Antimicrobial Resistance of Escherichia coli in Dairy Calves: A 15-Year Retrospective Analysis and Comparison of Treated and Untreated Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Identification of E. coli
2.3. Molecular Characterization
2.4. Antimicrobial Susceptibility Testing
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Morgan Scott, H.; Simjee, S.; et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Taneja, N.; Sharma, M. Antimicrobial resistance in the environment: The Indian scenario. Indian J. Med. Res. 2019, 149, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, C.; Maurici, M.; Panà, A. Antimicrobial resistance: It is a global crisis, “a slow tsunami”. Ig. Sanita Pubbl. 2019, 75, 429–450. [Google Scholar] [PubMed]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- EMA (European Medicines Agency); EFSA (European Food Safety Authority). EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). [EMA/CVMP/570771/2015]. EFSA J. 2017, 15, 4666. [Google Scholar] [CrossRef]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwendner, A.A.; Lam, T.J.G.M.; Bodmer, M.; Cousin, M.-E.; Schüpbach-Regula, G.; van den Borne, B.H.P. Knowledge, attitude and practices of Swiss dairy farmers towards intramammary antimicrobial use and antimicrobial resistance: A latent class analysis. Prev. Vet. Med. 2020, 179, 105023. [Google Scholar] [CrossRef]
- Afema, J.A.; Mather, A.E.; Sischo, W.M. Antimicrobial Resistance Profiles and Diversity in Salmonella from Humans and Cattle, 2004–2011. Zoonoses Public Health 2015, 62, 506–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boireau, C.; Morignat, É.; Cazeau, G.; Jarrige, N.; Jouy, É.; Haenni, M.; Madec, J.Y.; Leblond, A.; Gay, É. Antimicrobial resistance trends in Escherichia coli isolated from diseased food-producing animals in France: A 14-year period time-series study. Zoonoses Public Health 2018, 65, e86–e94. [Google Scholar] [CrossRef]
- Hariharan, H.; Coles, M.; Poole, D.; Page, R. Antibiotic resistance among enterotoxigenic Escherichia coli from piglets and calves from piglets and calves with diarrhea. Can. Vet. J. 2004, 45, 605–606. [Google Scholar] [PubMed]
- Wu, G.; Day, M.J.; Mafura, M.T.; Nunez-Garcia, J.; Fenner, J.J.; Sharma, M.; van Essen-Zandbergen, A.; Rodríguez, I.; Dierikx, C.; Kadlec, K.; et al. Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK. The Netherlands and Germany. PLoS ONE 2013, 8, e75392. [Google Scholar] [CrossRef] [Green Version]
- Conway, T.; Cohen, P.S. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol. Spectr. 2015, 3, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Povolotsky, T.L.; Hengge, R. Genome-Based Comparison of Cyclic Di-GMP signaling in pathogenic and commensal Escherichia coli strains. J. Bacteriol. 2015, 198, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touchon, M.; Perrin, A.; de Sousa, J.A.M.; Vangchhia, B.; Burn, S.; O’Brien, C.L.; Denamur, E.; Gordon, D.; Rocha, E.P.C. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. 2020, 16, e1008866. [Google Scholar] [CrossRef] [PubMed]
- Acres, S.D. Enterotoxigenic Escherichia coli Infections in Newborn Calves: A Review. J. Dairy Sci. 1985, 68, 229–256. [Google Scholar] [CrossRef]
- Ercan, N.; Tuzcu, N.; Başbug, O.; Tuzcu, M.; Alim, A. Diagnostic value of serum procalcitonin, neopterin, and gamma interferon in neonatal calves with septicemic colibacillosis. J. Vet. Diagn. Invest. 2016, 28, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Bashahun, G.M.; Amina, A. Colibacillosis in calves: A review of literature. J. Vet. Med. Sci. 2017, 2, 62–71. [Google Scholar] [CrossRef]
- González Pasayo, R.A.; Sanz, M.E.; Padola, N.L.; Moreira, A.R. Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli isolated from diarrheic calves in Argentina. Open Vet J. 2019, 9, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousa, W.S.; Abo Shama, U.H. Prevalence, antimicrobial resistance and substantial virulence-associated genes of Escherichia coli isolated from colibacillosis in neonatal calves in egypt. J. Microbiol. Biotechnol. Food Sci. 2021, 9, 1145–1150. [Google Scholar] [CrossRef]
- Bi, Y.; Yang, C.; Diao, Q.; Tu, Y. Effects of dietary supplementation with two alternatives to antibiotics on intestinal microbiota of preweaned calves challenged with Escherichia coli K99. Sci. Rep. 2017, 7, 5439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngeleka, M.; Godson, D.; Vanier, G.; Desmarais, G.; Wojnarowicz, C.; Sayi, S.; Huang, Y.; Movasseghi, R.; Fairbrother, J.M. Frequency of Escherichia coli virotypes in calf diarrhea and intestinal morphologic changes associated with these virotypes or other diarrheagenic pathogens. J. Vet. Diagn. Investig. 2019, 31, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Cozzi, G. Present situation and future challenges of beef cattle production in Italy and the role of the research. Ital. J. Anim. Sci. 2007, 6 (Suppl. S1), 389–396. [Google Scholar] [CrossRef]
- Baldo, V.; Salogni, C.; Giovannini, S.; D’Incau, M.; Boniotti, M.B.; Birbes, L.; Pitozzi, A.; Formenti, N.; Grassi, A.; Pasquali, P.; et al. Pathogenicity of Shiga Toxin Type 2e Escherichia coli in Pig Colibacillosis. Front. Vet. Sci. 2020, 7, 545818. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Casey, T.A.; Bosworth, B.T. Design and evaluation of a multiplex polymerase chain reaction assay for the simultaneous identification of genes for nine different virulence factors associated with Escherichia coli that cause diarrhea and edema disease in swine. J. Vet. Diagn. Investig. 2009, 21, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. Approved Standard, 3rd ed.; CLSI document M31-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Luppi, A.; Bonilauri, P.; Dottori, M.; Gherpelli, Y.; Biasi, G.; Merialdi, G.; Maioli, G.; Martelli, P. Antimicrobial resistance of F4+ Escherichia coli isolated from swine in Italy. Transbound. Emerg. Dis. 2015, 62, 67–71. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. Approved Guideline (M45-A); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, 9th ed.; (M2-A9); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI Supplement M100-S26; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Bourély, C.; Cazeau, G.; Jouy, E.; Haenni, M.; Madec, J.-Y.; Jarrige, N.; Leblond, A.; Gay, E. Antimicrobial resistance of Pasteurella multocida isolated from diseased food-producing animals and pets. Vet. Microbiol. 2019, 235, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Polemis., M.; Tryfinopoulou, K.; Giakkoupi, P.; Vatopoulos, A.; WHONET-Greece Study Group. Eight-year trends in the relative isolation frequency and antimicrobial susceptibility among bloodstream isolates from Greek hospitals: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance—WHONET-Greece, 2010 to 2017. Euro Surveill. 2020, 25, 1900516. [Google Scholar] [CrossRef]
- Massé, J.; Dufour, S.; Archambault, M. Characterization of Klebsiella isolates obtained from clinical mastitis cases in dairy cattle. J. Dairy Sci. 2020, 103, 3392–3400. [Google Scholar] [CrossRef]
- Kyung-Hyo, D.; Jae-Won, B.; Wan-Kyu, L. Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed. Antibiotics 2020, 9, 755. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Wiley: New York, NY, USA, 1989; p. 307. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Maciel, J.F.; Matter, L.B.; Tasca, C.; Scheid, D.A.R.; Gressler, L.T.; Ziech, R.E.; Vargas, A.C. Characterization of intestinal Escherichia coli isolated from calves with diarrhea due to rotavirus and coronavirus. J. Med. Microbiol. 2019, 68, 417–423. [Google Scholar] [CrossRef]
- Ombarak, R.A.; Zayda, M.G.; Awasthi, S.P.; Hinenoya, A.; Yamasaki, S. Serotypes, Pathogenic Potential, and Antimicrobial Resistance of Escherichia coli Isolated from Subclinical Bovine Mastitis Milk Samples in Egypt. Jpn. J. Infect. Dis. 2019, 72, 337–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwida, M.; Awad, A.; Hotzel, H.; Monecke, S.; Ehricht, R.; Müller, E.; Reißig, A.; Barth, S.A.; Berens, C.; Braun, S.D. Microarray-based detection of resistance and virulence factors in commensal Escherichia coli from livestock and farmers in Egypt. Vet. Microbiol. 2020, 240, 108539. [Google Scholar] [CrossRef]
- Sawant, A.A.; Hegde, N.V.; Straley, B.A.; Donaldson, S.C.; Love, B.C.; Knabel, S.J.; Jayarao, B.M. Antimicrobial-Resistant Enteric Bacteria from Dairy Cattle. Appl. Environ. Microbiol. 2007, 73, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.R.; Lombard, J.E.; Dargatz, D.A.; Fedorka-Cray, P.J. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from US dairy cattle. Lett. Appl. Microbiol. 2010, 52, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Duse, A.; Persson Waller, K.; Emanuelson, U.; Ericsson Unnerstad, H.; Persson, Y.; Bengtsson, B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aust, V.; Knappstein, K.; Kunz, H.J.; Kaspar, H.; Wallmann, J.; Kaske, M. Feeding untreated and pasteurized waste milk and bulk milk to calves: Effects on calf performance, health status and antibiotic resistance of faecal bacteria. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1091–1103. [Google Scholar] [CrossRef]
- Moniri, R.; Dastehgoli, K. Fluoroquinolone-resistant Escherichia coli isolated from healthy broilers with previous exposure to fluoroquinolones: Is there a link? Microb. Ecol. Health Dis. 2005, 17, 69–74. [Google Scholar]
- Koenraad, P.M.F.J.; Jacobs-Reitsma, W.F.; Van Der Laan, T.; Beumer, R.R.; Rombouts, F.M. Antibiotic susceptibility of campylobacter isolates from sewage and poultry abattoir drain water. Epidemiol. Infect. 1995, 115, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, V.; McClure, J.T.; Léger, D.; Dufour, S.; Sheldon, A.G.; Scholl, D.T.; Barkema, H.W. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Mohan Raj, J.R.; Vittal, R.; Shivakumaraswamy, S.K.; Deekshit, V.K.; Chakraborty, A.; Karunasagar, I. Presence & mobility of antimicrobial resistance in Gram-negative bacteria from environmental samples in coastal Karnataka, India. Indian J. Med. Res. 2019, 149, 290–294. [Google Scholar] [CrossRef]
- Fouz, N.; Pangesti, K.N.A.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Berge, A.C.B.; Atwill, E.R.; Sischo, W.M. Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef]
- Kaneene, J.B.; Warnick, L.D.; Bolin, C.A.; Erskine, R.J.; May, K.; Miller, R.A. Changes in Tetracycline Susceptibility of Enteric Bacteria following Switching to Nonmedicated Milk Replacer for Dairy Calves. J. Clin. Microbiol. 2008, 46, 1968–1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, R.V.V.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. In Vivo Selection of Resistant E. coli after Ingestion of Milk with Added Drug Residues. PLoS ONE 2014, 9, e115223. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.L.; Baquero, F. Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance. Clin. Microbiol. Rev. 2002, 15, 647–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Verdier, K.; Nyman, A.; Greko, C.; Bengtsson, B. Antimicrobial resistance and virulence factors in Escherichia coli from Swedish dairy calves. Acta Vet. Scand. 2012, 54, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oporto, B.; Ocejo, M.; Alkorta, M.; Marimón, J.M.; Montes, M.; Hurtado, A. Zoonotic approach to Shiga toxin-producing Escherichia coli: Integrated analysis of virulence and antimicrobial resistance in ruminants and humans. Epidemiol. Infect. 2019, 147, e164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age Group | N° Feces/Fecal Samples from Rectal Ampulla | N° Fecal Swabs | N° Intestines | Total |
---|---|---|---|---|
1 week old | 60 | 0 | 3 | 63 |
2 weeks old | 115 | 6 | 8 | 129 |
Not available | 205 | 4 | 5 | 214 |
Total | 380 | 10 | 16 | 406 |
Farms | 1 Week Old | 2 Weeks Old | Total |
---|---|---|---|
1 | 3 | 0 | 3 |
2 | 5 | 11 | 16 |
3 | 0 | 2 | 2 |
4 | 6 | 7 | 13 |
5 | 2 | 13 | 15 |
6 | 4 | 20 | 24 |
7 | 10 | 0 | 10 |
8 | 10 | 6 | 16 |
Total | 40 | 59 | 99 |
Antimicrobials | N° of Resistant Isolates | Total | Percentage of Resistance | LCI95% | UCI95% |
---|---|---|---|---|---|
AMC | 879 | 2126 | 41.30% | 40.30% | 42.40% |
FFC | 968 | 1968 | 49.20% | 48.10% | 50.30% |
GEN | 1534 | 2591 | 59.20% | 58.30% | 60.10% |
ENR | 1550 | 2438 | 63.60% | 62.70% | 64.50% |
FQ | 1877 | 2603 | 72.10% | 71.30% | 72.90% |
SXT | 2024 | 2605 | 77.70% | 77.00% | 78.40% |
TET | 2354 | 2595 | 90.70% | 90.40% | 91.00% |
Antimicrobials | Percentage of Resistance of E. coli from Untreated Calves | Percentage of Resistance E. coli from Treated Calves | χ2 | p |
---|---|---|---|---|
AMC | 52.53% (52/99) | 82.18% (332/404) | 37.087 | 0.0000 |
ENR | 39.39% (39/99) | 75.19% (303/403) | 45.255 | 0.0000 |
FFC | 44.44% (44/99) | 70.28% (253/360) | 21.573 | 0.0000 |
FQ | 39.39% (39/99) | 80.30% (326/406) | 64.427 | 0.0000 |
GEN | 24.24% (24/99) | 61.39% (248/404) | 42.692 | 0.0000 |
SXT | 44.44% (44/99) | 75.80% (307/405) | 35.533 | 0.0000 |
TET | 88.89% (88/99) | 94.80% (383/404) | 3.7272 | 0.0535 |
E. coli Virulence Genes | Prevalence in E. coli from Untreated Calves | Prevalence in E. coli from Treated Calves | p |
---|---|---|---|
K99 | 3.03% (3/99) | 21.67% (88/406) | 0.001 |
F41 | 3.03% (3/99) | 11.33% (46/406) | 0.012 |
F18 | 0.00% (0/99) | 0.49% (2/406) | 0.999 |
LT | 0.00% (0/99) | 0.49% (2/406) | 0.999 |
StaP | 3.03% (3/99) | 22.91% (93/406) | 0.001 |
STb | 0.00% (0/99) | 0.74% (3/406) | 0.999 |
Stx2e | 4.04% (4/99) | 1.01% (4/397) | 0.054 |
Antimicrobials | Factors | Baseline | OR | 95% CI | LRχ2 | Pr (>χ2) |
---|---|---|---|---|---|---|
AMC | Age category * | 2 week-old | 3.04 | 1.68–5.75 | 14.29 | 0.0001 |
ENR | Age category * | 2 week-old | 1.77 | 1.06–3.09 | 4.7 | 0.03 |
FFC | Age category * | 2 week-old | 2.3 | 1.33–4.05 | 9.12 | 0.003 |
FQ | Treatment group ** | untreated | 6.27 | 3.93–10.11 | 60.49 | 0.0001 |
GEN | Treatment group ** | untreated | 4.97 | 3.05–8.35 | 45.37 | 0.0001 |
TET | Treatment group ** | untreated | 2.28 | 1.03–4.81 | 4.08 | 0.043 |
STX | K99 *** | absence | 2.01 | 1.21–3.32 | 7.16 | 0.007 |
Treatment group ** | untreated | 4.56 | 2.84–7.38 | 39.91 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formenti, N.; Martinelli, C.; Vitale, N.; Giovannini, S.; Salogni, C.; Tonni, M.; Scali, F.; Birbes, L.; D’Incau, M.; Guarneri, F.; et al. Antimicrobial Resistance of Escherichia coli in Dairy Calves: A 15-Year Retrospective Analysis and Comparison of Treated and Untreated Animals. Animals 2021, 11, 2328. https://doi.org/10.3390/ani11082328
Formenti N, Martinelli C, Vitale N, Giovannini S, Salogni C, Tonni M, Scali F, Birbes L, D’Incau M, Guarneri F, et al. Antimicrobial Resistance of Escherichia coli in Dairy Calves: A 15-Year Retrospective Analysis and Comparison of Treated and Untreated Animals. Animals. 2021; 11(8):2328. https://doi.org/10.3390/ani11082328
Chicago/Turabian StyleFormenti, Nicoletta, Chiara Martinelli, Nicoletta Vitale, Stefano Giovannini, Cristian Salogni, Matteo Tonni, Federico Scali, Laura Birbes, Mario D’Incau, Flavia Guarneri, and et al. 2021. "Antimicrobial Resistance of Escherichia coli in Dairy Calves: A 15-Year Retrospective Analysis and Comparison of Treated and Untreated Animals" Animals 11, no. 8: 2328. https://doi.org/10.3390/ani11082328
APA StyleFormenti, N., Martinelli, C., Vitale, N., Giovannini, S., Salogni, C., Tonni, M., Scali, F., Birbes, L., D’Incau, M., Guarneri, F., Pasquali, P., & Alborali, G. L. (2021). Antimicrobial Resistance of Escherichia coli in Dairy Calves: A 15-Year Retrospective Analysis and Comparison of Treated and Untreated Animals. Animals, 11(8), 2328. https://doi.org/10.3390/ani11082328