. Effect of energy density in the diet and milking frequency on plasma metabolites and hormones in early lactation dairy cows. J. Vet. Med. Ser. A 2004, 51, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Tatsapong, P.; Peangkoum, P.; Pimpa, O.; Hare, M.D. Effect of dietary protein on nitrogen metabolism and protein requirements for maintenance of growing Thai swamp buffalo (Bubalus bubalis) calves. J. Anim. Vet. Adv. 2010, 9, 1216–1222. [Google Scholar]
- Pandya, G.M.; Joshi, C.G.; Rank, D.N.; Kharadi, V.B.; Bramkshtri, B.P.; Vataliya, P.H.; Solanki, J.V. Genetic analysis of body weight traits of Surti buffalo. Buffalo Bull. 2015, 34, 189–195. [Google Scholar]
- Charlini, B.C.; Sinniah, J. Performance of Murrah, Surti, Nili-Ravi buffaloes and their crosses in the intermediate zone of Sri Lanka. Development 2015, 27, 1–17. [Google Scholar]
- Javed, K.; Mirza, R.H.; Abdullah, M.; Akhtar, M. Environmental factors affecting live weight and morphological traits in Nili Ravi buffaloes of Pakistan. Buffalo Bull. 2013, 32, 1161–1164. [Google Scholar]
- Zamri-Saad, M.; Azhar, K.; Zuki, A.B.; Punimin, A.; Hassim, H.A. Enhancement of Performance of Farmed Buffaloes Pasture Management and Feed Supplementation in Sabah, Malaysia. Pertanika J. Trop. Agric. Sci. 2017, 40, 553–564. [Google Scholar]
- Naqvi, A.; Shami, S.A. Factors affecting birth weight in Nili-Ravi buffalo calves. Pak. Vet. J. 1999, 19, 119–122. [Google Scholar]
- Harowi, M.; Hamdani, M.D.I. Perbandingan koefisien heterosis antara kambing Boerawa dan Saburai jantan pada bobot sapih di Kecamatan Sumberejo Kabupaten Tanggamus. J. Ilm. Peternak. Terpadu 2016, 4, 67–72. [Google Scholar]
- Azis, R.; Ciptadi, G.; Suyadi, S. Heterosis effect and outbreeding analysis of Boer and PE goat crosses based on birth weight in F1 and F1. J. Develepmont Res. 2020, 4, 18–23. [Google Scholar] [CrossRef]
- Weaber, R. Crossbreeding strategies: Including terminal vs. maternal crosses. In Proceedings of the Range Beef Cow Sympossium XXXIV, Loveland, CO, USA, 17–19 November 2015; Digital Commons of the University of Nebraska: Lincoln, LI, USA, 2015; pp. 117–130. [Google Scholar]
- Shaari, N.A.L.; Jaoi-Edward, M.; San Loo, S.; Salisi, M.S.; Yusoff, R.; Ab Ghani, N.I.; Ahmad, H. Karyotypic and mtDNA based characterization of Malaysian water buffalo. BMC Genet. 2019, 20, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, L.C. Recent developments in the buffalo industry of Asia. Rev. Vet. 2010, 21, 7–19. [Google Scholar]
- Shahudin, M.S.; Ghani, A.A.A.; Zamri-Saad, M.; Zuki, A.B.; Abdullah, F.F.J.; Wahid, H.; Hassim, H.A. The Necessity of a Herd Health Management Programme for Dairy Goat Farms in Malaysia. Pertanika J. Trop. Agric. Sci. 2018, 41, 1–18. [Google Scholar]
- Naik, P.K.; Saijpaul, S.; Sirohi, A.S.; Raquib, M. Lactation response of cross bred dairy cows fed on indigenously prepared rumen protected fat-A field trial. Indian J. Anim. Sci. 2009, 79, 1045. [Google Scholar]
Nutrient Composition | Diet Components | ||
---|---|---|---|
Grass (G) | Concentrate (C) | Bypass Fat (B) | |
DM 1) (%) | 90.34 | 90.36 | 99.75 |
Ash (% DM) | 5.09 | 5.44 | - |
CF 2) (% DM) | 26.03 | 7.49 | - |
EE 3) (% DM) | 2.03 | 5.46 | 100 |
CP 4) (% DM) | 6.09 | 18.15 | - |
NDF 5) (% DM) | 64.27 | 56.87 | - |
ADF 6) (% DM) | 33.86 | 17.38 | - |
ADL 7) (% DM) | 3.55 | 2.96 | - |
NFC 8) (% DM) | 22.05 | 13.85 | - |
GE 9) (MJ/kg) | 11.79 | 15.74 | 37.65 |
Ingredient | % Composition in TMR | ||||
---|---|---|---|---|---|
Diet A | Diet B | Diet C | |||
Brachiaria decumbens (G) | 100 | 70 | 70 | ||
Concentrate (C) | - | 30 | 26 | ||
Bypass fat (B) | - | - | 4 | ||
Nutrient | Estimated Content | SEM 1) | p-Value | ||
DM 2) (%) | 90.34 | 90.31 | 91.60 | 0.24 | 0.374 |
Ash (% DM) | 5.09 | 5.69 | 5.93 | 0.33 | 0.916 |
CF 3) (% DM) | 26.03 a | 23.73 b | 21.65 c | 0.66 | <0.001 |
EE 4) (% DM) | 2.03 a | 2.92 b | 16.66 c | 2.87 | <0.001 |
CP 5) (% DM) | 6.09 a | 8.08 b | 6.56 a | 0.36 | 0.012 |
NDF 6) (% DM) | 64.27 a | 57.96 b | 49.63 c | 2.17 | <0.001 |
ADF 7) (% DM) | 33.86 a | 28.7 b | 26.65 c | 1.10 | <0.001 |
ADL 8) (% DM) | 3.55 | 3.32 | 2.96 | 0.18 | 0.442 |
NFC 9) (% DM) | 22.05 | 24.84 | 20.81 | 2.29 | 0.074 |
GE (MJ/kg) 10) | 11.07 a | 12.1 a | 14.59 b | 0.56 | <0.001 |
Hemicellulose (% DM) | 30.41 a | 29.25 a | 22.98 b | 1.24 | 0.002 |
Cellulose (% DM) | 30.32 a | 25.38 b | 23.69 b | 1.04 | 0.001 |
Attribute | Diet | Breed | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Murrah Cross | Swamp | Murrah Cross | Swamp | |||||||||
Parameter | Diet A | Diet B | Diet C | Diet A | Diet B | Diet C | SEM | Diet | Breed | Interaction | ||
Total intake (kg) | 2183.12 a | 4798.91 b | 5407.43 c | 2043.23 a | 4487.06 b | 4649.74 b | 4129.82 | 3726.68 | 206.76 | 0.001 | 0.332 | 0.014 |
Initial BW (kg) | 82.19 | 123.88 | 113.63 | 79.25 | 97.88 | 95.00 | 106.57 | 90.71 | 5.07 | 0.081 | 0.064 | 0.088 |
Final BW (kg) | 156.63 a | 353.56 b | 421.38 c | 124.25 a | 333.25 b | 376.63 c | 310.52 y | 278.04 z | 34.54 | <0.001 | 0.047 | 0.210 |
BWG (kg) | 74.44 a | 229.69 b | 307.75 c | 45.00 a | 235.38 b | 281.63 c | 203.96 | 187.34 | 30.68 | <0.001 | 0.582 | 0.054 |
ADG (kg/day) | 0.10 a | 0.32 b | 0.42 c | 0.06 a | 0.32 b | 0.39 c | 0.28 | 0.26 | 0.04 | <0.001 | 0.582 | 0.054 |
Feed intake (DM kg/day) | ||||||||||||
Brachiaria decumbens | 2.99 | 4.60 | 5.19 | 2.80 | 4.31 | 4.46 | 4.26 | 3.86 | 0.27 | 0.079 | 0.101 | 0.127 |
Concentrate | - | 1.97 | 1.93 | - | 2.06 | 1.66 | 1.95 | 1.86 | - | - | - | - |
Bypass fat | - | - | 0.29 | - | - | 0.25 | 0.29 | 0.25 | - | - | - | - |
Total feed intake per day (kg/day) | 2.99 a | 6.57 b | 7.41 c | 2.80 a | 6.15 b | 6.37 b | 5.66 | 5.11 | 0.55 | <0.001 | 0.309 | 0.014 |
FCR | 30.57 a | 21.07 b | 17.65 b | 52.24 a | 19.16 b | 16.63 b | 23.10 | 29.34 | 3.87 | <0.001 | 0.141 | <0.001 |
Attribute | Diet | Breed | SEM | Ref. Interval | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Murrah Cross | Swamp | Murrah Cross | Swamp | ||||||||
Diets | Diet A | Diet B | Diet C | Diet A | Diet B | Diet C | |||||
Glucose (mmol/L) | |||||||||||
0 month | 4.80 | 5.10 | 5.30 | 5.40 | 5.20 | 5.10 | 5.07 | 5.23 | 0.09 | 1.97–5.13 | Abd Ellah et al. [32] |
8 months | 4.55 a | 4.00 b | 4.10 b | 5.00 a | 4.97 a | 4.86 b | 4.22 | 4.94 | 0.18 | ||
16 months | 4.29 a | 3.82 b | 3.85 b | 4.11 a | 4.14 a | 3.92 b | 3.99 | 4.39 | 0.08 | ||
24 months | 4.23 a | 3.53 b | 3.58 c | 5.43 a | 4.53 b | 3.58 c | 3.78 | 4.51 | 0.17 | ||
Overall mean | 4.47 | 4.11 | 4.21 | 4.76 | 4.47 | 4.40 | 4.26 | 4.54 | 0.09 | ||
Cholesterol (mmol/L) | |||||||||||
0 month | 3.87 | 3.95 | 3.89 | 3.52 | 2.99 | 3.14 | 3.90 | 3.22 | 0.17 | 0.75–2.67 | |
8 months | 3.14 a | 2.39 b | 2.32 b | 2.90 a | 2.43 b | 2.55b | 2.62 | 2.63 | 0.13 | ||
16 months | 2.56 a | 1.86 b | 1.79 b | 2.10 a | 2.44 b | 2.35b | 2.07 | 2.30 | 0.13 | ||
24 months | 1.68 a | 2.00 b | 1.98 c | 2.38 a | 2.50 b | 2.13c | 1.89 | 2.34 | 0.13 | ||
Overall mean | 2.81 a | 2.55 b | 2.45 b | 2.73 a | 2.59 b | 2.54b | 2.60 | 2.62 | 0.06 | ||
Total protein (g/L) | |||||||||||
0 month | 85.23 | 83.15 | 86.76 | 78.37 | 81.64 | 80.93 | 85.05 | 80.31 | 1.24 | 56.30–98.30 | |
8 months | 72.80 | 77.31 | 79.34 | 80.15 | 81.05 | 81.99 | 76.48 | 81.06 | 1.36 | ||
16 months | 75.46 | 78.95 | 83.03 | 81.64 | 80.57 | 85.34 | 79.15 | 82.52 | 1.40 | ||
24 months | 79.65a | 79.53 a | 89.14 b | 79.70 a | 78.00 a | 89.08 b | 82.77 | 82.26 | 2.10 | ||
Overall mean | 78.29a | 79.74 a | 84.57 b | 79.97 a | 80.32 a | 84.34 b | 80.87 | 81.54 | 1.07 | ||
Urea (mmol/L) | |||||||||||
0 month | 6.3 | 6.77 | 6.61 | 6.97 | 6.52 | 6.89 | 6.56 | 6.79 | 0.10 | 5.40–21.24 | |
8 months | 6.01 | 6.62 | 6.50 | 6.33 | 6.44 | 6.48 | 6.38 | 6.42 | 0.09 | ||
16 months | 5.90 | 6.39 | 6.43 | 5.55 | 5.89 | 5.74 | 6.24 | 5.73 | 0.15 | ||
24 months | 5.80 | 5.98 | 6.38 | 5.05 | 5.20 | 5.38 | 6.05 | 5.21 | 0.21 | ||
Overall mean | 6.00 | 6.44 | 6.48 | 5.98 | 6.01 | 6.12 | 6.31 | 6.04 | 0.09 | ||
Triglyceride (mmol/L) | |||||||||||
0 month | 0.33 | 0.31 | 0.33 | 0.18 | 0.21 | 0.19 | 0.32 | 0.19 | 0.03 | 0.05–0.65 | |
8 months | 0.27 | 0.24 | 0.24 | 0.16 | 0.24 | 0.19 | 0.25 | 0.20 | 0.02 | ||
16 months | 0.21 | 0.18 | 0.20 | 0.15 | 0.25 | 0.17 | 0.20 | 0.19 | 0.01 | ||
24 months | 0.17 | 0.13 | 0.18 | 0.20 | 0.28 | 0.14 | 0.16 | 0.21 | 0.02 | ||
Overall mean | 0.26 | 0.22 | 0.24 | 0.17 | 0.25 | 0.17 | 0.24 | 0.20 | 0.01 | ||
IGF-I (ng/mL) | |||||||||||
0 month | 114.01 | 116.74 | 112.49 | 108.89 | 107.08 | 108.44 | 114.41 | 108.14 | 1.53 | 117–300 | Ashmawy [33] |
8 months | 116.43 a | 128.35 b | 133.09 b | 110.72 a | 124.34 b | 124.06 b | 125.96 | 119.71 | 3.30 | ||
16 months | 119.25 a | 147.52 b | 152.11 b | 116.49 a | 144.42 b | 149.38 b | 139.63 | 136.76 | 6.52 | ||
24 months | 122.80 a | 158.30 b | 171.61 c | 119.44 a | 153.93 b | 159.57 c | 150.90 | 144.31 | 8.72 | ||
Overall mean | 118.12 a | 137.73 b | 142.33 b | 113.89 a | 132.45 b | 135.36 b | 132.73 | 127.23 | 4.65 | ||
GH (ng/mL) | |||||||||||
0 month | 1.92 | 1.93 | 1.91 | 1.6 | 1.66 | 1.59 | 1.92 | 1.62 | 0.07 | 0.05–17.00 | Mishra et al. [34] |
8 months | 1.91 a | 2.11 b | 2.30 b | 1.72 a | 1.89 b | 1.91 b | 2.11 | 1.84 | 0.08 | ||
16 months | 1.86 a | 2.37 b | 2.54 c | 1.78 a | 2.07 b | 2.14 c | 2.26 | 2.00 | 0.12 | ||
24 months | 1.87 a | 2.58 b | 2.71 c | 1.83 a | 2.15 b | 2.46 c | 2.39 | 2.15 | 0.15 | ||
Overall mean | 1.89 a | 2.25 b | 2.37 b | 1.73 a | 1.94 b | 2.03 c | 2.17 | 1.90 | 0.10 |
p-Value | Interaction | ||||||
---|---|---|---|---|---|---|---|
Parameters | Diet | Breed | Period | Diet * Breed | Breed * Period | Diet * Period | Diet * Breed * Period |
Glucose (mmol/L) | <0.001 | 0.674 | 0.04 | 0.963 | 0.104 | 0.051 | 0.682 |
Cholesterol (mmol/L) | <0.001 | 0.266 | <0.001 | 0.757 | 0.095 | 0.080 | 0.466 |
Total Protein (g/L) | 0.049 | 0.469 | <0.001 | 0.983 | 0.295 | 0.361 | 0.301 |
Urea (mmol/L) | 0.341 | 0.299 | <0.001 | 0.246 | 0.118 | 0.873 | 0.215 |
Triglyceride (mmol/L) | 0.066 | 0.789 | <0.001 | 0.246 | 0.316 | 0.078 | 0.961 |
Hormones | 0.634 | ||||||
IGF-1 (ng/mL) | 0.017 | 0.592 | <0.001 | 0.752 | 0.303 | 0.077 | 0.462 |
GH (ng/mL) | <0.001 | 0.076 | <0.001 | 0.665 | 0.081 | 0.056 | 0.075 |
Diet | Breed | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Murrah Cross | Swamp | Murrah Cross | Swamp | SEM | p-Value | |||||||
A | B | C | A | B | C | Diet | Breed | Interaction | ||||
A. Income from live weight gain (MYR/day/animal) | 1.49 a | 4.59 b | 6.16 c | 0.90 a | 4.71 b | 5.63 c | 4.08 y | 3.75 z | 0.61 | <0.001 | 0.012 | 0.001 |
B. Cost of feeding (RM/day) | ||||||||||||
Brachiaria grass | 0.46 | 0.71 | 0.80 | 0.43 | 0.66 | 0.68 | 0.66 | 0.59 | ||||
Concentrate | - | 1.46 | 1.43 | - | 1.36 | 1.23 | 1.45 | 1.30 | ||||
Bypass fat | - | - | 0.75 | - | - | 0.65 | 0.75 | 0.65 | ||||
Total cost of average daily DMI (MYR/day/animal) | 0.46 a | 2.17 b | 2.98 c | 0.43 a | 2.02 b | 2.56 c | 1.87 | 1.67 | 0.30 | <0.001 | 0.505 | 0.044 |
C. Fixed cost in 2 years | ||||||||||||
Deworming | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | ||||
ID tag | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ||||
Fertilizer | 156.00 | 156.00 | 156.00 | 156.00 | 156.00 | 156.00 | 156.00 | 156.00 | ||||
Total (MYR/2year/animal) | 158.50 | 158.50 | 158.50 | 158.50 | 158.50 | 158.50 | 158.50 | 158.50 | ||||
D. Gross return over feed cost (RM/day/animal) (A-B) | 1.03 a | 2.43 b | 3.18 c | 0.47 a | 2.68 b | 3.08 c | 2.21 | 2.08 | 0.32 | <0.001 | 0.289 | 0.042 |
E. Net profit from live weight gain for 2 years (MYR/animal) | 176.25 a | 1421.94 b | 2013.12 c | 154.80 a | 1319.24 b | 1708.84 c | 1203.77 y | 1060.96 z | 220.33 | <0.001 | <0.001 | <0.001 |
F. Net profit from live weight for 2 years (MYR/animal) | 1793.48 a | 3423.07 b | 3821.95 c | 1342.26 a | 3229.21 b | 3472.89 c | 3012.83 y | 2681.45 z | 286.39 | <0.001 | <0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Azmi, A.F.; Ahmad, H.; Mohd Nor, N.; Meng, G.Y.; Saad, M.Z.; Abu Bakar, M.Z.; Abdullah, P.; Jayanegara, A.; Abu Hassim, H. Effects of Concentrate and Bypass Fat Supplementations on Growth Performance, Blood Profile, and Rearing Cost of Feedlot Buffaloes. Animals 2021, 11, 2105. https://doi.org/10.3390/ani11072105
Mohd Azmi AF, Ahmad H, Mohd Nor N, Meng GY, Saad MZ, Abu Bakar MZ, Abdullah P, Jayanegara A, Abu Hassim H. Effects of Concentrate and Bypass Fat Supplementations on Growth Performance, Blood Profile, and Rearing Cost of Feedlot Buffaloes. Animals. 2021; 11(7):2105. https://doi.org/10.3390/ani11072105
Chicago/Turabian StyleMohd Azmi, Amirul Faiz, Hafandi Ahmad, Norhariani Mohd Nor, Goh Yong Meng, Mohd Zamri Saad, Md Zuki Abu Bakar, Punimin Abdullah, Anuraga Jayanegara, and Hasliza Abu Hassim. 2021. "Effects of Concentrate and Bypass Fat Supplementations on Growth Performance, Blood Profile, and Rearing Cost of Feedlot Buffaloes" Animals 11, no. 7: 2105. https://doi.org/10.3390/ani11072105
APA StyleMohd Azmi, A. F., Ahmad, H., Mohd Nor, N., Meng, G. Y., Saad, M. Z., Abu Bakar, M. Z., Abdullah, P., Jayanegara, A., & Abu Hassim, H. (2021). Effects of Concentrate and Bypass Fat Supplementations on Growth Performance, Blood Profile, and Rearing Cost of Feedlot Buffaloes. Animals, 11(7), 2105. https://doi.org/10.3390/ani11072105