Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Welfare of Dairy Cows and Precision Livestock Farming
2.1. Lameness
2.1.1. Pressure Plate/Load Cell
2.1.2. Image Processing Techniques
2.1.3. Activity-Based Techniques
2.1.4. Behavior of the Cows
2.2. Mastitis
2.2.1. Somatic Cell Count (SCC)
2.2.2. Electrical Conductivity and Lactate Dehydrogenase
2.2.3. Infrared Thermography
2.3. Body Condition Scoring
Vision-Based Body Condition Scoring Systems
3. The Potential of PLF for Assessing Welfare Animal-Based Indicators of Dairy Cattle
4. Challenges for the Future
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Broom, D.M. EU regulations and the current position of animal welfare. In The Economics of Farm Animal Welfare: Theory, Evidence and Policy; Ahmad, B.V., Moran, D., D’Eath, R.B., Eds.; CAB: Rome, Italy, 2020. [Google Scholar]
- Buller, H.; Blokhuis, H.; Jensen, P.; Keeling, L. Towards Farm Animal Welfare and Sustainability. Animals 2018, 8, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.J.C.; Molento, C.F.M. Animal Welfare Centres: Are They Useful for the Improvement of Animal Welfare? Animals 2020, 10, 877. [Google Scholar] [CrossRef]
- Fraser, D.; Duncan, I.J.; Edwards, S.; Grandin, T.; Gregory, N.G.; Guyonnet, V.; Hemsworth, P.; Huertas, S.M.; Huzzey, J.M.; Mellor, D.J. General Principles for the welfare of animals in production systems: The underlying science and its application. Veter. J. 2013, 198, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokhuis, H.J.; Veissier, I.; Miele, M.; Jones, B.C. The Welfare Quality® project and beyond: Safeguarding farm animal well-being. Acta Agric. Scand. Sect. A Anim. Sci. 2010, 60, 129–140. [Google Scholar] [CrossRef]
- Blokhuis, H.J.; Miele, M.; Veissier, I.; Jones, B. Improving Farm Animal Welfare: Science and Society Working together: The Welfare Quality Approach; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zanella, A. AWIN—Animal Health and Welfare—FP7 Project. Impact 2016, 2016, 15–17. [Google Scholar] [CrossRef]
- Czycholl, I.; Kniese, C.; Schrader, L.; Krieter, J. Assessment of the multi-criteria evaluation system of the Welfare Quality® protocol for growing pigs. Animals 2017, 11, 1573–1580. [Google Scholar] [CrossRef]
- De Graaf, S.; Ampe, B.; Buijs, S.; Andreasen, S.; Roches, A.D.B.D.; Van Eerdenburg, F.; Haskell, M.; Kirchner, M.; Mounier, L.; Radeski, M.; et al. Sensitivity of the integrated Welfare Quality® scores to changing values of individual dairy cattle welfare measures. Anim. Welf. 2018, 27, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Rios, H.V.; Waquil, P.D.; De Carvalho, P.S.; Norton, T. How Are Information Technologies Addressing Broiler Welfare? A Systematic Review Based on the Welfare Quality® Assessment. Sustainability 2020, 12, 1413. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.; Wang, M.; Norton, T. Information Technologies for Welfare Monitoring in Pigs and Their Relation to Welfare Quality®. Sustainability 2021, 13, 692. [Google Scholar] [CrossRef]
- Molina, F.M.; Marín, C.C.P.; Moreno, L.M.; Buendía, E.I.A.; Marín, D.C.P. Welfare Quality® for dairy cows: Towards a sensor-based assessment. J. Dairy Res. 2020, 87, 28–33. [Google Scholar] [CrossRef]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Costa, E.D.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A Systematic Review on Commercially Available and Validated Sensor Technologies for Welfare Assessment of Dairy Cattle. Front. Veter. Sci. 2021, 8, 177. [Google Scholar] [CrossRef]
- Qiao, Y.; Kong, H.; Clark, C.; Lomax, S.; Su, D.; Eiffert, S.; Sukkarieh, S. Intelligent perception for cattle monitoring: A review for cattle identification, body condition score evaluation, and weight estimation. Comput. Electron. Agric. 2021, 185, 106143. [Google Scholar] [CrossRef]
- Berckmans, D.; Hemeryck, M.; Berckmans, D.; Vranken, E.; van Waterschoot, T. Animal sound… talks! Real-time sound analysis for health monitoring in livestock. In Proceedings of the International Symposium on Animal Environment & Welfare, Chongqing, China, 23–26 October 2015; pp. 215–222. [Google Scholar]
- Buller, H.; Blokhuis, H.; Lokhorst, K.; Silberberg, M.; Veissier, I. Animal Welfare Management in a Digital World. Animals 2020, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Van Hertem, T.; Rooijakkers, L.; Berckmans, D.; Fernández, A.P.; Norton, T.; Vranken, E. Appropriate data visualisation is key to Precision Livestock Farming acceptance. Comput. Electron. Agric. 2017, 138, 1–10. [Google Scholar] [CrossRef]
- FARM. Animal Care Reference Manual Version 4. National Dairy FARM Program. Available online: https://nationaldairyfarm.com/wp-content/uploads/2020/02/Animal-Care-V4-Manual-Print-Friendly.pdf (accessed on 17 June 2021).
- New Zealand National Animal Welfare Advisory Committee. Code of Welfare: Dairy Cattle. 2019; 57p. Available online: https://www.mpi.govt.nz/dmsdocument/37542/direct (accessed on 17 June 2021).
- Welfare Quality. Assessment Protocol for Cattle. Available online: http://www.welfarequalitynetwork.net/network/45848/7/0/40 (accessed on 17 June 2021).
- Van Eerdenburg, F.; Di Giacinto, A.; Hulsen, J.; Snel, B.; Stegeman, J. A New, Practical Animal Welfare Assessment for Dairy Farmers. Animals 2021, 11, 881. [Google Scholar] [CrossRef]
- Tuyttens, F.A.M.; de Graaf, S.; Andreasen, S.N.; Roches, A.D.B.D.; van Eerdenburg, F.J.C.M.; Haskell, M.J.; Kirchner, M.K.; Mounier, L.; Kjosevski, M.; Bijttebier, J.; et al. Using Expert Elicitation to Abridge the Welfare Quality® Protocol for Monitoring the Most Adverse Dairy Cattle Welfare Impairments. Front. Veter. Sci. 2021, 8, 634470. [Google Scholar] [CrossRef]
- Heath, C.A.E.; Browne, W.J.; Mullan, S.; Main, D.C. Navigating the iceberg: Reducing the number of parameters within the Welfare Quality® assessment protocol for dairy cows. Animal 2014, 8, 1978–1986. [Google Scholar] [CrossRef] [Green Version]
- Krueger, A.; Cruickshank, J.; Trevisi, E.; Bionaz, M. Systems for evaluation of welfare on dairy farms. J. Dairy Res. 2020, 87, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, s187–s195. [Google Scholar] [CrossRef] [Green Version]
- Heringstad, B.; Egger-Danner, C.; Charfeddine, N.; Pryce, J.; Stock, K.; Kofler, J.; Sogstad, A.; Holzhauer, M.; Fiedler, A.; Müller, K.; et al. Invited review: Genetics and claw health: Opportunities to enhance claw health by genetic selection. J. Dairy Sci. 2018, 101, 4801–4821. [Google Scholar] [CrossRef] [Green Version]
- Mineur, A.; Hammami, H.; Grelet, C.; Egger-Danner, C.; Sölkner, J.; Gengler, N. Short communication: Investigation of the temporal relationships between milk mid-infrared predicted biomarkers and lameness events in later lactation. J. Dairy Sci. 2020, 103, 4475–4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taneja, M.; Byabazaire, J.; Jalodia, N.; Davy, A.; Olariu, C.; Malone, P. Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Comput. Electron. Agric. 2020, 171, 105286. [Google Scholar] [CrossRef]
- Barker, Z.; Diosdado, J.V.; Codling, E.; Bell, N.; Hodges, H.; Croft, D.; Amory, J. Use of novel sensors combining local positioning and acceleration to measure feeding behavior differences associated with lameness in dairy cattle. J. Dairy Sci. 2018, 101, 6310–6321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Nuffel, A.; Zwertvaegher, I.; Pluym, L.; Van Weyenberg, S.; Thorup, V.M.; Pastell, M.; Sonck, B.; Saeys, W. Lameness Detection in Dairy Cows: Part 1. How to Distinguish between Non-Lame and Lame Cows Based on Differences in Locomotion or Behavior. Animals 2015, 5, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolecheck, K.; Bewley, J. Animal board invited review: Dairy cow lameness expenditures, losses and total cost. Animals 2018, 12, 1462–1474. [Google Scholar] [CrossRef] [Green Version]
- Daros, R.R.; Eriksson, H.K.; Weary, D.M.; Von Keyserlingk, M.A. The relationship between transition period diseases and lameness, feeding time, and body condition during the dry period. J. Dairy Sci. 2020, 103, 649–665. [Google Scholar] [CrossRef]
- Grimm, K.; Haidn, B.; Erhard, M.; Tremblay, M.; Döpfer, D. New insights into the association between lameness, behavior, and performance in Simmental cows. J. Dairy Sci. 2019, 102, 2453–2468. [Google Scholar] [CrossRef]
- Nechanitzky, K.; Starke, A.; Vidondo, B.; Müller, H.; Reckardt, M.; Friedli, K.; Steiner, A. Analysis of behavioral changes in dairy cows associated with claw horn lesions. J. Dairy Sci. 2016, 99, 2904–2914. [Google Scholar] [CrossRef] [Green Version]
- Van De Gucht, T.; Saeys, W.; Van Meensel, J.; Van Nuffel, A.; Vangeyte, J.; Lauwers, L. Farm-specific economic value of automatic lameness detection systems in dairy cattle: From concepts to operational simulations. J. Dairy Sci. 2018, 101, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Schlageter-Tello, A.; Van Hertem, T.; Bokkers, E.A.M.; Viazzi, S.; Bahr, C.; Lokhorst, K. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows. J. Dairy Sci. 2018, 101, 6322–6335. [Google Scholar] [CrossRef] [Green Version]
- Van Nuffel, A.; Saeys, W.; Sonck, B.; Vangeyte, J.; Mertens, K.; De Ketelaere, B.; Van Weyenberg, S. Variables of gait inconsistency outperform basic gait variables in detecting mildly lame cows. Livest. Sci. 2015, 177, 125–131. [Google Scholar] [CrossRef]
- Thorup, V.; Nascimento, O.D.; Skjøth, F.; Voigt, M.; Rasmussen, M.; Bennedsgaard, T.; Ingvartsen, K. Short communication: Changes in gait symmetry in healthy and lame dairy cows based on 3-dimensional ground reaction force curves following claw trimming. J. Dairy Sci. 2014, 97, 7679–7684. [Google Scholar] [CrossRef] [Green Version]
- Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W. Lameness Detection in Dairy Cows: Part 2. Use of Sensors to Automatically Register Changes in Locomotion or Behavior. Animals 2015, 5, 388. [Google Scholar] [CrossRef] [Green Version]
- Van De Gucht, T.; Saeys, W.; Van Weyenberg, S.; Lauwers, L.; Mertens, K.; Vandaele, L.; Vangeyte, J.; Van Nuffel, A. Automatically measured variables related to tenderness of hoof placement and weight distribution are valuable indicators for lameness in dairy cows. Appl. Anim. Behav. Sci. 2017, 189, 13–22. [Google Scholar] [CrossRef]
- Maertens, W.; Vangeyte, J.; Baert, J.; Jantuan, A.; Mertens, K.; De Campeneere, S.; Pluk, A.; Opsomer, G.; Van Weyenberg, S.; Van Nuffel, A. Development of a real time cow gait tracking and analysing tool to assess lameness using a pressure sensitive walkway: The GAITWISE system. Biosyst. Eng. 2011, 110, 29–39. [Google Scholar] [CrossRef]
- Van Nuffel, A.; Vangeyte, J.; Mertens, K.C.; Pluym, L.; De Campeneere, S.; Saeys, W.; Opsomer, G.; Van Weyenberg, S. Ex-ploration of measurement variation of gait variables for early lameness detection in cattle using the GAITWISE. Livest. Sci. 2013, 156, 88–95. [Google Scholar] [CrossRef]
- Alsaaod, M.; Luternauer, M.; Hausegger, T.; Kredel, R.; Steiner, A. The cow pedogram—Analysis of gait cycle variables allows the detection of lameness and foot pathologies. J. Dairy Sci. 2017, 100, 1417–1426. [Google Scholar] [CrossRef] [Green Version]
- Chapinal, N.; De Passille, M.A.; Pastell, M.; Hänninen, L.; Munksgaard, L.; Rushen, J. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. J. Dairy Sci. 2011, 94, 2895–2901. [Google Scholar] [CrossRef] [Green Version]
- Thorup, V.; Munksgaard, L.; Robert, P.-E.; Erhard, H.; Thomsen, P.T.; Friggens, N. Lameness detection via leg-mounted accelerometers on dairy cows on four commercial farms. Animals 2015, 9, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Bicalho, R.; Cheong, S.H.; Cramer, G.; Guard, C. Association Between a Visual and an Automated Locomotion Score in Lactating Holstein Cows. J. Dairy Sci. 2007, 90, 3294–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunthorn, J.; Dyer, R.M.; Neerchal, N.K.; McHenry, J.S.; Rajkondawar, P.G.; Steingraber, G.; Tasch, U. Predictive models of lameness in dairy cows achieve high sensitivity and specificity with force measurements in three dimensions. J. Dairy Res. 2015, 82, 391–399. [Google Scholar] [CrossRef]
- Ghotoorlar, S.M.; Ghamsari, S.M.; Nowrouzian, I.; Ghotoorlar, S.M.; Ghidary, S.S. Lameness scoring system for dairy cows using force plates and artificial intelligence. Veter. Rec. 2012, 170, 126. [Google Scholar] [CrossRef]
- Kujala, M.; Pastell, M.; Soveri, T. Use of force sensors to detect and analyse lameness in dairy cows. Veter. Rec. 2008, 162, 365–368. [Google Scholar] [CrossRef]
- Liu, J.; Neerchal, N.; Tasch, U.; Dyer, R.; Rajkondawar, P. Enhancing the prediction accuracy of bovine lameness models through transformations of limb movement variables. J. Dairy Sci. 2009, 92, 2539–2550. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dyer, R.M.; Neerchal, N.K.; Tasch, U.; Rajkondawar, P.G. Diversity in the magnitude of hind limb unloading occurs with similar forms of lameness in dairy cows. J. Dairy Res. 2011, 78, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Pastell, M.; Kujala, M.; Aisla, A.-M.; Hautala, M.; Poikalainen, V.; Praks, J.; Veermäe, I.; Ahokas, J. Detecting cow’s lameness using force sensors. Comput. Electron. Agric. 2008, 64, 34–38. [Google Scholar] [CrossRef]
- Rajkondawar, P.; Liu, M.; Dyer, R.; Neerchal, N.; Tasch, U.; Lefcourt, A.; Erez, B.; Varner, M. Comparison of Models to Identify Lame Cows Based on Gait and Lesion Scores, and Limb Movement Variables. J. Dairy Sci. 2006, 89, 4267–4275. [Google Scholar] [CrossRef] [Green Version]
- Tasch, U.; Rajkondawar, P. The development of a SoftSeparator™ for a lameness diagnostic system. Comput. Electron. Agric. 2004, 44, 239–245. [Google Scholar] [CrossRef]
- Skjøth, F.; Thorup, V.; Nascimento, O.D.; Ingvartsen, K.; Rasmussen, M.; Voigt, M. Computerized identification and classification of stance phases as made by front or hind feet of walking cows based on 3-dimensional ground reaction forces. Comput. Electron. Agric. 2013, 90, 7–13. [Google Scholar] [CrossRef]
- Rajkondawar, P.G.; Tasch, U.; Lefcourt, A.M.; Erez, B.; Dyer, R.M.; Varner, M.A. A system for identifying lameness in dairy cattle. Appl. Eng. Agric. 2002, 18, 87. [Google Scholar] [CrossRef]
- Chapinal, N.; De Passillé, A.M.; Rushen, J.; Wagner, S. Automated methods for detecting lameness and measuring analgesia in dairy cattle. J. Dairy Sci. 2010, 93, 2007–2013. [Google Scholar] [CrossRef] [Green Version]
- Chapinal, N.; Tucker, C. Validation of an automated method to count steps while cows stand on a weighing platform and its application as a measure to detect lameness. J. Dairy Sci. 2012, 95, 6523–6528. [Google Scholar] [CrossRef]
- Neveux, S.; Weary, D.; Rushen, J.; Von Keyserlingk, M.; De Passillé, A. Hoof Discomfort Changes How Dairy Cattle Distribute Their Body Weight. J. Dairy Sci. 2006, 89, 2503–2509. [Google Scholar] [CrossRef]
- Pastell, M.; Kujala, M. A Probabilistic Neural Network Model for Lameness Detection. J. Dairy Sci. 2007, 90, 2283–2292. [Google Scholar] [CrossRef] [Green Version]
- Haladjian, J.; Haug, J.; Nüske, S.; Bruegge, B. A Wearable Sensor System for Lameness Detection in Dairy Cattle. Multimodal Technol. Interact. 2018, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Post, C.; Rietz, C.; Büscher, W.; Müller, U. Using Sensor Data to Detect Lameness and Mastitis Treatment Events in Dairy Cows: A Comparison of Classification Models. Sensors 2020, 20, 3863. [Google Scholar] [CrossRef] [PubMed]
- Van Hertem, T.; Viazzi, S.; Steensels, M.; Maltz, E.; Antler, A.; Alchanatis, V.; Schlageter-Tello, A.A.; Lokhorst, K.; Romanini, E.C.; Bahr, C.; et al. Automatic lameness detection based on consecutive 3D-video recordings. Biosyst. Eng. 2014, 119, 108–116. [Google Scholar] [CrossRef]
- Piette, D.; Norton, T.; Exadaktylos, V.; Berckmans, D. Individualised automated lameness detection in dairy cows and the impact of historical window length on algorithm performance. Animals 2020, 14, 409–417. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.; Liu, G. Accurate detection of lameness in dairy cattle with computer vision: A new and individualized detection strategy based on the analysis of the supporting phase. J. Dairy Sci. 2020, 103, 10628–10638. [Google Scholar] [CrossRef]
- Poursaberi, A.; Bahr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Comput. Electron. Agric. 2010, 74, 110–119. [Google Scholar] [CrossRef]
- Pluk, A.; Bahr, C.; Poursaberi, A.; Maertens, W.; Van Nuffel, A.; Berckmans, D. Automatic measurement of touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques. J. Dairy Sci. 2012, 95, 1738–1748. [Google Scholar] [CrossRef] [Green Version]
- Blackie, N.; Bleach, E.; Amory, J.; Scaife, J. Associations between locomotion score and kinematic measures in dairy cows with varying hoof lesion types. J. Dairy Sci. 2013, 96, 3564–3572. [Google Scholar] [CrossRef] [Green Version]
- Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Van Hertem, T.; Romanini, C.E.B.; Pluk, A.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. J. Dairy Sci. 2013, 96, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viazzi, S.; Bahr, C.; Van Hertem, T.; Schlageter-Tello, A.; Romanini, C.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Comparison of a three-dimensional and two-dimensional camera system for automated measurement of back posture in dairy cows. Comput. Electron. Agric. 2014, 100, 139–147. [Google Scholar] [CrossRef]
- Zhao, K.; Bewley, J.; He, D.; Jin, X. Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique. Comput. Electron. Agric. 2018, 148, 226–236. [Google Scholar] [CrossRef]
- Van Hertem, T.; Bahr, C.; Tello, A.S.; Viazzi, S.; Steensels, M.; Romanini, C.; Lokhorst, C.; Maltz, E.; Halachmi, I.; Berckmans, D. Lameness detection in dairy cattle: Single predictor v. multivariate analysis of image-based posture processing and behaviour and performance sensing. Animals 2016, 10, 1525–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hertem, T.; Tello, A.S.; Viazzi, S.; Steensels, M.; Bahr, C.; Romanini, C.E.B.; Lokhorst, K.; Maltz, E.; Halachmi, I.; Berckmans, D. Implementation of an automatic 3D vision monitor for dairy cow locomotion in a commercial farm. Biosyst. Eng. 2018, 173, 166–175. [Google Scholar] [CrossRef]
- O’Leary, N.W.; Byrne, D.T.; O’Connor, A.; Shalloo, L. Invited review: Cattle lameness detection with accelerometers. J. Dairy Sci. 2020, 103, 3895–3911. [Google Scholar] [CrossRef] [Green Version]
- Westin, R.; Vaughan, A.; De Passillé, A.; Devries, T.; Pajor, E.; Pellerin, D.; Siegford, J.; Vasseur, E.; Rushen, J. Lying times of lactating cows on dairy farms with automatic milking systems and the relation to lameness, leg lesions, and body condition score. J. Dairy Sci. 2016, 99, 551–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer, G.; Alsaaod, M.; Starke, A.; Schüpbach-Regula, G.; Müller, H.; Kohler, P.; Steiner, A. Use of Extended Characteristics of Locomotion and Feeding Behavior for Automated Identification of Lame Dairy Cows. PLoS ONE 2016, 11, e218546. [Google Scholar] [CrossRef] [Green Version]
- IceRobotics. COWALERT Lameness Detection Highly Commended. 2017. Available online: https://www.icerobotics.com/cowalert/lameness-alerts/ (accessed on 24 February 2021).
- EFSA (European Food Safety Authority) Panel on Animal Health and Welfare (AHAW). Scientific Opinion on the use of animal-based measures to assess welfare of dairy cows. EFSA J. 2012, 10, 81. [Google Scholar] [CrossRef]
- Barrell, G.K. An Appraisal of Methods for Measuring Welfare of Grazing Ruminants. Front. Veter. Sci. 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.; Weary, D.M. A 100-Year Review: Animal welfare in the Journal of Dairy Science—The first 100 years. J. Dairy Sci. 2017, 100, 10432–10444. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, J.L.; Araújo, J.P.; Cantalapiedra, J.; Blanco-Penedo, I. How is the association of teat-end severe hyperkeratosis on udder health and dairy cow behavior? Rev. Med. Vet. 2018, 169, 30–37. [Google Scholar]
- Ceballos, M.C.; Góis, K.C.R.; Sant’Anna, A.C.; Wemelsfelder, F.; da Costa, M.P. Reliability of qualitative behavior assessment (QBA) versus methods with predefined behavioral categories to evaluate maternal protective behavior in dairy cows. Appl. Anim. Behav. Sci. 2021, 236, 105263. [Google Scholar] [CrossRef]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Wilson, M.T.; Schaefer, A.L.; Huddart, F.; Sutherland, M.A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. J. Dairy Sci. 2017, 100, 3893–3901. [Google Scholar] [CrossRef] [PubMed]
- Rollin, E.; Dhuyvetter, K.C.; Overton, M.W. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet. Med. 2015, 122, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Puerto, M.; Shepley, E.; Cue, R.; Warner, D.; Dubuc, J.; Vasseur, E. The hidden cost of disease: I. Impact of the first incidence of mastitis on production and economic indicators of primiparous dairy cows. J. Dairy Sci. 2021, 104, 7932–7943. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuipers, A.; Koops, W.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, M.; Piepers, S.; Supré, K.; Dewulf, J.; De Vliegher, S. Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci. 2016, 99, 2118–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krömker, V.; Leimbach, S. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. 2017, 52, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royster, E.; Wagner, S. Treatment of Mastitis in Cattle. Veter. Clin. N. Am. Food Anim. Pract. 2015, 31, 17–46. [Google Scholar] [CrossRef]
- Sørensen, L.; Bjerring, M.; Lovendahl, P. Monitoring individual cow udder health in automated milking systems using online somatic cell counts. J. Dairy Sci. 2016, 99, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Nørstebø, H.; Dalen, G.; Rachah, A.; Heringstad, B.; Whist, A.C.; Nødtvedt, A.; Reksen, O. Factors associated with milking-to-milking variability in somatic cell counts from healthy cows in an automatic milking system. Prev. Veter. Med. 2019, 172, 104786. [Google Scholar] [CrossRef]
- Dalen, G.; Rachah, A.; Nørstebø, H.; Schukken, Y.H.; Reksen, O. The detection of intramammary infections using online somatic cell counts. J. Dairy Sci. 2019, 102, 5419–5429. [Google Scholar] [CrossRef] [Green Version]
- Hogeveen, H.; Kamphuis, C.; Steeneveld, W.; Mollenhorst, H. Sensors and Clinical Mastitis—The Quest for the Perfect Alert. Sensors 2010, 10, 7991. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.; Bruckmaier, R.M.; Thomson, P.C.; House, J.; García, S. Suitability of somatic cell count, electrical conductivity, and lactate dehydrogenase activity in foremilk before versus after alveolar milk ejection for mastitis detection. J. Dairy Sci. 2019, 102, 9200–9212. [Google Scholar] [CrossRef] [Green Version]
- Anglart, D. Indicators of Mastitis and Milk Quality in Dairy Cows: Data, Modeling, and Prediction in Automatic Milking Systems. Doctoral Thesis, Faculty of Veterinary Medicine and Animal Science, Department of Clinical Sciences, Uppsala, Sweden, 2021. Available online: https://pub.epsilon.slu.se/21244/ (accessed on 26 June 2021).
- John, A.J.; Garcia, S.C.; Kerrisk, K.L.; Freeman, M.J.; Islam, M.R.; Clark, C.E.F. Short communication: The diurnal intake and behavior of dairy cows when access to a feed of consistent nutritive value is restricted. J. Dairy Sci. 2017, 100, 9279–9284. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.; Clark, C.E.F.; Lyons, N.A.; Thomson, P.; Kerrisk, K.L.; García, S.C. Early detection of clinical mastitis from electrical conductivity data in an automatic milking system. Anim. Prod. Sci. 2017, 57, 1226–1232. [Google Scholar] [CrossRef]
- Cook, N.J. Review on the use of infrared thermography to monitor the health of intensively housed livestock. J. Anim. Sci. Livest. Prod. 2021, 5, 002. [Google Scholar]
- Nääs, I.A.; Garcia, R.G.; Caldara, F.R. Infrared Thermal Image for Assessing Animal Health and Welfare. J. Anim. Behav. Biometeorol. 2014, 2, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Watz, S.; Petzl, W.; Zerbe, H.; Rieger, A.; Glas, A.; Schröter, W.; Landgraf, T.; Metzner, M. Technical note: Automatic evaluation of infrared thermal images by computerized active shape modeling of bovine udders challenged with Escherichia coli. J. Dairy Sci. 2019, 102, 4541–4545. [Google Scholar] [CrossRef] [PubMed]
- Zaninelli, M.; Redaelli, V.; Luzi, F.; Bronzo, V.; Mitchell, M.; Dell’Orto, V.; Bontempo, V.; Cattaneo, D.; Savoini, G. First Evaluation of Infrared Thermography as a Tool for the Monitoring of Udder Health Status in Farms of Dairy Cows. Sensors 2018, 18, 862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shecaira, C.L.; Seino, C.H.; Bombardelli, J.A.; Reis, G.A.; Fusada, E.J.; Azedo, M.R.; Benesi, F.J. Using thermography as a diagnostic tool for omphalitis on newborn calves. J. Therm. Biol. 2018, 71, 209–211. [Google Scholar] [CrossRef]
- Huang, X.; Hu, Z.; Wang, X.; Yang, X.; Zhang, J.; Shi, D. An Improved Single Shot Multibox Detector Method Applied in Body Condition Score for Dairy Cows. Animals 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Roche, J.R.; Dillon, P.G.; Stockdale, C.J.; Baumgard, L.H.; Van Baale, M.J. Relationships Among International Body Condition Scoring Systems. J. Dairy Sci. 2004, 87, 3076–3079. [Google Scholar] [CrossRef] [Green Version]
- Mahony, N.O.; Campbell, S.; Carvalho, A.; Krpalkova, L.; Riordan, D.; Walsh, J. 3D Vision for Precision Dairy Farming. IFAC-PapersOnLine 2019, 52, 312–317. [Google Scholar] [CrossRef]
- Zieltjens, P. A Comparison of an Automated Body Condition Scoring System from De Laval with Manual, Non-Automated, Method. 2020. Available online: http://dspace.library.uu.nl/handle/1874/395372 (accessed on 26 June 2021).
- Waltner, S.S.; McNamara, J.P.; Hillers, J.K. Relationships of Body Condition Score to Production Variables in High Producing Holstein Dairy Cattle. J. Dairy Sci. 1993, 76, 3410–3419. [Google Scholar] [CrossRef]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, H.; Lesch, T.N. A Dairy Cow Body Condition Scoring System and Its Relationship to Selected Production Characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Ferguson, J.D.; Galligan, D.T.; Thomsen, N. Principal Descriptors of Body Condition Score in Holstein Cows. J. Dairy Sci. 1994, 77, 2695–2703. [Google Scholar] [CrossRef]
- Azzaro, G.; Caccamo, M.; Ferguson, J.D.; Battiato, S.; Farinella, G.M.; Guarnera, G.C.; Puglisi, G.; Petriglieri, R.; Licitra, G. Objective estimation of body condition score by modeling cow body shape from digital images. J. Dairy Sci. 2011, 94, 2126–2137. [Google Scholar] [CrossRef]
- Hady, P.; Domecq, J.; Kaneene, J. Frequency and Precision of Body Condition Scoring in Dairy Cattle. J. Dairy Sci. 1994, 77, 1543–1547. [Google Scholar] [CrossRef]
- Silva, S.R.; Stouffer, J.R. Looking under the hide of animals. The history of ultrasound to assess carcass composition and meat quality in farm animals. História Ciênc. Ensino Construindo Interfaces 2019, 20, 523–535. [Google Scholar] [CrossRef] [Green Version]
- McGregor, B. Relationships between live weight, body condition, dimensional and ultrasound scanning measurements and carcass attributes in adult Angora goats. Small Rumin. Res. 2017, 147, 8–17. [Google Scholar] [CrossRef]
- Afonso, J.; Guedes, C.M.; Teixeira, A.; Santos, V.; Azevedo, J.; Silva, S.R. Using real-time ultrasound for in vivo assessment of carcass and internal adipose depots of dairy sheep. J. Agric. Sci. 2019, 157, 650–658. [Google Scholar] [CrossRef]
- Knecht, D.; Środoń, S.; Czyż, K. Does the Degree of Fatness and Muscularity Determined by Ultrasound Method Affect Sows’ Reproductive Performance? Animals 2020, 10, 794. [Google Scholar] [CrossRef]
- Schröder, U.J.; Staufenbiel, R. Invited Review: Methods to Determine Body Fat Reserves in the Dairy Cow with Special Regard to Ultrasonographic Measurement of Backfat Thickness. J. Dairy Sci. 2006, 89, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Siachos, N.; Oikonomou, G.; Panousis, N.; Banos, G.; Arsenos, G.; Valergakis, G. Association of Body Condition Score with Ultrasound Measurements of Backfat and Longissimus Dorsi Muscle Thickness in Periparturient Holstein Cows. Animals 2021, 11, 818. [Google Scholar] [CrossRef] [PubMed]
- Bünemann, K.; Von Soosten, D.; Frahm, J.; Kersten, S.; Meyer, U.; Hummel, J.; Zeyner, A.; Dänicke, S. Effects of Body Condition and Concentrate Proportion of the Ration on Mobilization of Fat Depots and Energetic Condition in Dairy Cows during Early Lactation Based on Ultrasonic Measurements. Animals 2019, 9, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halachmi, I.; Klopčič, M.; Polak, P.; Roberts, D.J.; Bewley, J.M. Automatic assessment of dairy cattle body condition score using thermal imaging. Comput. Electron. Agric. 2013, 99, 35–40. [Google Scholar] [CrossRef]
- Zin, T.T.; Tin, P.; Kobayashi, I.; Horii, Y. An Automatic Estimation of Dairy Cow Body Condition Score Using Analytic Geometric Image Features. In Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9–12 October 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 775–776. [Google Scholar]
- Bercovich, A.; Edan, Y.; Alchanatis, V.; Moallem, U.; Parmet, Y.; Honig, H.; Maltz, E.; Antler, A.; Halachmi, I. Development of an automatic cow body condition scoring using body shape signature and Fourier descriptors. J. Dairy Sci. 2013, 96, 8047–8059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, B.; Mendes, A.; Silva, L.; Moreira, T.; Costa, J.; Rotta, P.; Chizzotti, M.; Marcondes, M. Estimating body weight, body condition score, and type traits in dairy cows using three dimensional cameras and manual body measurements. Livest. Sci. 2020, 236, 104054. [Google Scholar] [CrossRef]
- Liu, D.; He, D.; Norton, T. Automatic estimation of dairy cattle body condition score from depth image using ensemble model. Biosyst. Eng. 2020, 194, 16–27. [Google Scholar] [CrossRef]
- Tedín, R.; Becerra, J.A.; Duro, R.J. Building the “Automatic Body Condition Assessment System” (ABiCA), an Automatic Body Condition Scoring System using Active Shape Models and Machine Learning. In Advances in Intelligent Systems and Computing; Tweedale, J., Jain, L., Eds.; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; Volume 34, pp. 145–168. [Google Scholar]
- Rutten, C.; Steeneveld, W.; Lansink, A.O.; Hogeveen, H. Delaying investments in sensor technology: The rationality of dairy farmers’ investment decisions illustrated within the framework of real options theory. J. Dairy Sci. 2018, 101, 7650–7660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Hu, Z.; Huang, X.; Feng, T.; Yang, X.; Li, M. Cow Body Condition Score Estimation with Convolutional Neural Networks. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 5–7 July 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 433–437. [Google Scholar]
- Imamura, S.; Zin, T.T.; Kobayashi, I.; Horii, Y. Automatic evaluation of Cow’s body-condition-score using 3D camera. In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Las Vegas, NV, USA, 24–27 October 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 1–2. [Google Scholar]
- Weber, A.; Salau, J.; Haas, J.H.; Junge, W.; Bauer, U.; Harms, J.; Suhr, O.; Schönrock, K.; Rothfuß, H.; Bieletzki, S.; et al. Estimation of backfat thickness using extracted traits from an automatic 3D optical system in lactating Holstein-Friesian cows. Livest. Sci. 2014, 165, 129–137. [Google Scholar] [CrossRef]
- Spoliansky, R.; Edan, Y.; Parmet, Y.; Halachmi, I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. J. Dairy Sci. 2016, 99, 7714–7725. [Google Scholar] [CrossRef]
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodriguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Estimating Body Condition Score in Dairy Cows from Depth Images Using Convolutional Neural Networks, Transfer Learning and Model Ensembling Techniques. Agronomy 2019, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Shigeta, M.; Ike, R.; Takemura, H.; Ohwada, H. Automatic Measurement and Determination of Body Condition Score of Cows Based on 3D Images Using CNN. J. Robot. Mechatron. 2018, 30, 206–213. [Google Scholar] [CrossRef]
- Hansen, M.; Smith, M.; Smith, L.; Jabbar, K.A.; Forbes, D. Automated monitoring of dairy cow body condition, mobility and weight using a single 3D video capture device. Comput. Ind. 2018, 98, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Bokkers, E.; Van Mourik, S.; Koerkamp, P.G.; Van Der Tol, P. Automated body condition scoring of dairy cows using 3-dimensional feature extraction from multiple body regions. J. Dairy Sci. 2019, 102, 4294–4308. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.; Peacock, A.; Lewis, O.; Boyce, R.; Roberts, D.; Coffey, M.; Kenyon, S.; Schutz, M. Potential for Estimation of Body Condition Scores in Dairy Cattle from Digital Images. J. Dairy Sci. 2008, 91, 3439–3453. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Cerqueira, J.O.L.; Guedes, C.; Santos, V.; Fontes, I.; Batista, A.C.S.; Araújo, J.P.; Almeida, J.C. Assessing body fat reserves of dairy cows by digital image analysis. In Proceedings of the XVI Jornadas sobre Producción Animal, Zaragoza, Spain, 19–20 March 2015; pp. 111–113. [Google Scholar]
- Krukowski, M. Automatic Determination of Body Condition Score of Dairy Cows from 3D Images. Available online: https://www.semanticscholar.org/paper/Automatic-Determination-of-Body-Condition-Score-of/a9e1bddb0fdc862859b90d03e20b34d4cfdf4b93?p2df (accessed on 14 June 2021).
- Salau, J.; Haas, J.H.; Junge, W.; Bauer, U.; Harms, J.; Bieletzki, S. Feasibility of automated body trait determination using the SR4K time-of-flight camera in cow barns. SpringerPlus 2014, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Anglart, D. Automatic Estimation of Body Weight and Body Condition Score in Dairy Cows Using 3d Imaging Technique. 2014. Available online: https://stud.epsilon.slu.se/6355/1/anglart_d_140114.pdf (accessed on 26 June 2021).
- Hansen, M.; Smith, M.; Smith, L.; Hales, I.; Forbes, D. Non-intrusive automated measurement of dairy cow body condition using 3D video. In Proceedings of the British Machine Vision Conference—Workshop of Machine Vision and Animal Behav-iour, Swansea, Wales, UK, 10 September 2015; BMVA Press: Durham, UK, 2015; pp. 1–8. [Google Scholar]
- Fischer, A.; Luginbuhl, T.; Delattre, L.; Delouard, J.; Faverdin, P. Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows. J. Dairy Sci. 2015, 98, 4465–4476. [Google Scholar] [CrossRef]
- Kuzuhara, Y.; Kawamura, K.; Yoshitoshi, R.; Tamaki, T.; Sugai, S.; Ikegami, M.; Kurokawa, Y.; Obitsu, T.; Okita, M.; Sugino, T.; et al. A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system. Comput. Electron. Agric. 2015, 111, 186–193. [Google Scholar] [CrossRef]
- Shelley, A.N. Incorporating Machine Vision in Precision Dairy Farming Technologies. 2016. Available online: https://core.ac.uk/download/pdf/232573054.pdf (accessed on 14 June 2021).
- Alvarez, J.R.; Arroqui, M.; Mangudo, P.; Toloza, J.; Jatip, D.; Rodríguez, J.M.; Teyseyre, A.; Sanz, C.; Zunino, A.; Machado, C.; et al. Body condition estimation on cows from depth images using Convolutional Neural Networks. Comput. Electron. Agric. 2018, 155, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Yukun, S.; Pengju, H.; Yujie, W.; Ziqi, C.; Yang, L.; Baisheng, D.; Runze, L.; Yonggen, Z. Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J. Dairy Sci. 2019, 102, 10140–10151. [Google Scholar] [CrossRef]
- Zin, T.T.; Seint, P.T.; Tin, P.; Horii, Y.; Kobayashi, I. Body Condition Score Estimation Based on Regression Analysis Using a 3D Camera. Sensors 2020, 20, 3705. [Google Scholar] [CrossRef]
- Leary, N.O.; Leso, L.; Buckley, F.; Kenneally, J.; McSweeney, D.; Shalloo, L. Validation of an Automated Body Condition Scoring System Using 3D Imaging. Agriculture 2020, 10, 246. [Google Scholar] [CrossRef]
- Mullins, I.L.; Truman, C.M.; Campler, M.R.; Bewley, J.; Costa, J.H.C. Validation of a Commercial Automated Body Condition Scoring System on a Commercial Dairy Farm. Animals 2019, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Kooij, E.V.E.-V.D. Using precision farming to improve animal welfare. CAB Rev. Perspect. Agric. Veter. Sci. Nutr. Nat. Resour. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- De Graaf, S.; Ampe, B.; Winckler, C.; Radeski, M.; Mounier, L.; Kirchner, M.K.; Haskell, M.J.; Van Eerdenburg, F.J.C.M.; Roches, A.D.B.D.; Andreasen, S.N.; et al. Trained-user opinion about Welfare Quality measures and integrated scoring of dairy cattle welfare. J. Dairy Sci. 2017, 100, 6376–6388. [Google Scholar] [CrossRef] [PubMed]
- Schillings, J.; Bennett, R.; Rose, D.C. Exploring the Potential of Precision Livestock Farming Technologies to Help Address Farm Animal Welfare. Front. Anim. Sci. 2021, 2, 639678. [Google Scholar] [CrossRef]
Approach | LS | n | Locomotion Test Layout | Results | Ref | ||
---|---|---|---|---|---|---|---|
SE (%) | SP (%) | Accuracy (%) | |||||
Kinematic | |||||||
Gaitwise | 1–3 | 159 | Alley 0.61 m wide and 4.88 m long | 76–90 | 86–100 | [42] | |
Gaitwise | 1–3 | 40 | Active surface of 0.61 m wide and 4.88 m long | [43] | |||
Gaitwise | 1–3 | 36 | Active surface of 0.61 m wide and 4.88 m long | 88 | 87 | [38] | |
Gaitwise-14 configurations | 1–3 | 45 | 55–61 | [41] | |||
3D Accelerometer | 1–5 | 17 + 21 | 80–100 | 100 | AUC = 0.87–1 | [44] | |
Kinetic | |||||||
3D Accelerometer | 1–5 | 12 + 36 | Passageway (13 m long × 1.3 m wide) | >60 | [45] | ||
3D Accelerometer | 1–5 | 17 | 100 | 75–83.3 | AUC = 0.92–0.97 | [44] | |
3D Accelerometer | 1–5 | 21 | 83–91.7 | 66.7–83.3 | AUC = 0.85–0.87 | [44] | |
3D Accelerometer | 1–5 | 348 | Leg-mounted accelerometer | [46] | |||
Ground force reaction | 1–5 | 610 | Stepmetrix system | 35 | 85 | – | [47] |
Ground force reaction | 1–5 | 83 | Two parallel force plates | 90 | 93 | AUC = 0.98 | [48] |
Ground force reaction | 1–5 | 105 | Four-force plate-balanced system | 50–100 | 91–100 | – | [49] |
Ground force reaction | 1–5 | 95 | Weight distribution of 4 limbs in milking robot | 62–75 | [50] | ||
Ground force reaction | 1–5 | 261 | Two parallel force plates cow walks over | 100 | 100 | AUC = 0.70–0.99 | [51] |
Ground force reaction | 1–5 | 346 | Two parallel force plates cow walks over | 52 | 89 | [52] | |
Ground force reaction | 1–5 | 43 | Four sensor weight distribution of 4 limbs in milking robot | [53] | |||
Ground force reaction | 1–5 | 31 | Two parallel force plates | 0.84–0.63 | [54] | ||
Ground force reaction | 6 | Two parallel floor-plates plus SoftSeparatorTM | [55] | ||||
Ground force reaction | 1–5 | 9 | Two parallel 3D strain gauge force plates 0.46 m × 2.07 m | 91–97 | [56] | ||
Ground force reaction | 6 | Two parallel floor-plates loading platform–126 × 122 × 18 cm | [57] | ||||
Load cells and platform | 1–5 | 57 | Four force plates cow stands on | AUC = 0.64–0.83 | [58] | ||
Load cells and platform | 1–5 | 57 | Four force plates cow stands on | AUC = 0.67 | [59] | ||
Load cells and platform | 0–13 | 42 | Platform with 4 independent sealed load cells | 75–97 | 60–90 | AUC = 0.84–0.87 | [35] |
Load cells and platform | 1–5 | 16 | Four-force plate-balanced system | [60] | |||
Load cells and platform | 1–5 | 73 | Four force plates cow stands on | 100 | 58 | 86–96 | [61] |
Motion sensor | 10 | Motion sensor attached hind left limb | 74.2 | 91.6 | 91.1 | [62] | |
Motion sensor | 65 | Dairy cow individual sensor | AUC = 0.71 | [63] |
Image Equipment | LS | n | Setup | Results | Reference | ||
---|---|---|---|---|---|---|---|
SE (%) | SP (%) | Accuracy (%) | |||||
2D | |||||||
Canon Powershot A620 | 1–3 | 28 | Alley (1.2 m wide and 6 m long) | >96 | [67] | ||
Guppy F-080C and Guppy F-036C | 1–3 | 66 | Alley (1.2 m wide and 6 m long) | >96 | [67] | ||
Guppy F-080C | 1–3 | 75 | Pressure mat (1 m wide and 6 m long) | [68] | |||
Video Canon PAL MV690 | 1–5 | 60 | Alley (1.6 m wide) electric fence posts | [69] | |||
Cannon 60D | 1–5 | 90 | Alley (1.5 m wide and 7 m long) | 76 | [70] | ||
Nikon D700 | 1–5 | 8 | Alley (1.5 m wide and 7 m long) | 91 | [70] | ||
Nikon D7000 | 1–5 | 273 | Alley (1.1 m wide and 6 m long) | 76–88 | 95–97 | 91–96 | [71] |
Web camera Hikvision | 1–3 | 98 | Alley (2 m wide and 7 m long) | 90.25 | 94.74 | 90.18 | [72] |
Panasonic DC-GH5S | 1–3 | 100 | Alley (1.2 m wide and 4 m long) | 93–96 | 96 | [66] | |
Panasonic DC-GH5S | 1–3 | 100 | Alley (1.2 m wide and 4 m long) | 93–96 | [66] | ||
3D | |||||||
Microsoft Kinect | 1–5 | 186 | 3.20 m above ground level | 55 | 90.9 | [64] | |
Microsoft Kinect | 1–5 | 273 | 3.15 m above ground level | 82–88 | 91–95 | 90–96 | [71] |
Microsoft Kinect | 1–5 | 242 | 3.45 m above ground level | 68.5 | 87.6 | 79.8 | [73] |
Microsoft Kinect | 1–5 | 242 | 3.45 m above ground level | 70–72 | [74] | ||
Microsoft Kinect | 1–5 | 270 | 3.45 m above ground level | 74–72 | 60.2 | [37] |
Sensor | n | Sensor Position | Accuracy | Accuracy within BCS Points Deviation (%) | Reference | ||
---|---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | |||||
2D Sensors | |||||||
Black-and-white | 2571 | 60 to 70 cm above the cows’ backs | 93 | 100 | [137] | ||
AXIS 213 PTZ | 286 | 3 m above ground | Error = 0.31 | [113] | |||
InfraCAM SD Flir | 186 | 3.1 m above ground. Exit milking parlor | R = 94 | [122] | |||
Nikon D7000 DSLR | 151 | Still camera-milking parlor | R2 = 77 | 50 | 100 # | [124] | |
Sony, DCR-TRV460 | 46 | 3 m above ground | R2 = 90 | [138] | |||
Hikvision DS-2CD3T56DWD-I | 8972 | 2.6 m the ground. Milking passage | R2 = 98.5 | [106] | |||
Hikvision DS-2CD3T56DWD-I | 2231 | Cows walk below the camera | 65 | 95 | [129] | ||
3D Sensors | |||||||
Mesa 3D ToF | 40 | Hand-held setup | 79 | 100 | [139] | ||
SR4K time-of-flight | 540 | Above electronic feeding dispenser | R2 = 89 | [140] | |||
ToF MESA SR4000 | 1329 | Above DeLaval AWS 100 | R = 84 | [141] | |||
Asus Xtion Pro | 95 | 1.5–2m above the cow | R2 = 93.3 | [142] | |||
Asus Xtion Pro | 82 | 2 m above ground | R = 96 | [143] | |||
Asus Xtion Pro | 27 | 80 cm on cow’s surface | R2 = 74 | [144] | |||
PrimeSense™ Carmine | 116 | 1.5 m from the cows’ backs | 71 | 94 | [145] | ||
Microsoft Kinect v1 | 20 | 2.5 m above platform | 91 | [132] | |||
Microsoft Kinect v2 | 1661 | 2.8 m above ground-milk parlor | 40 | 78 | 94 | [146] | |
Intel Realsense SR300 | 44 | 2.3 m above the platform | R2 = 72 | [136] | |||
Intel RealSense D435 | 480 | 3.2 m above ground | 77 | 98 | [147] | ||
Microsoft Kinect v2 | 1661 | 2.8 m above ground-milk parlor | 82 | 97 | [133] | ||
Microsoft Kinect v2 | 53 | 2.5 m above the ground | R2 = 63 | [125] | |||
Microsoft Kinect v2 | 38 | 3 m above the ground | 56 | 76 | 94 | [126] | |
3D ToF | 52 | 3.4 m above ground-rotary parlor | MAPE = 3.9 | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.R.; Araujo, J.P.; Guedes, C.; Silva, F.; Almeida, M.; Cerqueira, J.L. Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition. Animals 2021, 11, 2253. https://doi.org/10.3390/ani11082253
Silva SR, Araujo JP, Guedes C, Silva F, Almeida M, Cerqueira JL. Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition. Animals. 2021; 11(8):2253. https://doi.org/10.3390/ani11082253
Chicago/Turabian StyleSilva, Severiano R., José P. Araujo, Cristina Guedes, Flávio Silva, Mariana Almeida, and Joaquim L. Cerqueira. 2021. "Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition" Animals 11, no. 8: 2253. https://doi.org/10.3390/ani11082253
APA StyleSilva, S. R., Araujo, J. P., Guedes, C., Silva, F., Almeida, M., & Cerqueira, J. L. (2021). Precision Technologies to Address Dairy Cattle Welfare: Focus on Lameness, Mastitis and Body Condition. Animals, 11(8), 2253. https://doi.org/10.3390/ani11082253