The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. pH and Total Nitrogen in the Litter
2.3. Growth Performance
2.4. Quality Traits of Breast and Leg Muscle
2.5. Gene Expression in Intestine Mucosa
2.6. Statistical Analyses
2.6.1. Growth Performance and Meat Traits
2.6.2. Relative Gene Expression and Statistical Analysis
3. Results
3.1. Growth Performance
3.2. pH and Total Nitrogen in the Litter
3.3. Slaughter Yield and Some Quality Traits of Breast and Leg Muscle
3.4. Gene Expression
4. Discussion
4.1. Growth Performance and Litter Traits
4.2. Meat Quality Traits
4.3. Gene Expression
4.3.1. Immune-Related Genes
4.3.2. Host Defense Peptide Genes
4.3.3. Barrier Function Genes
4.3.4. Nutrient Sensing Genes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juzaitis-Boelter, C.P.; Benson, A.P.; Ahammad, M.U.; Jones, M.K.; Ferrel, J.; Davis, A.J. Dietary inclusion of AZOMITE improves feed efficiency in broilers and egg production in laying and broiler breeder hens. Poult. Sci. 2021, 101144, in press. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef] [PubMed]
- Radziemska, M.; Mazur, Z.; Jeznach, J. Influence of Applying Halloysite and Zeolite to Soil Contaminted with Nickel on the Content of Selected Elements in Maize (Zea mays L.). Chem. Eng. Trans. 2013, 32, 301–306. [Google Scholar]
- Schneider, A.F.; Zimmermann, O.F.; Gewehr, C.E. Zeolites in poultry and swine production. Cienc. Rural 2017, 47, e20160344. [Google Scholar] [CrossRef] [Green Version]
- Meluzzi, A.; Claudio, F.; Folegatti, E.; Sirri, F. Survey of chicken rearing conditions in Italy: Effects of litter quality and stocking density on productivity, foot dermatitis and carcase injuries. Br. Poult. Sci. 2008, 49, 257–264. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. The nutrition of poultry as a factor affecting litter quality and foot pad dermatitis—An updated review. J. Anim. Physiol. Anim. Nutr. 2017, 101, e14–e20. [Google Scholar] [CrossRef]
- Wang, K.H.; Shi, S.R.; Dou, T.C.; Sun, H.J. Effect of a free-range raising system on growth performance, carcass yield, and meat quality of slow-growing chicken. Poult. Sci. 2009, 88, 2218–2223. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.R.; Davoodi, D.; Dastar, B.; Bolandi, N.; Smaili, M.; Mastani, R. Meat Quality Attributes of Broiler Chickens Fed Diets Supplemented with Silver Nanoparticles Coated on Zeolite. Poult. Sci. J. 2014, 4, 183–193. [Google Scholar]
- Mallek, Z.; Fendri, I.; Khannous, L.; Hassena, A.B.; Traore, A.I.; Ayadi, M.A.; Gdoura, R. Effect of zeolite (clinoptilolite) as feed additive in Tunisian broilers on the total flora, meat texture and the production of omega 3 polyunsaturated fatty acid. Lipids Health Dis. 2012, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Safei, M.; Boldaji, F.; Dastar, B.; Hassani, S.; Mutalib, M.S.A.; Rezaei, R. Effects of inclusion kaolin, bentonite and zeolite in dietary on chemical composition of broiler chickens meat. Asian J. Anim. Vet. Adv. 2014, 9, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Opaliński, S.; Korczyński, M.; Szołtysik, M.; Dobrzański, Z.; Kołacz, R. Application of aluminosilicates for mitigation of ammonia and volatile organic compound emissions from poultry manure. Open Chem. 2015, 13, 967–973. [Google Scholar] [CrossRef]
- Patterson, J.A.; Burkholder, K.M. Application of prebiotics and probiotics in poultry production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef]
- Hajati, H.; Rezaei, M. The application of prebiotics in poultry production. Int. J. Poult. Sci. 2010, 9, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Banaszak, M.; Biesek, J.; Bogucka, J.; Dankowiakowska, A.; Olszewski, D.; Bigorowski, B.; Grabowicz, M.; Adamski, M. Impact of aluminosilicates on productivity, carcass traits, meat quality and jejunum morphology of broiler chickens. Poult. Sci. 2020, 99, 7169–7177. [Google Scholar] [CrossRef]
- Biesek, J.; Banaszak, M.; Adamski, M. Ducks’ Growth, Meat Quality, Bone Strength, and Jejunum Strength Depend on Zeolite in Feed and Long-Term Factors. Animals 2021, 11, 1015. [Google Scholar] [CrossRef]
- Sukovata, L.; Kolk, A.; Karolewski, P.; Smolewska, M.; Isidorov, V. Wpływ żerowania owadów liściożernych sosny na skład chemiczny igiliwa, ściółki i gleby. Sylwan 2010, 154, 639–648. (In Polish) [Google Scholar]
- Polska Norma PN-ISO 10390:1997. Jakość gleby—Oznaczanie pH. In Polski Komitet Normalizacyjny; Polski Komitet Normalizacyjny: Warsaw, Poland, 1997. (In Polish) [Google Scholar]
- Polska Norma PN-EN ISO 5983-1:2006. Oznaczanie zawartości azotu i obliczanie zawartości białka ogólnego. In Polski Komitet Normalizacyjny; Polski Komitet Normalizacyjny: Warsaw, Poland, 2006. (In Polish) [Google Scholar]
- Budnik, S. The Effect of Zn, Cu, and Mn Chelates of Hydroxy Analogue of Methionine on Performance and Meat Quality of Broiler Chicken. Ph.D. Thesis, UTP—University of Science and Technology in Bydgoszcz, Bydgoszcz, Poland, November 2017. (In Polish). [Google Scholar]
- Sławińska, A.; Dunisławska, A.; Płowiec, A.; Radomska, M.; Lachmanska, J.; Siwek, M.; Tavaniello, S.; Maiorano, G. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery In Ovo. PLoS ONE 2019, 14, e0212318. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer- BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, Y.Y.; Huang, Y.Q.; Fan, Q.; Lu, X.T.; Wang, C.K. Selection of housekeeping genes for quantitative gene expression analysis in yellow-heathered broilers. Ital. J. Anim. Sci. 2018, 17, 540–546. [Google Scholar] [CrossRef] [Green Version]
- Qin, N.; Shan, X.; Sun, X.; Liswaniso, S.; Chimbaka, I.M.; Xu, R. Evaluation and Validation of the Six Housekeeping Genes for Normalizing Mrna Expression in the Ovarian Follicles and Several Tissues in Chicken. Braz. J. Poult. Sci. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Sevane, N.; Bialade, F.; Velasco, S.; Rebolé, A.; Rodríguez, M.L.; Ortiz, L.T.; Canon, J.; Dunner, S. Dietary inulin supplementation modifies significantly the liver transcriptomic profile of broiler chickens. PLoS ONE 2014, 9, e98942. [Google Scholar] [CrossRef] [PubMed]
- Brisbin, J.T.; Gong, J.; Parvizi, P.; Sharif, S. Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin. Vaccine Immunol. 2010, 17, 1337–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothwell, L.; Young, J.R.; Zoorob, R.; Whittaker, C.A.; Hesketh, P.; Archer, A.; Smith, A.L.; Kaiser, P. Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. J. Immunol. 2004, 173, 2675–2682. [Google Scholar] [CrossRef] [Green Version]
- Sławińska, A.; Mendes, S.; Dunisławska, A.; Siwek, M.; Zampiga, M.; Sirri, F.; Meluzzi, A.; Tavaniello, S.; Maiorano, G. Avian model to mitigate gut-derived immune response and oxidative stress during heat. BioSystems 2019, 178, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Sławińska, A.; Siwek, M.Z.; Bednarczyk, M.F. Effects of synbiotics injected in ovo on regulation of immune-related gene expression in adult chickens. Am. J. Vet. Res. 2014, 75, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef] [Green Version]
- Willis, W.L.; Quarles, C.L.; Fagerberg, D.J. Evaluation of Zeolites Fed to Male Broiler Chickens. Poult. Sci. 1982, 61, 438–442. [Google Scholar] [CrossRef]
- Bintas, E.; Bozkurt, M.; Kucukyilmaz, K.; Konak, R.; Cinar, M.; Aksit, H.; Seyrek, K.; Catli, A.U. Efficacy of Supplemental Natural Zeolite in Broiler Chickens Subjected to Dietary Calcium Deficiency. Ital. J. Anim. Sci. 2014, 13, 3141. [Google Scholar] [CrossRef] [Green Version]
- Kryeziu, A.J.; Mestani, N.; Beisha, S.; Kamberi, M.A. The European performance indicators of broiler chickens as influenced by stocking density and sex. Agron. Res. 2018, 16, 483–491. [Google Scholar]
- Carvalho, G.B.; Santos Neto, L.D.; Martins, J.M.S.; Pereira, N.M.; Falleiros, M.B.; Arnhold, E.; Café, M.B. Litter quality of broiler fed with to different levels of sulfur amino acid. J. Anim. Behav. Biometeorol. 2018, 6, 21–28. [Google Scholar] [CrossRef]
- Kriseldi, R.; Tillman, P.B.; Jiang, Z.; Dozier, W.A., III. Effects of feeding reduced crude protein diets on growth performance, nitrogen excretion, and plasma uric acid concentration of broiler chicks during the starter period. Poult. Sci. 2018, 97, 1614–1626. [Google Scholar] [CrossRef]
- Macelline, S.P.; Wickramasuriya, S.S.; Cho, H.M.; Kim, E.; Shin, T.K.; Hong, J.S.; Kim, J.C.; Pluske, J.R.; Choi, H.J.; Hing, Y.G.; et al. Broilers fed a low protein diet supplemented with synthetic amino acids maintained growth performance and retained intestinal integrity while reducing nitrogen excretion when raised under poor sanitary conditions. Poult. Sci. 2020, 99, 949–958. [Google Scholar] [CrossRef]
- Sittiya, J.; Yamauchi, K.; Nimanong, W.; Thongwittaya, N. Influence of Levels of Dietary Fiber Sources on the Performance, Carcass Traits, Gastrointestinal Tract Development, Fecal Ammonia Nitrogen, and Intestinal Morphology of Broilers. Rev. Bras. Cienc. 2020, 22. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-Chemical Proporties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Cao, Y.; Chen, X.; Zhang, Y.; Xue, X.; Han, M.; Li, L.; Zhou, G.; Xu, X. Effects of chicken myofibrillar protein concentration on protein oxidation and water holding capacity of its heat-induced gels. J. Food Meas. Charact. 2018, 12, 2302–2312. [Google Scholar] [CrossRef]
- Van Laack, R.L.J.M.; Liu, C.-H.; Smith, M.O.; Loveday, H.D. Characteristics of Pale, Soft, Exudative Broiler Breast Meat. Poult. Sci. 2000, 79, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
- Manyeula, F.; Mlambo, V.; Marume, U.; Sebola, N.A. Partial replacement of soybean products with canola meal in indigenous chicken diets: Size of internal organs, carcass characteristics and breast meat quality. Poult. Sci. 2020, 99, 256–262. [Google Scholar] [CrossRef]
- Pietrase, E.; Erasmus, S.W.; Uushona, T.; Hoffman, L.C. Black soldier fly (Hermetia illucens) pre-puapae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food Agric. 2018, 99, 893–903. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Matis, G.; Mackei, M.; Neogrady, Z.; Huber, K.; Seifert, J.; Camarinha-Silva, A. Caeca Microbial Variation in Broiler Chickens as a Result of Dietary Combinations Using Two Cereal Types, Supplementation of Crude Protein and Sodium Butyrate. Front. Microbiol. 2021, 11, 617800. [Google Scholar] [CrossRef] [PubMed]
- Moral, M.G.D.; Fonfria, J.; Varas, A.; Jimenez, E.; Moreno, J.; Zapata, A.G. Appearance and development of lymphoid cells in the chicken (Gallus gallus) caecal tonsil. Anat. Rec. 1998, 250, 182–189. [Google Scholar] [CrossRef]
- Kitagawa, H.; Hiratsuka, Y.; Imagawa, T.; Uehara, M. Distribution of lymphoid tissue in the caecal mucosa of chickens. J. Anat 1998, 192, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kominsky, D.J.; Campbell, E.L.; Colgan, S.P. Metabolic shifts in immunity and inflammation. J. Immunol. 2010, 184, 4062–4068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, C.E. Antiviral Actions of Interferons. Clin. Microbiol. Rev. 2001, 14, 778–809. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, A.; Mazmanian, S.K. Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol. 2017, 16, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Yan, W.; Zheng, H.; Du, Q.; Zhang, L.; Ban, Y.; Li, N.; Wei, F. Regulation of IL-10 and IL-12 production and function in macophages and dendritic cells. F1000Res 2015, 4, PMC4754024. [Google Scholar] [CrossRef] [Green Version]
- Susta, L.; Diel, D.G.; Courtney, S.; Cardenas-Garcia, S.; Sundick, R.S.; Miller, P.J.; Brown, C.C.; Afonso, C.L. Expression of chicken interleukin-2 by a highly virulent strain of Newcastle disease virus leads to decreased systemic viral load but does not significantly affect mortality in chickens. Virol. J. 2015, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Salmon-Ehr, V.; Ramont, L.; Godeau, G.; Birembaut, P.; Guenounou, M.; Bernard, P.; Maquart, F.-X. Implication of Interleukin-4 in Wound Healing. Lab. Investig. 2000, 80, 1337–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gour, N.; Wills-Karp, M. IL-4 and IL-13 Signaling in Allergic Airway Disease. Cytokine 2015, 75, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.-L.; Rosenthal, M. IL-17 in lung disease: Friend or foe? Thorax 2013, 68, 788–790. [Google Scholar] [CrossRef] [Green Version]
- Panday, A.; Sahoo, M.K.; Osorio, D.; Batra, S. NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol. Immunol. 2015, 12, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Ulfig, A.; Leichert, L.I. The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cell Mol. Life Sci. 2021, 78, 385–414. [Google Scholar] [CrossRef]
- Cadwell, K.; Niranji, S.S.; Armstrong, V.L.; Mowbray, C.A.; Bailey, R.; Watson, K.A.; Hall, J. AvDB1 nucleotide polymorphisms, peptide antimicrobial activities and microbial colonisation of the broiler chicken gut. BMC Genom. 2017, 18, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancamelbeke, M.; Vermeire, S. The intestinal barier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 821–834. [Google Scholar] [CrossRef]
- Svihus, B.; Choct, M.; Classen, H.L. Function and nutritional roles of the avian caeca: A review. World Poult. Sci. J. 2013, 69, 249–264. [Google Scholar] [CrossRef]
- Apajalahti, J.; Rinttila, T.; Kettunen, A. Does the composition of intestinal microbiota determine or reflect feed conversion efficieny? In Proceedings of the 23rd Australian Poultry Science Symposium, Sydney, Autralia, 19–22 February 2012; pp. 32–39. [Google Scholar]
- Meslin, C.; Desert, C.; Callebaut, I.; Djari, A.; Klopp, C.; Pitel, F.; Leroux, S.; Martin, P.; Froment, P.; Guilbert, E.; et al. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome. Genome Biol. Evol. 2015, 7, 1332–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep. 2018, 7, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Ahren, B.; Carr, R.; Deacon, C.F. Chapter Seven—Incretin Hormone Secretion Over the Day. Vitam. Horm. 2010, 84, 203–220. [Google Scholar] [PubMed]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Kono, T.; Nishida, M.; Nishiki, Y.; Seki, Y.; Sato, K.; Akiba, Y. Characterisation of glucose transporter (GLUT) gene expression in broiler chickens. Br. Poult. Sci. 2005, 46, 510–515. [Google Scholar] [CrossRef] [PubMed]
Constituent [%] | Starter (0–11 Days) | Grower 1 (11–18 Days) | Grower 2 (18–33 Days) | Finisher (34–42 Days) | ||||
---|---|---|---|---|---|---|---|---|
C(1) 1 | E(2, 3) 2 | C(1) | E(2, 3) | C(1) | E(2, 3) | C(1) | E(2, 3) | |
Dry matter | 88.33 | 87.58 | 88.44 | 86.65 | 86.77 | 87.02 | 87.95 | 87.79 |
Crude ash | 4.81 | 4.81 | 4.26 | 4.94 | 4.81 | 4.93 | 4.87 | 5.14 |
Crude protein | 20.69 | 20.95 | 20.80 | 19.21 | 18.79 | 18.51 | 18.59 | 18.03 |
Crude fat | 5.45 | 5.44 | 5.46 | 6.22 | 7.40 | 8.49 | 7.29 | 7.46 |
Crude fiber | 2.17 | 3.56 | 2.57 | 3.73 | 3.31 | 3.19 | 3.41 | 3.29 |
Starch | 39.19 | 39.87 | 39.15 | 39.99 | 39.55 | 38.11 | 40.72 | 40.43 |
Addition of zeolite and halloysite to feed [%] | ||||||||
Zeolite and halloysite, 1:1 ratio | 0 | 0.5 | 0 | 1 | 0 | 1.5 | 0 | 2 |
Characteristics of aluminosilicates [%] | ||||||||
Zeolite | Halloysite | |||||||
Specific surface area | 30–60 m2/g | Specific surface area | 65–85 m2/g | |||||
Bulk density | 1.60–1.80 kg/m3 | Bulk density | 0.70–0.85 g/cm3 | |||||
Weight | 2.20–2.44 kg/m3 | |||||||
SiO2 (silicon dioxide) | 71.30 | Al (aluminum) | 13.00 | |||||
Al2O3 (aluminum oxide) | 13.10 | Si (silicon) | 12.00 | |||||
CaO (calcium oxide) | 5.20 | Ca (calcium) | 0.40 | |||||
K2O (potassium oxide) | 3.40 | Mg (magnesium) | 0.30 | |||||
Fe2O3 (iron (III) oxide) | 1.90 | Na (sodium) | 0.10 | |||||
MgO (magnesium oxide) | 1.20 | K (potassium) | 0.08 | |||||
Na2O (sodium oxide) | 1.30 | P (phosphorus) | 0.30 | |||||
TiO2 (titanium oxide) | 0.30 | Fe (iron) | 9.00 | |||||
Si/Al (silicon/aluminum) | 5.40 | Ti (titanium) | 1.00 | |||||
Clinoptilolite | 84.00 | Mn (manganese) | 0.20 | |||||
Cristobalite | 8.00 | |||||||
Mica clay | 4.00 | |||||||
Plagioclases | 3.50 | |||||||
Rutile | 0.20 |
Gene | Name | Primer Sequences 1 | References |
---|---|---|---|
ACTB | Actin beta | F: CACAGATCATGTTTGAGACCTT R: CATCACAATACCAGTGGTACG | [25] |
G6PDH | Glucose-6-phosphate dehydrogenase | F: CGGGAACCAAATGCACTTCGT R: GGCTGCCGTAGAGGTATGGGA | [25] |
IFNG | Interferon gamma | F: ACACTGACAAGTCAAAGCCGC R: AGTCGTTCATCGGGAGCTTG | [26] |
IL1B | Interleukin 1 beta | F: GGAGGTTTTTGAGCCCGTC R: TCGAAGATGTCGAAGGACTG | [21] |
IL10 | Interleukin 10 | F: CATGCTGCTGGGCCTGAA R: CGTCTCCTTGATCTGCTTGATG | [27] |
IL12 | Interleukin 12 | F: TTGCCGAAGAGCACCAGCCG R: CGGTGTGCTCCAGGTCTTGGG | [26] |
IL2 | Interleukin 2 | F: GCTTATGGAGCATCTCTATCATCA R: GGTGCACTCCTGGGTCTC | [28] |
IL4 | Interleukin 4 | F: GCTCTCAGTGCCGCTGATG R: GGAAACCTCTCCCTGGATGTC | [29] |
IL17 | Interleukin 17 | F: CCGTCTTCTGCTGAGAGGAGTG R: ACCGTTGTTCCGTCCCATCAC | [28] |
TNFAIP6 | Tumor necrosis factor-inducible gene 6 protein | F: CTGGCTGTCCCTGTGTGATT R: TCAGGTGCTATTGCTGCGAG | This study |
NCF1C | Neutrophil Cytosolic Factor 1C | F: CTGTGGATGGTGTCACCGAA R: TGCCATTCTCACAGCCCTAC | This study |
AvBD1 | Avian beta-defensin 1 | F: AAACCATTGTCAGCCCTGTG R: TTCCTAGAGCCTGGGAGGAT | [21] |
CATHL2 | Cathelicidin | F: AGGAGAATGGGGTCATCAGG R: GGATCTTTCTCAGGAAGCGG | [21] |
MUC6 | Mucin 6 | F: TTCAACATTCAGTTCCGCCG R: TTGATGACACCGACACTCCT | [21] |
CLDN1 | Claudin 1 | F: TCTTCATCATTGCAGGTCTGTC R: AACGGGTGTGAAAGGGTCAT | [21] |
TJAP1 | Tight junction-associatedprotein 1 | F: AGGAAGCGATGAATCCCTGTT R: TCACTCAGATGCCAGATCCAA | [21] |
FFAR2 | Free fatty acid receptor 2 | F: GCTCGACCCCTTCATCTTCT R: ACACATTGTGCCCCGAATTG | [21] |
FFAR4 | Free fatty acid receptor 4 | F: AGTGTCACTGGTGAGGAGATT R: ACAGCAACAGCATAGGTCAC | [21] |
GLUT1 | Glucose transporter 1 | F:AGATGACAGCTCGCCTGATG R:GTCTTCAATCACCTTCTGCGG | [21] |
Item 1 | Group 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | SEM | Total | 1 vs 2 | 1 vs 3 | 2 vs 3 | |
BW (g) | mean values | |||||||
1-day old chicks | 40.56 | 40.85 | 40.30 | 0.16 | 0.399 | 0.492 | 0.555 | 0.746 |
10 day | 261.70 | 268.44 | 270.27 | 2.45 | 0.334 | 0.229 | 0.137 | 0.745 |
18 day | 671.16 b | 681.95 ab | 695.40 a | 7.21 | 0.402 | 0.603 | 0.044 | 0.475 |
33 day | 1960.85 b | 2048.83 ab | 2147.73 a | 34.28 | 0.079 | 0.345 | 0.027 | 0.495 |
42 day | 3031.03 | 3177.40 | 3175.41 | 41.63 | 0.266 | 0.205 | 0.137 | 0.907 |
BWG (g) | ||||||||
1–10 days | 221.14 | 227.59 | 229.97 | 2.39 | 0.307 | 0.239 | 0.116 | 0.771 |
11–18 days | 409.46 | 413.51 | 425.14 | 5.53 | 0.502 | 0.805 | 0.076 | 0.417 |
19–33 days | 1289.69 b | 1366.88 ab | 1452.33 a | 30.98 | 0.097 | 0.367 | 0.043 | 0.768 |
34–42 days | 1070.18 | 1128.57 | 1027.68 | 21.45 | 0.157 | 0.302 | 0.256 | 0.640 |
1–42 days | 2990.47 | 3136.56 | 3135.12 | 41.70 | 0.267 | 0.206 | 0.138 | 0.910 |
ADBWG (g) | ||||||||
1–10 days | 30.80 | 30.94 | 30.76 | 0.24 | 0.954 | 0.772 | 0.956 | 0.771 |
11–18 days | 92.28 | 92.20 | 91.02 | 0.55 | 0.599 | 0.957 | 0.362 | 0.417 |
19–33 days | 77.47 | 74.89 | 74.01 | 0.90 | 0.270 | 0.284 | 0.149 | 0.640 |
34–42 days | 122.25 | 110.85 | 112.86 | 2.59 | 0.159 | 0.066 | 0.125 | 0.768 |
1–42 days | 72.64 a | 69.73 b | 69.59 b | 0.51 | 0.017 | 0.005 | 0.017 | 0.910 |
FI (g; per bird) | ||||||||
1–10 days | 220.55 | 234.70 | 232.80 | 2.75 | 0.069 | 0.057 | 0.076 | 0.448 |
11–18 days | 545.63 b | 555.90 ab | 574.90 a | 6.62 | 0.191 | 0.496 | 0.048 | 0.788 |
19–33 days | 1919.98 b | 2047.61 a | 2062.34 a | 36.70 | 0.006 | 0.018 | 0.008 | 0.364 |
34–42 days | 1818.80 | 1829.09 | 1895.28 | 21.21 | 0.288 | 0.834 | 0.104 | 0.159 |
1–42 days | 4613.51 | 5015.33 | 4847.54 | 79.19 | 0.112 | 0.078 | 0.106 | 0.478 |
ADFI (g; per bird) | ||||||||
1–10 days | 30.56 | 30.00 | 30.70 | 0.32 | 0.653 | 0.563 | 0.746 | 0.448 |
11–18 days | 129.31 | 128.27 | 129.21 | 1.27 | 0.938 | 0.656 | 0.979 | 0.788 |
19–33 days | 115.54 | 115.47 | 112.94 | 1.10 | 0.563 | 0.982 | 0.344 | 0.364 |
34–42 days | 232.97 | 233.99 | 236.19 | 0.80 | 0.254 | 0.631 | 0.153 | 0.159 |
1–42 days | 115.85 | 115.78 | 114.44 | 0.72 | 0.686 | 0.971 | 0.448 | 0.478 |
FCR (kg/kg) | ||||||||
1–10 days | 1.00 | 1.03 | 1.01 | 0.01 | 0.396 | 0.229 | 0.536 | 0.394 |
11–18 days | 1.33 | 1.35 | 1.35 | 0.01 | 0.856 | 0.618 | 0.592 | 0.432 |
19–33 days | 1.70 b | 1.84 ab | 2.01 a | 0.05 | 0.015 | 0.224 | 0.002 | 0.660 |
34–42 days | 1.45 | 1.35 | 1.31 | 0.04 | 0.231 | 0.320 | 0.132 | 0.937 |
1–42 days | 1.54 | 1.59 | 1.54 | 0.02 | 0.326 | 0.231 | 0.889 | 0.707 |
EBI | 457 | 465 | 479 | 8.09 | 0.567 | 0.731 | 0.274 | 0.425 |
Item 1 | Group 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | SEM | Total | 1 vs 2 | 1 vs 3 | 2 vs 3 | |
mean values | ||||||||
Live body weight (g) | 2932.00 | 3070.80 | 3039.50 | 27.67 | 0.096 | 0.056 | 0.123 | 0.597 |
Carcass weight (g) | 2225.93 b | 2365.95 a | 2287.57 ab | 22.16 | 0.029 | 0.015 | 0.255 | 0.083 |
Slaughter yield (%) | 75.91 ab | 77.06 a | 75.27 b | 0.26 | 0.011 | 0.057 | 0.298 | 0.002 |
Breast muscle (%) | 31.75 | 32.24 | 30.97 | 0.40 | 0.436 | 0.649 | 0.372 | 0.219 |
pH24 h | 6.07 | 6.15 | 6.12 | 0.03 | 0.449 | 0.279 | 0.474 | 0.518 |
L* | 51.61 ab | 52.13 a | 49.42 b | 0.53 | 0.081 | 0.721 | 0.082 | 0.015 |
a* | 2.25 | 2.80 | 3.18 | 0.18 | 0.105 | 0.181 | 0.057 | 0.374 |
b* | 4.64 | 5.37 | 4.75 | 0.31 | 0.608 | 0.422 | 0.878 | 0.418 |
WHC (%) | 32.97 a | 28.58 b | 36.76 a | 1.27 | 0.008 | 0.012 | 0.198 | 0.005 |
Crude protein (%) | 22.63 a | 22.25 b | 21.76 c | 0.07 | <0.001 | <0.001 | <0.001 | <0.001 |
Intramuscular fat (%) | 2.36 c | 2.69 b | 3.09 a | 0.06 | <0.001 | <0.001 | <0.001 | <0.001 |
Leg muscle (%) | 20.59 | 19.48 | 20.40 | 0.25 | 0.126 | 0.066 | 0.759 | 0.106 |
L* | 45.68 b | 48.10 ab | 49.44 a | 0.71 | 0.087 | 0.199 | 0.038 | 0.358 |
a* | 5.02 | 4.68 | 4.06 | 0.31 | 0.448 | 0.602 | 0.236 | 0.467 |
b* | 4.49 a | 1.94 b | 3.53 ab | 0.47 | 0.035 | 0.036 | 0.999 | 0.055 |
WHC (%) | 32.19 | 33.92 | 35.38 | 0.51 | 0.029 | 0.106 | 0.004 | 0.292 |
Crude protein (%) | 19.03 b | 19.11 a | 18.56 c | 0.05 | <0.001 | 0.003 | <0.001 | <0.001 |
Intramuscular fat (%) | 7.17 a | 6.99 b | 7.14 a | 0.02 | <0.001 | <0.001 | 0.337 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biesek, J.; Dunisławska, A.; Banaszak, M.; Siwek, M.; Adamski, M. The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa. Animals 2021, 11, 2224. https://doi.org/10.3390/ani11082224
Biesek J, Dunisławska A, Banaszak M, Siwek M, Adamski M. The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa. Animals. 2021; 11(8):2224. https://doi.org/10.3390/ani11082224
Chicago/Turabian StyleBiesek, Jakub, Aleksandra Dunisławska, Mirosław Banaszak, Maria Siwek, and Marek Adamski. 2021. "The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa" Animals 11, no. 8: 2224. https://doi.org/10.3390/ani11082224
APA StyleBiesek, J., Dunisławska, A., Banaszak, M., Siwek, M., & Adamski, M. (2021). The Impact of Hydrated Aluminosilicates Supplemented in Litter and Feed on Chicken Growth, Muscle Traits and Gene Expression in the Intestinal Mucosa. Animals, 11(8), 2224. https://doi.org/10.3390/ani11082224