Blood Parameters and Feline Tooth Resorption: A Retrospective Case Control Study from a Spanish University Hospital
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmstrom, S.E.; Bellows, J.; Juriga, S.; Knutson, K.; Niemiec, B.A.; Perrone, J. AAHA dental care guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2013, 49, 75–82. [Google Scholar] [CrossRef]
- Mestrinho, L.A.; Runhau, J.; Bragança, M.; Niza, M.M. Risk assessment of feline tooth resorption: A Portuguese clinical case control study. J. Vet. Dent. 2013, 30, 78–83. [Google Scholar] [CrossRef]
- Ingham, K.E.; Gorrel, C.; Blackburn, J.M.; Farnsworth, W. Prevalence of odontoclastic resorptive lesions in a clinically healthy cat population. J. Small Anim. Pract. 2001, 42, 439–443. [Google Scholar] [CrossRef]
- Lund, E.M.; Bohacek, L.K.; Dahlke, J.L.; King, V.L.; Kramek, B.A.; Logan, E.I. Prevalence and risk factors for odontoclastic resorptive lesions in cats. J. Am. Vet. Med. Assoc. 1998, 212, 392–395. [Google Scholar] [PubMed]
- Lommer, M.J.; Verstraete, F.J.M. Prevalence of odontoclastic resorption lesions and periapical radiographic lucencies in cats: 265 cases (1995–1998). J. Am. Vet. Med. Assoc. 2000, 217, 1866–1886. [Google Scholar] [CrossRef]
- Whyte, A.; Lacasta, S.; Whyte, J.; Monteagudo, L.V.; Tejedor, M.T. Tooth resorption in Spanish domestic cats: Preliminary Data. Top. Companion Anim. Med. 2020, 38, 100369. [Google Scholar] [CrossRef]
- Okuda, A.; Harvey, C.E. Etiopathogenesis of feline dental resorptive lesions. Vet. Clin. N. Am. Small Anim. Pract. 1992, 22, 1385–1404. [Google Scholar] [CrossRef]
- Booij-Vrieling, H.E.; Tryfonidou, M.A.; Riemers, F.M.; Penning, L.C.; Hazewinkel, H.A. Inflammatory cytokines and the nuclear vitamin D receptor are implicated in the pathophysiology of dental resorptive lesions in cats. Vet. Immunol. Immunop. 2009, 132, 160–166. [Google Scholar] [CrossRef]
- Girard, N.; Servet, E.; Biourge, V.; Hennet, P. Periodontal health status in a colony of 109 cats. J. Vet. Dent. 2009, 26, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Gorrel, C.; Larsson, Å. Feline odontoclastic resorptive lesions: Unveiling the early lesion. J. Small Anim. Pract. 2002, 43, 482–488. [Google Scholar] [CrossRef]
- Hammarström, L.; Blomlöf, L.; Lindskog, S. Dynamics of dento alveolar ankylosis and associated root resorption. Endod. Dent. Traumatol. 1989, 5, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Reiter, A.M.; Mendoza, K.A. Feline odontoclastic resorptive lesions. An unsolved enigma in veterinary dentistry. Vet. Clin. N. Am. Small Anim. Pract. 2002, 32, 791–837. [Google Scholar] [CrossRef]
- Harvey, C.E.; Emily, P.P. Restorative Dentistry. In Small Animal Dentistry; Harvey, C.E., Ed.; Mosby-Year Book: St. Louis, MO, USA, 1993; pp. 217–225. [Google Scholar]
- Harvey, C.E.; Orsini, P.; McLahan, C.; Schuster, C. Mapping of the radiographic central point of feline dental resorptive lesions. J. Vet. Dent. 2004, 21, 15–21. [Google Scholar] [CrossRef]
- Booij-Vrieling, H.; Ferbus, D.; Tryfonidou, M.A.; Riemers, F.M.; Penning, L.C.; Berdal, A.; Everts, V.; Hazewinkel, H.A. Increased vitamin D-driven signalling and expression of the vitamin D receptor, MSX2, and RANKL in tooth resorption in cats. Eur. J. Oral Sci. 2010, 1, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, A.M.; Lyon, K.F.; Nachreiner, R.F.; Shofer, F.S. Evaluation of calciotropic hormones in cats with odontoclastic resorptive lesions. Am. J. Vet. Res 2005, 66, 1446–1452. [Google Scholar] [CrossRef] [Green Version]
- Lewallen, S.; Courtright, P. Epidemiology in practice: Case-control studies. Community Eye Health 1998, 11, 57–58. [Google Scholar] [PubMed]
- Real Decreto 53/2013 (RD 53/2013) de 8 de Febrero. Relativo a las normas básicas aplicables para la protección de los animales utilizados en experimentación y otros fines científicos, incluyendo la docencia. BOE 2013, 34, 11370–11421. Available online: https://www.boe.es/eli/es/rd/2013/02/01/53 (accessed on 30 May 2021).
- Hoyumpa Vogt, A.; Rodan, I.; Brown, M.; Brown, S.; Buffington, C.A.; Larue Forman, M.J.; Neilson, J.; Sparkes, A. AAFP-AAHA: Feline life stage guidelines. J. Feline Med. Surg. 2017, 12, 43–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Veterinary Dental College (AVDC). Recommendations. Available online: https://avdc.org/avdc-nomenclature (accessed on 30 May 2021).
- Power Calculator Correlation. Available online: https://sample-size.net/correlation-sample-size/ (accessed on 30 May 2021).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Psychology Press: New York, NY, USA, 1988. [Google Scholar]
- Sample Size Calculator. Available online: http://sampsize.sourceforge.net/iface/index.html (accessed on 30 May 2021).
- Chen, H.; Cohen, P.; Chen, S. How Big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Commun. Stat. Simul. 2010, 39, 860–864. [Google Scholar] [CrossRef]
- Heaton, M.; Wilkinson, J.; Gorrel, C.; Butterwick, R. A rapid screening technique for feline odontoclastic resorptive lesions. J. Small Anim. Pract. 2004, 45, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Niemiec, B.A. Feline tooth resorption. Today’s Vet. Pract. 2012, 59–63. Available online: https://todaysveterinarypractice.com/wp-content/uploads/sites/4/2016/06/T1209C04.pdf (accessed on 30 May 2021).
- Van Messum, R.; Harvey, C.E.; Hennet, P. Feline dental resorptive lesions, prevalence patterns. Vet. Clin. N. Am. Small Anim. Pract. 1992, 22, 1405–1416. [Google Scholar] [CrossRef]
- Jenkins, E.J. Tooth Resorption and Risk for Anesthetic Complication during Anesthetized Dental Procedures in Domestic Felines. Master’s Thesis, University of Maryland, Baltimore, MD, USA, 2019. Available online: https://drum.lib.umd.edu/handle/1903/22027 (accessed on 30 May 2021).
- Gorrel, C. Tooth resorption in cats. Pathophysiology and treatment options. J. Feline Med. Surg. 2015, 17, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Crossley, D.A. Survey of feline dental problems encountered in a small animal practice in NW England. Br. Vet. Dent. Assoc. J. 1991, 2, 3–4. [Google Scholar]
- Bellows, J.; Center, S.; Daristotle, L.; Estrada, A.H.; Flickinger, E.A.; Horwitz, D.F.; Lascelles, B.D.; Lepine, A.; Perea, S.; Scherk, M.; et al. Evaluating aging in cats. How to determine what is healthy and what is disease. J. Feline Med. Surg. 2016, 18, 551–570. [Google Scholar] [CrossRef] [PubMed]
- Ansar, W.; Ghosh, S. Inflammation and inflammatory diseases, markers, and mediators: Role of CRP in some inflammatory diseases. In Biology of C Reactive Protein in Health and Disease; Springer: New Delhi, India, 2016; pp. 67–107. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Meisner, M. Update on procalcitonin measurements. Ann. Lab. Med. 2014, 34, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Beishuizen, A.; Broyles, M.; Ferrer, R.; Gavazzi, G.; Gluck, E.H.; González Del Castillo, J.; Jensen, J.U.; Kanizsai, P.L.; Kwa, A.L.H.; et al. Procalcitonin (PCT)-guided antibiotic stewardship: An international experts consensus on optimized clinical use. Clin. Chem. Lab. Med. 2019, 57, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Stockham, S.L.; Scott, M.A. Proteins. In Fundamentals of Veterinary Clinical Pathology, 2nd ed.; Stockham, S.L., Scott, M.A., Eds.; Blackwell: Ames, IA, USA, 2008; pp. 369–413. [Google Scholar]
- O’Connell, T.X.; Horita, T.J.; Kasravi, B. Understanding and interpreting serum protein electrophoresis. Am. Fam. Physician 2005, 71, 105–112. [Google Scholar] [PubMed]
- Rosa, R.M.; Mestrinho, L.A. Acute phase protein in cats. Cienc. Rural 2019, 4. Available online: https://www.scielo.br/pdf/cr/v49n4/1678-4596-cr-49-04-e20180790.pdf (accessed on 30 May 2021). [CrossRef]
- Cave, N.J.; Bridges, J.P.; Thomas, D.G. Systemic effects of periodontal disease in cats. Vet. Quart. 2012, 32, 131–144. [Google Scholar] [CrossRef]
- Monefeldt, K.; Tollefsen, T. Serum IgG antibodies reactive with lipoteichoic acid adult patients with periodontitis. J. Clin. Periodontol. 1989, 16, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Hendler, A.; Mulli, T.K.; Hughes, F.J.; Perrett, D.; Bombardieri, M.; Houri-Haddad, Y.; Weiss, E.I.; Nissim, A. Involvement of autoimmunity in the pathogenesis of aggressive periodontitis. J. Dent. Res. 2010, 89, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Tappin, S.W.; Dodkin, S.J.; Papasouliotis, K.; Casamian-Sorrosal, D.; Tasker, S. Serum protein electrophoresis in 155 cats. J. Feline Med. Surg. 2010, 12, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.F.; Palomaki, G.E.; Neveux, L.M.; Navolotskaia, O.; Ledue, T.B.; Craig, W.Y. Reference distributions for the negative acute-phase serum proteins, albumin, transferrin, and transthyretin: A practical, simple and clinically relevant approach in a large cohort. J. Clin. Lab. Anal. 1999, 13, 273–279. [Google Scholar] [CrossRef]
- Gaddale, R.; Mudda, J.A.; Karthikeyan, I.; Desai, S.R.; Shinde, H.; Deshpande, P. Changes in cellular and molecular components of peripheral blood in patients with generalized aggressive periodontitis. J. Investig. Clin. Dent. 2014, 7, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hartzell, J.D.; Torres, D.; Kim, P.; Wortmann, G. Incidence of bacteremia, after routine tooth brushing. Am. J. Med. Sci. 2005, 329, 178–180. [Google Scholar] [CrossRef]
- Takai, T. Fc receptors and their role in immune regulation and autoimmunity. J. Clin. Immunol. 2005, 25, 1–18. [Google Scholar] [CrossRef]
- Wiggs, R.B.; Lobprise, H.B. Periodontology. In Veterinary Dentistry, Principals and Practice; Lobprise, H.B., Johnathon, R., Eds.; Lippincott Raven: Philadelphia, PA, USA, 1997; pp. 186–231. [Google Scholar]
- Arzi, B.; Murphy, B.; Cox, D.P.; Vapniarsky, N.; Kass, P.H.; Verstraete, F.J. Presence and quantification of mast cells in the gingiva of cats with tooth resorption, periodontitis and chronic stomatitis. Arch Oral Biol. 2010, 55, 148–154. [Google Scholar] [CrossRef]
- Hokamp, J.A.; Nabity, M.B. Renal biomarkers in domestic species. Vet. Clin. Pathol. 2016, 45, 28–56. [Google Scholar] [CrossRef]
- Greene, J.P.; Lefebvre, S.L.; Wang, M.; Yang, M.; Lund, E.M.; Polzin, D.J. Risk factors associated with the development of chronic kidney disease in cats evaluated at primary care veterinary hospitals. J. Am. Vet. Med. Assoc. 2014, 244, 320–327. [Google Scholar] [CrossRef]
- Kshirsagar, A.V.; Moss, K.L.; Elter, J.R.; Beck, J.D.; Offenbacher, S.; Falk, R.J. Periodontal disease is associated with renal insufficiency in the Atherosclerosis Risk In Communities (ARIC) study. Am. J. Kidney Dis. 2005, 45, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Glickman, L.T.; Glickman, N.W.; Moore, G.E.; Lund, E.M.; Lantz, G.C.; Pressler, B.M. Association between chronic azotemic kidney disease and the severity of periodontal disease in dogs. Prev. Vet. Med. 2011, 99, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Pavlica, Z.; Petelin, M.; Juntes, P.; Erzen, D.; Crossley, D.A.; Skaleric, U. Periodontal disease burden and pathological changes in organs of dogs. J. Vet. Dent. 2008, 25, 97–105. [Google Scholar] [CrossRef] [PubMed]
Stage | Characteristics |
---|---|
TR1 | Mild dental hard tissue lost (cementum or cementum and enamel) |
TR2 | Moderate dental hard tissue lost Loss of dentin not extended to pulp cavity Painful tooth if dentin tubules exposed to air |
TR3 | Deep dental hard tissue lost Loss of dentin extended to pulp cavity Integrity of the most of the tooth Very painful tool if exposed to air Bleeding from pulp tissue evident on probing Early “ghost images” for roots on radiographs |
TR4 | Extensive dental hard tissue lost Loss of dentin extended to pulp cavity Most of the tooth has lost its integrity TR4a: Crown and roots equally affected TR4b: More severe effects on the crown TR4c: More severe effects on the root |
TR5 | Remnants of hard dental tissues as irregular opacities Incomplete gingival covering Healed oral mucosa (sensitive or not) over the tooth fragments |
Type | Characteristics |
---|---|
T1 | Focal or multifocal radiolucency Normal radiopacity Normal periodontal ligament space |
T2 | Narrowing or disappearance of the periodontal ligament space Decreased radiopacity of part of the tooth |
T3 | Features of both type 1 and type 2 in the same tooth: Areas of normal and narrow or lost periodontal ligament space Focal or multifocal radiolucency Decreased radiopacity in other areas of the tooth |
Tooth | TR Stage | TR Type | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | NI | |
Canines (Total tooth type) | 5/116 (4.3%) | 2/116 (1.7%) | 1/116 (0.9%) | 18/116 (15.5%) | 1/116 (0.9%) | 8/116(6.9%) | 18/116 (15.5%) | 1/116 (0.9%) | |
URC1 | 3/29 (10.3%) | 3/29 (10.3%) | |||||||
ULC1 | 1/29 (3.4%) | 3/29 (10.3%) | 1/29 (3.4%) | 3/29 (10.3%) | |||||
LLC1 | 1/29 (3.4%) | 1/29 (3.4%) | 1/29 (3.4%) | 6/29 (20.7%) | 1/29 (3.4%) | 3/29 (10.3%) | 6/29 (20.7%) | 1/29 (3.4%) | |
LRC1 | 4/29 (13.8%) | 6/29 (20.7%) | 4/29 (13.8%) | 6/29 (20.7%) | |||||
Premolars (Total tooth type) | 7/290 (2.4%) | 5/290 (1.7%) | 25/290 (8.6%) | 20/290 (6.9%) | 20/290 (6.9%) | 32/290 (11.0%) | 16/290 (5.5%) | 9/290 (3.1%) | 20/290 (6.9%) |
URP1 | 1/29 (3.4%) | 1/29 (3.4%) | |||||||
URP2 | 4/29 (13.8%) | 2/29 (6.9%) | 1/29 (3.4%) | 2/29 (6.9%) | 3/29 (10.3%) | 1/29 (3.4%) | 1/29 (3.4%) | ||
URP3 | 3/29 (10.3%) | 2/29 (6.9%) | 1/29 (3.4%) | 2/29 (6.9%) | 3/29 (10.3%) | 1/29 (3.4%) | |||
ULP1 | 1/29 (3.4%) | 1/29 (3.4%) | |||||||
ULP2 | 2/29 (6.9%) | 1/29 (3.4%) | 3/29 (10.3%) | 6/29 (20.6%) | |||||
ULP3 | 2/29 (6.9%) | 1/29 (3.4%) | 3/29 (10.3%) | 1/29 (3.4%) | 6/29 (20.6%) | 1/29 (3.4%) | |||
LLP1 | 1/29 (3.4%) | 3/29 (10.3%) | 8/29 (27.6%) | 7/29 (24.1%) | 5/29 (17.2%) | 3/29 (10.3%) | 4/29 (13.8%) | 7/29 (24.1%) | |
LLP2 | 2/29 (6.9%) | 1/29 (3.4%) | 2/29 (6.9%) | 2/29 (6.9%) | 4/29 (13.8%) | 1/29 (3.4%) | 2/29 (6.9%) | ||
LRP1 | 1/29 (3.4%) | 5/29 (17.2%) | 4/29 (13.8%) | 8/29 (27.6%) | 4/29 (13.8%) | 4/29 (13.8%) | 2/29 (6.9%) | 8/29 (27.6%) | |
LRP1 | 1/29 (3.4%) | 2/29 (6.9%) | 1/29 (3.4%) | 1/29 (3.4%) | 2/29 (6.9%) | 1/29 (3.4%) | 1/29 (3.4%) | 1/29 (3.4%) | |
Molars (Total tooth type) | 3/116 (2.6%) | 2/116 (1.7%) | 4/116 (3.4%) | 9/116 (7.7%) | 8/116 (6.9%) | 10/116 (8.6%) | 2/116 (1.6%) | 6/116 (5.2%) | 8/116 (6.9%) |
URM1 | |||||||||
ULM1 | 1/29 (3.4%) | 1/29 (3.4%) | |||||||
LLM1 | 2/29 (6.9%) | 2/29 (6.9%) | 2/29 (6.9%) | 6/29 (20.7%) | 5/29 (17.2%) | 7/29 (24.1%) | 2/29 (6.9%) | 3/29 (10.3%) | 5/29 (17.2%) |
LRM1 | 2/29 (6.9%) | 3/29 (10.3%) | 3/29 (10.3%) | 2/29 (6.9%) | 3/29 (10.3%) | 3/29 (10.3%) | |||
Total teeth | 15/870 (1.7%) | 9/870 (1.1%) | 30/870 (3.4%) | 47/870 (5.4%) | 29/870 (3.3%) | 50/870 (5.7%) | 36/870 (4.2%) | 15/870 (1.7%) | 29/870 (3.3%) |
TR Type | TR Stage | |||
---|---|---|---|---|
1 (n = 15) | 2 (n = 9) | 3 (n = 30) | 4 (n = 47) | |
1 | 15/15 (100%)a | 9/9 (100%) a | 20/30 (66.7%) a | 6/47 (12.8%) b |
2 | - | - | 6/30 (20%) a | 30/47 (63.8%) b |
3 | - | - | 4/30 (13.3%) a | 11/47 (23.4%) a |
Variable | Reference Range | TR (n = 29) | C (n = 58) | p-Value (Comparisons between TR and C groups) | Spearman’s Rho Variable and TR Global Index (p-Value) |
---|---|---|---|---|---|
Breed | 0.142 | ||||
Domestic short hair | 20/29 (69%) | 51/58 (87.9%) | |||
Sphynx | 1/29 (3.4%) | 0/58 (0%) | |||
Maine Coon | 1/29 (3.4%) | 0/58 (0%) | |||
Persian | 2/29 (6.9%) | 4/58 (6.9%) | |||
Ragdoll | 1/29 (3.4%) | 0/58 (0%) | |||
Shorthair | 1/29 (3.4%) | 0/58 (0%) | |||
Siamese | 3/29 (10.3%) | 3/58 (5.2%) | |||
Males | 20/29 (69%) | 24/58 (41.4%) | 0.015 | ||
Neutered individuals | |||||
Males | 17/20 (85%) | 6/24 (25%) | <0.001 | ||
Females | 9/9 (100%) | 4/34 (11.8%) | <0.001 | ||
Age group | <0.001 | ||||
Young (0.2–6 y) | 6/29 (20.7%) a | 50/59 (86.2%) b | |||
Mature (7–10 y) | 12/29 (41.4%) a | 4/58 (6.9%) b | |||
Senior/geriatric (11–16 y) | 11/29 (37.9%) a | 4/58 (6.9%) b | |||
Age (years) | 9.00 [4.5] | 1.90 [3.0] | <0.001 | 0.651 (<0.001) | |
Weight (kg) | 4.35 [1.35] | 3.40 [1.30] | 0.001 | 0.333 (0.002) | |
Red blood cells (RBC) | 6.54–12.20 M/µL | 7.18 [2.07] | 8.39 [2.13] | 0.004 | −0.309 (0.004) |
Haematocrit (HCT) | 30.3–52.3% | 30.60 [6.35] | 34.95 [9.95] | 0.072 | −0.206 (0.055) |
Haemoglobin (HGB) | 9.8–16.2 g/dL | 11.00 [1.70] | 12.30 [2.90] | 0.002 | −0.329 (0.002) |
Mean corpuscular volume (MCV) | 35.9–53.1fL | 43.50 [8.0] | 41.60 [5.8] | 0.030 | 0.225 (0.036) |
Mean corpuscular haemoglobin (MCH) | 11.8–17.3 pg | 14.73 [2.0] | 14.55 [1.38] | 0.249 | 0.124 (0.251) |
Mean corpuscular haemoglobin concentration (MCHC) | 28.1–35.8 g/dL | 34.10 [2.7] | 35.10 [1.9] | 0.072 | −0.190 (0.085) |
Red cell distribution width (RDW) | 15–27% | 22.00 [3.75] | 24.20 [4.28] | 0.020 | −0.245 (0.022) |
Reticulocyte percentage (RETIC) | 0.10 [0.10] | 0.20 [0.20] | 0.331 | −0.117 (0.285) | |
White blood cells (WBC) | 2.87–17.02 K/µL | 9.22 [7.36] | 8.03 [4.35] | 0.615 | 0.099 (0.363) |
Neutrophils percent (NEU%) | 70.55 [20.3] | 56.20 [23.7] | 0.006 | 0.336 (0.002) | |
Lymphocytes percent (LYM%) | 17.80 [17.85] | 29.80 [19.00] | 0.007 | −0.321 (0.003) | |
Monocytes percent (MON%) | 4.40 [2.50] | 4.20 [2.80] | 0.945 | −0.031 (0.775) | |
Eosinophils percent (EOS%) | 4.80 [5.90] | 6.40 [5.60] | 0.411 | −0.124 (0.254) | |
Basophils percent (BASO%) | 0.40 [0.53] | 0.60 [0.50] | 0.081 | −0.204 (0.064) | |
Neutrophil to lymphocyte ratio (NEU/LYM) | 3.88 [4.27] | 1.85 [2.31] | 0.003 | 0.352 (0.001) | |
Platelets (PLT) | 151–600 K/µL | 278 [251.5] | 270 [235.8] | 0.627 | 0.030 (0.784) |
Platelets to lymphocyte ratio (PLT/LYM) | 188.04 [121.02] | 120.12 [157.02] | 0.146 | 0.144 (0.187) | |
Mean platelet volume (MPV) | 11.4–21.6 fL | 16.25 [2.35] | 16.20 [2.65] | 0.808 | −0.076 (0.491) |
Mean platelet volume to platelets (MPV/PLT) | 0.05 [0.05] | 0.06 [0.05] | 0.578 | −0.056 (0.597) | |
Procalcitonin (PCT) | 0–0.79 ng/mL | 0.57 [0.41] | 0.48 [0.36] | 0.546 | 0.047 (0.670) |
Glucose (GLU) | 71–159 mg/dL | 144.00 [75.0] | 142.00 [77.0] | 0.674 | 0.069 (0.526) |
Blood urea nitrogen (BUN) | 16–36 mg/dL | 21.00 [10.0] | 20.00 [5.5] | 0.115 | 0.171 (0.112) |
Creatinine (CREA) | 0.8–2.4 mg/dL | 1.70 [0.6] | 1.20 [0.5] | <0.001 | 0.506 (<0.001) |
BUN/CREA | 13.00 [3.0] | 16.00 [7.5] | 0.002 | −0.365 (0.001) | |
Total protein (TP) | 5.7–8.9 g/dL | 7.40 [1.4] | 6.90 [1.3] | <0.001 | 0.426 (<0.001) |
Albumin (ALB) | 2.3–3.9 g/dL | 2.70 [0.4] | 3.00 [0.5] | 0.015 | −0.246 (0.022) |
Globulin (GLOB) | 2.8–5.1 g/dL | 4.70 [1.3] | 3.90 [0.7] | <0.001 | 0.547 (<0.001) |
ALB/GLOB | 0.60 [0.20] | 0.80 [0.20] | <0.001 | −0.536 (<0.001) | |
Alanine aminotransferase (ALT) | 12–130 U/L | 52.0 [35.0] | 88.0 [67.0] | <0.001 | −0.405 (<0.001) |
Alkaline phosphatase (ALKP) | 14–111 U/L | 25.00 [27] | 34.50 [50] | 0.024 | −0.251 (0.021) |
Na | 150–165 mmol/L | 154.00 [4.8] | 155.00 [6.0] | 0.203 | −0.114 (0.295) |
K | 3.5–5.8 mmol/L | 3.85 [0.6] | 3.80 [0.5] | 0.993 | 0.044 (0.688) |
Na/K | 41.00 [5.0] | 40.00 [4.3] | 0.857 | −0.013 (0.907) | |
Cl | 112–129 mmol/L | 116.00 [7.0] | 117.00 [6.0] | 0.397 | −0.018 (0.869) |
B | SE | Wald | df | p-Value | Odds Ratio | 95% CI for Odds Ratio | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Sex (Male) | 2.000 | 0.973 | 4.221 | 1 | 0.040 | 7.388 | 1.097 | 49.782 |
Age | 8.669 | 2 | 0.013 | |||||
Mature | 3.556 | 1.208 | 8.666 | 1 | 0.003 | 35.029 | 3.282 | 373.828 |
Seniors/geriatric | 0.263 | 1.140 | 0.053 | 1 | 0.818 | 1.300 | 0.139 | 12.153 |
CREA | 2.614 | 1.235 | 4.480 | 1 | 0.034 | 13.658 | 1.213 | 153.729 |
BUN/CREA | −0.412 | 0.189 | 4.758 | 1 | 0.029 | 0.663 | 0.458 | 0.959 |
ALB/GLOB | −9.121 | 3.079 | 8.777 | 1 | 0.003 | <0.001 | <0.001 | 0.046 |
Constant | 5.572 | 3.126 | 3.177 | 1 | 0.075 | 262.884 |
Variable | B | SE | T | p-Value | 95% CI for B | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Constant | −0.732 | 0.159 | −4.612 | <0.001 | −1.048 | −0.416 |
Age | 0.025 | 0.008 | 3.170 | 0.002 | 0.009 | 0.040 |
Globulins | 0.194 | 0.041 | 4.688 | <0.001 | 0.112 | 0.276 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whyte, A.; Tejedor, M.T.; Whyte, J.; Monteagudo, L.V.; Bonastre, C. Blood Parameters and Feline Tooth Resorption: A Retrospective Case Control Study from a Spanish University Hospital. Animals 2021, 11, 2125. https://doi.org/10.3390/ani11072125
Whyte A, Tejedor MT, Whyte J, Monteagudo LV, Bonastre C. Blood Parameters and Feline Tooth Resorption: A Retrospective Case Control Study from a Spanish University Hospital. Animals. 2021; 11(7):2125. https://doi.org/10.3390/ani11072125
Chicago/Turabian StyleWhyte, Ana, María Teresa Tejedor, Jaime Whyte, Luis Vicente Monteagudo, and Cristina Bonastre. 2021. "Blood Parameters and Feline Tooth Resorption: A Retrospective Case Control Study from a Spanish University Hospital" Animals 11, no. 7: 2125. https://doi.org/10.3390/ani11072125
APA StyleWhyte, A., Tejedor, M. T., Whyte, J., Monteagudo, L. V., & Bonastre, C. (2021). Blood Parameters and Feline Tooth Resorption: A Retrospective Case Control Study from a Spanish University Hospital. Animals, 11(7), 2125. https://doi.org/10.3390/ani11072125