Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs: Performance, Dietary Energetics, Carcass Traits, and Nutrient Digestion
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Exp. 1. Growth Performance and Carcass Traits
2.1.1. Animal, Diet, Treatments, and Samples Analyses
2.1.2. Calculations
2.1.3. Carcass Characteristics, Whole Cuts, and Tissue Shoulder Composition
2.1.4. Visceral Mass Data
2.1.5. Statistical Analyses
2.2. Exp. 2. Total Tract Digestion
2.2.1. Animals and Sampling
2.2.2. Laboratory Analyses
2.2.3. Statistical Analyses
3. Results
3.1. Exp. 1. Growth Performance and Carcass Traits
3.2. Exp. 2. Total Tract Digestion
4. Discussion
4.1. Exp. 1. Growth Performance and Carcass Traits
4.2. Exp. 2. Total Tract Digestion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cocito, C. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol. Rev. 1979, 43, 145–198. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC281470/ (accessed on 7 June 2021). [CrossRef]
- Salinas-Chavira, J.; Barreras, A.; Plascencia, A.; Montano, M.F.; Navarrete, J.D.; Torrentera, N.; Zinn, R.A. Influence of protein nutrition and virginiamycin supplementation on feedlot growth-performance and digestive function of calf-fed Holstein steer. J. Anim. Sci. 2016, 94, 4276–4286. [Google Scholar] [CrossRef]
- Navarrete, J.D.; Montano, M.F.; Raymundo, C.; Salinas-Chavira, J.; Torrentera, N.; Zinn, R.A. Effect of energy density and virginiamycin supplementation in diets on growth performance and digestive function of finishing steers. Asian Australas. J. Anim. Sci. 2017, 10, 1396–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, J.A.; Branine, M.E.; Miller, C.R.; Wray, M.I.; Bartle, S.J.; Preston, R.L.; Gill, D.R.; Pritchard, R.H.; Stilborn, R.P.; Bechtol, D.T. Effects of dietary virginiamycin on performance and liver abscess incidence in feedlot cattle. J. Anim. Sci. 1995, 73, 9–20. [Google Scholar] [CrossRef]
- Gorocica, M.A.; Tedeschi, L.O. A meta-analytical approach to evaluate the performance of cattle fed virginiamycin or monensin under feedlot conditions from seven European countries. J. Anim. Sci. 2017, 95 (Suppl. S4), 70–71. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. J. Anim. Sci. 2009, 87, 2346–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meschiatti, M.A.P.; Pellarin, L.A.; Batalha, C.D.A.; Acedo, T.S.; Tamassia, L.F.M.; Cortinhas, C.S.; Gouvea, V.N.D.; Santos, F.A.P.; Dórea, J.R. Effects of essential oils and exogenous enzymes on intake, digestibility, and rumen fermentation in finishing Nellore cattle. J. Anim. Sci. 2016, 94 (Suppl. S5), 759. [Google Scholar] [CrossRef]
- Plascencia, A.Y.; Arteaga-Wences, A.; Estrada-Angulo, A.; Barreras, J.D.; Urías-Estrada, F.G.; Ríos, B.I.; Pérez-Castro, M. Evaluation of a Standardized Source of Essential Oils Mixture (CRINA®Ruminants) Supplementation Compared with Monensin Supplementation on Lambs Fed A High-Energy Finishing Diet. Technical Report. DSM. Available online: https://anhsalehub.com/innovation-gate/eubiotics (accessed on 15 November 2019).
- Ornaghi, M.G.; Passetti, R.A.C.; Torrecilhas, J.A.; Mottina, C.; Vital, A.C.P.; Guerrero, A.; Sañudo, C.; Maria del Mar Campo, M.M.; Prado, I.N. Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Anim. Feed Sci. Technol. 2017, 234, 274–283. [Google Scholar] [CrossRef]
- Ribeiro, A.D.B.; Ferraz Jr., M.V.C.; Polizel, D.M.; Miszura, A.A.; Barroso, J.P.R.; Cunha, A.R.; Souza, T.T.; Ferreira, E.M.; Susin, I.; Pires, A.V. Effect of thyme essential oil on rumen parameters, nutrient digestibility, and nitrogen balance in wethers fed high concentrate diets. Arq. Bras. Med. Vet. Zootec. 2020, 72, 573–580. [Google Scholar] [CrossRef]
- Emami, N.K.; Samiea, E.A.; Rahmani, H.R.; Ruiz-Feria, C.A. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim. Feed. Sci. Technol. 2012, 175, 57–64. [Google Scholar] [CrossRef]
- Zinn, R.A.; Owens, F.N.; Ware, R.A. Flaking corn: Processing mechanics, quality standards, and impacts on energy availability and performance of feedlot cattle. J. Anim. Sci. 2002, 80, 1145–1156. [Google Scholar] [CrossRef]
- Tricarico, J.M.; Johnston, J.D.; Dawson, K.A. Dietary supplementation of ruminants diets with an Aspergillus oryzae alpha-amylase. Anim. Feed Sci. Technol. 2008, 145, 136–150. [Google Scholar] [CrossRef]
- Klingerman, C.M.; Hu, W.; McDonell, E.E.; DerBedrosian, M.C.; Kung, L., Jr. An evaluation of exogenous enzymes with amylolytic activity for dairy cows. J. Dairy Sci. 2009, 92, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Meschiatti, M.A.P.; Gouvea, V.N.; Pellerini, L.A.; Batalha, C.D.A.; Bielhl, M.V.; Acedo, T.S.; Dórea, J.R.R.; Tamasia, L.F.M.; Owens, F.N.; Santos, F.A.P. Feeding the combination of essential oils and exogenous amylase increases performance and carcass production of finishing cattle. J. Anim. Sci. 2019, 97, 456–471. [Google Scholar] [CrossRef] [PubMed]
- NOM. Normas Oficiales Mexicanas. Diario Oficial de la Federación. 1995. (NOM-051-ZOO-1995, NOM-033-ZOO-1995) Trato Humanitario de Animales de Producción, de Compañía y Animales Silvestres Durante el Proceso de Crianza, Desarrollo de Experimentos, Movilización y Sacrificio. 1995. Available online: http://dof.gob.mx (accessed on 4 November 2019).
- Giannenas, I.; Skoufos, J.; Giannakopoulos, C.; Wiemann, M.; Gortzi, O.; Lalas, S.; Kyriazakis, I. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci. 2011, 94, 5569–5577. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Nutrient Requirement of Small Ruminant. Sheep, Goats, Cervids, and New World Camelids; National Academy Science (NRC): Washington, DC, USA, 2007. [Google Scholar]
- Association of Official Analytical Chemists. Official Method of Analysis, 18th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985. [Google Scholar]
- Canton, G.J.; Bores, Q.R.; Baeza, R.J.; Quintal, F.J.; Santos, R.R.; Sandoval, C.C. Growth and Feed Efficiency of Pure and F1 Pelibuey Lambs Crossbred with Specialized Breeds for Production of Meat. J. Anim. Vet. Adv. 2009, 8, 26–32. Available online: https://www.medwelljournals.com/abstract/?doi=javaa.2009.26.32 (accessed on 6 November 2019).
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 1–10. [Google Scholar] [CrossRef]
- Official United States Standards for Grades of Carcass Lambs, Yearling Mutton and Mutton Carcasses; United States Department of Agriculture, Agric. Marketing: Washington, DC, USA, 1982.
- Meat Buyer’s Guide. In North American Meat Processor Association; John Willey and Sons, Inc. (NAMP): Hoboken, NJ, USA, 2007.
- Luaces, M.L.; Calvo, C.; Fernández, B.; Fernández, A.; Viana, J.L.; Sánchez, L. Ecuaciones predictoras de la composición tisular de las canales de corderos de raza gallega. Arch. Zootec. 2008, 57, 3–14. Available online: https://www.redalyc.org/pdf/495/49521701.pdf (accessed on 6 November 2019).
- Statistical Analytical System. Institute Inc. SAS Proprietary Software Release 9.SAS; Institute Inc. (SAS): Cary, NC, USA, 2004. [Google Scholar]
- Zinn, R.A. Influence of steaming time on site digestion of flaked corn in steers. J. Anim. Sci. 1990, 68, 776–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, F.N.; Anderson, D.L. Comparison of metabolizable energy and productive determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Ouellet, D.R.; Chiquette, J.; Chouinard, P.Y. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Giannenas, I.; Bonos, E.; Christaki, E.; Florou-Paneri, P. Essential oils and their applications in animal nutrition. Med. Aromat. Plants 2013, 2, 140. [Google Scholar]
- Coe, M.L.; Nagaraja, T.G.; Sun, Y.D.; Wallace, N.; Towne, E.G.; Kemp, K.E.; Hutcheson, J.P. Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis. J. Anim. Sci. 1999, 77, 2259–2268. [Google Scholar] [CrossRef] [Green Version]
- Campolina, J.P.; Coelho, S.G.; Bell, A.L.; Machado, F.S.; Pereira, L.G.R.; Tomich, T.R.; Cfarvhalo, W.A.; Silva, R.O.S.; Voorsluys, A.L.; Jacob, D.V.; et al. Effects of a blend of essential oils in milk replacer on performance, rumen fermentation, blood parameters, and health scores of dairy heifers. PLoS ONE 2021, 16, e0231068. [Google Scholar] [CrossRef]
- Heker, J.C.; Neumann, M.; Ueno, R.K.; Falbo, M.K.; Galbeiro, S.; de Souza, A.M.; Venancio, B.J.; Santos, L.C.; Askel, E.J. Effect of monensin sodium associative to virginiamycin and/or essential oils on the performance of feedlot finished steers. Semin. Ciên. Agrárias Londrina 2018, 39, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Valdes, K.I.; Salem, A.Z.M.; Lopez, S.; Alonso, M.U.; Rivero, N.; Elghandour, M.M.Y.; Domínguez, I.A.; Ronquillo, M.G.; Kholif, E. Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage. J. Agric. Sci. 2015, 153, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Silveira Junior, J.A.; Pedreira, M.S.; Del Rei, A.J.; Freitas, C.E.S.; Silva, H.A.; Soares, M.S.; Oliveira, A.A.; Hora, F.F. Use of banana (Musa sp.) pseudostem hay in feedlot sheep feeding. Rev. Bras. Zoot. 2020, 49, e20180178. [Google Scholar] [CrossRef]
- Bowen, M.K.; Ryan, M.P.; Jordan, D.J.; Beretta, V.; Kirby, R.M.; Stockman, C.; McIntyre, B.L.; Rowe, J.B. Improving sheep feedlot management. In Proceedings of the 2006 Australian Sheep Industry CRC Conference, Orange, NSW, Australia, 22–23 February 2006; Cronjé, P., Maxwell, D.K., Eds.; Wool Meets Meat, Sheep CRC: Orange, NSW, Australia, 2006; pp. 134–141. [Google Scholar]
- Montano, M.F.; Manriquez, O.M.; Salinas-Chavira, J.; Torrentera, N.; Zinn, R.A. Effects of monensin and virginiamycin supplementation in finishing diets with distiller dried grains plus solubles on growth performance and digestive function of steers. J. Appl. Anim. Res. 2015, 43, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, L.O.; Gorocica-Buenfil, M.A. An assessment of the effectiveness of virginiamycin on liver abscess incidence and growth performance in feedlot cattle: A comprehensive statistical analysis. J. Anim Sci. 2018, 96, 2474–2489. [Google Scholar] [CrossRef]
- Owens, F.N.; Zinn, R.A.; Kim, Y.K. Limits to starch digestion in the ruminant small intestine. J. Anim Sci. 1986, 63, 1634–1648. [Google Scholar] [CrossRef] [PubMed]
- Tricarico, J.M.; Abney, M.D.; Galyean, M.L.; Rivera, J.D.; Hanson, K.C.; McLeod, K.R.; Harmon, D.L. Effects of a dietary Aspergillus oryzae extract containing α--amylase activity on performance and carcass characteristics in finishing beef cattle. J. Anim. Sci. 2007, 85, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Koyunco, M.; Canbolat, O. Effect of carvacrol on intake, rumen fermentation, growth performance and carcass characteristics of growing lambs. J. Appl. Anim. Res. 2010, 38, 245–248. [Google Scholar] [CrossRef]
- Gouvêa, V.N.; Meschiatti, M.A.; Moraes, J.M.M.; Batalha, C.D.A.; Dórea, J.R.R.; Acedo, T.S.; Tamassia, L.F.M.; Owens, F.N.; Santos, F.A.P. Effects of alternative feed additives and flint maize grain particle size on growth performance, carcass traits and nutrient digestibility of finishing beef cattle. J. Agri. Sci. 2019, 157, 456–468. [Google Scholar] [CrossRef]
- Madge, D.S. Effects of zinc bacitracin and virginiamycin on intestinal absorption in mice. Comp. Gen. Pharmacol. 1971, 2, 43–51. [Google Scholar] [CrossRef]
- Henry, P.R.; Ammerman, C.B.; Miles, R.D. Influence of virginiamycin and dietary manganese on performance, manganese utilization, and intestinal tract weight of broilers. Poult. Sci. 1986, 65, 321–324. [Google Scholar] [CrossRef]
- Cox, L.M. Antibiotics shape microbiota and weight gain across the animal kingdom. Anim. Front. 2016, 3, 8–14. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Li, X.; Xiaojun Yang, X.; Long, F.; Xin Yang, X. Effects of encapsulated essential oils and organic acids on laying performance, egg quality, intestinal morphology, barrier function, and microflora count of hens during the early laying period. Poult. Sci. 2019, 98, 6751–6760. [Google Scholar] [CrossRef]
- Ghazanfari, S.; Mohammadi, Z.; Adib-Moradi, M. Effects of coriander essential oil on the performance, blood characteristics, intestinal microbiota and histological of broilers. Braz. J. Poult. Sci. 2015, 17, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Kuester, O.J. An Evaluation of Feeding a Blend of Essential Oils and Cobalt Lactate to Lactating Dairy Cows. Ph.D. Thesis, South Dakota State University, Brookings, SD, USA, 2016; p. 1051. Available online: http://openprairie.sdstate.edu/etd/Accessed (accessed on 20 November 2019).
- Parvar, R.; Ghoorchi, T.; Kashfi, H.; Parvar, K. Effect of Ferulago angulata (Chavil) essential oil supplementation on lamb growth performance and meat quality characteristics. Small Rum. Res. 2018, 167, 48–54. [Google Scholar] [CrossRef]
- García-Galicia, I.A.; Arras-Acosta, J.A.; Huerta-Jiménez, M.; Rentería-Monterrubio, A.L.; Loya-Olguín, J.L.; Carrillo-López, L.M.; Tirado-Gallegos, J.M.; Alarcón-Rojo, A.D. Natural oregano essential oil may replace antibiotics in lamb diets: Effects on meat quality. Antibiotics 2020, 9, 248. [Google Scholar] [CrossRef]
- Baldwin, R.L.; McCleod, K.R.; McNamara, J.P.; Elsasser, T.H.; Baumann, R.G. Influence of abomasal carbohydrates on subcutaneous, omental, and mesenteric adipose lipogenic and lipolytic rates in growing beef steers. J. Anim. Sci. 2007, 9, 2271–2282. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Heyler, K.; Tekippe, J.A.; Varga, G.A.; Corl, B.; Brandt, R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef]
- da Silva, L.G.; Torrecilhas, J.A.; Ornaghi, M.G.; Eiras, C.E.; do Prado, R.M.; do Prado, I.N. Glycerin and essential oils in the diet of Nellore bulls finished in feedlot: Animal performance and apparent digestibility. Acta Scient. Anim. Sci. 2014, 36, 177–184. [Google Scholar] [CrossRef]
- Latack, B.C.; Montano, M.F.; Zinn, R.A.; Salinas-Chavira, J. Effects of a blend of cinnamaldehyde-eugenol and capsicum (Xtract® Ruminant 7065) and ionophore on performance of finishing Holstein steers and on characteristics of ruminal and total tract digestion. J. Appl. Res. 2021, 49, 185–193. [Google Scholar] [CrossRef]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- Khateri, N.; Azizi, O.; Jahani-Azizabadi, H. Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay: Concentrate diet. Asian Australas. J. Anim. Sci. 2017, 30, 370–378. [Google Scholar] [CrossRef]
- Elcoso, G.; Zweifel, B.; Bach, A. Effects of a blend of essential oils on milk yield and feed efficiency of lactating dairy cows. Appl. Anim. Sci. 2019, 35, 304–311. [Google Scholar] [CrossRef]
- Queiroz, M.A.A.; Susin, I.; Pires, A.V.; Mendes, C.Q.; Renato Shinkai Gentil, R.S.; Almeida, O.C.; do Amaral, R.C.; Gerson Barreto Mourão, G.B. Desempenho de cordeiros e estimativa da digestibilidade do amido de dietas com diferentes fontes protéicas. Desempenho de cordeiros e estimativa da digestibilidade do amido de dietas com diferentes fontes protéicas. Pesqui. Agropecuária Bras. 2008, 43, 1193–1200. [Google Scholar] [CrossRef]
- Castro-Pérez, B.I.; Garzón-Proaño, J.S.; López-Soto, M.A.; Barreras, A.; González, V.M.; Plascencia, A.; Estrada-Angulo, A.; Dávila-Ramos, H.; Ríos-Rincón, F.G.; Zinn, R.A. Effects of replacing dry-rolled corn with increasing levels of corn dried distillers grains with solubles on characteristics of digestion, microbial protein synthesis and digestible energy of diet in hair lambs fed high-concentrate diets. Asian Australas. J. Anim. Sci. 2013, 26, 1152–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGeough, E.J.; Passetti, L.C.G.; Chung, Y.H.; Beauchemin, K.A.; McGinn, S.M.; Harstad, O.M.; Crow, G.; McAllister, T.A. Methane emissions, feed intake, and total tract digestibility in lambs fed diets differing in fat content and fibre digestibility. Can. J. Anim. Sci. 2019, 99, 858–866. [Google Scholar] [CrossRef]
- Mora-Jaimes, G.; Bárcena-Gama, R.; Mendoza-Martínez, G.D.; González-Muñoz, S.S.; Herrera-Haro, J.G. Performance and ruminal fermentation in lambs fed sorghum grain treated with amylases. Agrociencia 2002, 36, 31–39. Available online: https://www.redalyc.org/pdf/302/30236104.pdf (accessed on 10 June 2021).
- Mendoza, G.D.; Britton, R.A.; Stock, R.A. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 1993, 71, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yao, J.H.; Wang, Y.H.; Wang, F.N. Influence of rumen escape starch on α-amylase activity in pancreatic tissue and small intestinal digesta of lambs. Asian Australas. J. Anim. Sci. 2006, 19, 1749–1754. [Google Scholar] [CrossRef]
- Fiems, L.O.; Cottyn, B.G.; Boucque, C.V.; Vanacker, J.M.; Buysse, F.X. Effect of virginiamycin on in vivo digestibility, rumen fermentation and nitrogen balance. Arch. Tierernahr. 1990, 40, 483–491. [Google Scholar] [CrossRef]
- da Fonseca, M.P.; Borges, A.L.C.C.; e Silva, R.R.; Lage, H.F.; Ferreira, A.L.; Lopes, F.C.F.; Pancoti, C.G.; Rodrigues, J.A.S. Intake, apparent digestibility, and methane emission in bulls receiving a feed supplement of monensin, virginiamycin, or a combination. Anim. Prod. Sci. 2016, 56, 1041–1045. [Google Scholar] [CrossRef]
- Zinn, R.A.; Plascencia, A. Interaction of whole cottonseed and supplemental fat on digestive function in cattle. J. Anim. Sci. 1993, 71, 11–17. [Google Scholar] [CrossRef] [PubMed]
Treatments § | ||||
---|---|---|---|---|
Item | Control | EO | EO + ENZ | VM |
Ingredient composition, % DM basis | ||||
Dry-rolled corn | 67.00 | 67.00 | 67.00 | 67.00 |
Sudangrass hay | 9.00 | 9.00 | 9.00 | 9.00 |
Soybean meal | 10.00 | 10.00 | 10.00 | 10.00 |
CRINA-Ruminants® | 0 | +++ | 0 | 0 |
RONOZYME Rumistar® | 0 | 0 | +++ | 0 |
Stafac 500® | 0 | 0 | 0 | +++ |
Molasses cane | 9.00 | 9.00 | 9.00 | 9.00 |
Urea | 0.50 | 0.50 | 0.50 | 0.50 |
Tallow | 2.00 | 2.00 | 2.00 | 2.00 |
Trace mineral salt * | 2.50 | 2.50 | 2.50 | 2.50 |
Chemical composition (%DM basis) ‡ | ||||
Dry matter | 88.60 | 88.60 | 88.60 | 88.60 |
Starch | 54.00 | 54.00 | 54.00 | 54.00 |
Neutral detergent fiber | 13.50 | 13.50 | 13.50 | 13.50 |
Crude protein | 13.66 | 13.66 | 13.66 | 13.66 |
Ether extract | 5.10 | 5.10 | 5.10 | 5.10 |
Calculated net energy (Mcal/kg) ⁋ | ||||
Maintenance | 2.08 | 2.08 | 2.08 | 2.08 |
Gain | 1.43 | 1.43 | 1.43 | 1.43 |
Treatments † | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item | Control | EO | EO + ENZ | VM | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
Days on test | 87 | 87 | 87 | 87 | |||||||
Pen replicates | 6 | 6 | 6 | 6 | |||||||
Water intake, L/d | 4.44 | 4.56 | 4.85 | 4.40 | 0.174 | 0.56 | <0.01 | 0.25 | <0.01 | 0.15 | 0.01 |
Live weight, kg/d § | |||||||||||
Initial | 27.88 | 27.89 | 27.87 | 27.82 | 0.104 | 0.90 | 0.96 | 0.70 | 0.86 | 0.62 | 0.75 |
Final | 52.49 | 54.16 | 55.31 | 54.14 | 0.623 | 0.09 | <0.01 | 0.10 | 0.27 | 0.98 | 0.61 |
Average daily gain, kg/d | 0.283 | 0.302 | 0.316 | 0.302 | 0.007 | 0.09 | <0.01 | 0.09 | 0.21 | 0.99 | 0.21 |
Dry matter intake, kg/d | 1.305 | 1.306 | 1.401 | 1.301 | 0.037 | 0.99 | 0.09 | 0.92 | 0.09 | 0.93 | 0.07 |
Feed efficiency, kg/kg | 0.217 | 0.232 | 0.227 | 0.233 | 0.002 | <0.01 | 0.02 | <0.01 | 0.13 | 0.85 | 0.10 |
Diet net energy, Mcal/kg | |||||||||||
Maintenance | 2.08 | 2.19 | 2.14 | 2.20 | 0.017 | <0.01 | 0.04 | <0.01 | 0.06 | 0.83 | 0.04 |
Gain | 1.42 | 1.51 | 1.47 | 1.52 | 0.015 | <0.01 | 0.04 | <0.01 | 0.06 | 0.83 | 0.04 |
Observed-to-expected diet NE, Mcal/kg | |||||||||||
Maintenance | 1.001 | 1.053 | 1.027 | 1.056 | 0.009 | <0.01 | 0.04 | <0.01 | 0.06 | 0.83 | 0.04 |
Gain | 0.991 | 1.052 | 1.024 | 1.055 | 0.011 | <0.01 | 0.04 | <0.01 | 0.06 | 0.83 | 0.04 |
Observed-to-expected DMI | 1.006 | 0.948 | 0.976 | 0.944 | 0.010 | <0.01 | 0.04 | <0.01 | 0.06 | 0.83 | 0.04 |
Treatments † | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item | Control | EO | EO + ENZ | VM | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
Hot carcass weight, kg | 31.24 | 32.68 | 32.93 | 32.67 | 0.73 | 0.18 | 0.12 | 0.18 | 0.81 | 0.99 | 0.80 |
Dressing percentage | 59.47 | 60.30 | 59.48 | 60.33 | 0.83 | 0.19 | 0.98 | 0.47 | 0.48 | 0.98 | 0.47 |
Cold carcass weight, kg | 30.93 | 32.28 | 32.63 | 32.28 | 0.74 | 0.21 | 0.40 | 0.58 | 0.99 | 0.99 | 0.99 |
LM area, cm2 | 18.98 | 19.58 | 19.55 | 18.78 | 0.49 | 0.39 | 0.42 | 0.78 | 0.97 | 0.27 | 0.29 |
Fat thickness, cm § | 0.283 | 0.256 | 0.253 | 0.262 | 0.19 | 0.32 | 0.27 | 0.43 | 0.91 | 0.83 | 0.75 |
Kidney pelvic and heart fat, % | 3.72 | 3.13 | 3.65 | 4.16 | 0.25 | 0.09 | 0.83 | 0.21 | 0.14 | <0.01 | 0.15 |
Carcass yield * | 1.52 | 1.41 | 1.40 | 1.43 | 0.07 | 0.31 | 0.27 | 0.42 | 0.93 | 0.83 | 0.76 |
Shoulder composition, % | |||||||||||
Muscle | 64.86 | 63.72 | 63.64 | 63.60 | 0.55 | 0.17 | 0.14 | 0.13 | 0.92 | 0.88 | 0.97 |
Fat | 16.22 | 16.99 | 17.39 | 17.32 | 0.60 | 0.37 | 0.18 | 0.25 | 0.64 | 0.79 | 0.84 |
Muscle to fat ratio | 4.03 | 3.80 | 3.68 | 3.72 | 0.16 | 0.30 | 0.15 | 0.20 | 0.66 | 0.78 | 0.87 |
Whole cuts (as percentage of CCW) | |||||||||||
Forequarter | 41.66 | 41.74 | 41.69 | 41.65 | 0.40 | 0.88 | 0.96 | 0.99 | 0.92 | 0.87 | 0.95 |
Hindquarter | 37.32 | 38.03 | 37.56 | 37.41 | 0.43 | 0.26 | 0.70 | 0.88 | 0.45 | 0.33 | 0.82 |
Neck | 7.53 | 7.99 | 7.73 | 7.68 | 0.26 | 0.23 | 0.59 | 0.69 | 0.49 | 0.41 | 0.89 |
Shoulder IMPS206 | 14.12 | 13.93 | 14.06 | 13.90 | 0.19 | 0.48 | 0.81 | 0.42 | 0.65 | 0.92 | 0.57 |
Shoulder IMPS207 | 9.42 | 8.97 | 9.18 | 9.38 | 0.23 | 0.18 | 0.47 | 0.89 | 0.53 | 0.23 | 0.56 |
Rack IMPS204 | 5.87 | 6.05 | 5.92 | 6.11 | 0.13 | 0.36 | 0.81 | 0.24 | 0.50 | 0.77 | 0.34 |
Breast IMPS209 | 5.61 | 5.57 | 5.24 | 5.59 | 0.16 | 0.86 | 0.12 | 0.93 | 0.15 | 0.93 | 0.13 |
Ribs IMPS209A | 6.52 | 6.71 | 6.66 | 6.72 | 0.15 | 0.37 | 0.53 | 0.36 | 0.78 | 0.99 | 0.77 |
Loin IMPS231 | 7.11 | 7.16 | 7.00 | 7.02 | 0.18 | 0.85 | 0.69 | 0.73 | 0.56 | 0.60 | 0.96 |
Flank IMPS232 | 6.09 | 6.23 | 6.30 | 6.26 | 0.21 | 0.63 | 0.49 | 0.57 | 0.83 | 0.93 | 0.89 |
Leg IMPS233 | 24.39 | 24.58 | 24.16 | 24.08 | 0.33 | 0.68 | 0.62 | 0.51 | 0.37 | 0.29 | 0.86 |
Treatments † | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item | Control | EO | EO + ENZ | VM | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
GIT fill, kg | 3.93 | 4.00 | 4.38 | 3.84 | 0.26 | 0.86 | 0.21 | 0.80 | 0.28 | 0.67 | 0.14 |
Empty body weight, % of full weight | 92.50 | 92.58 | 92.00 | 92.88 | 0.49 | 0.90 | 0.48 | 0.58 | 0.41 | 0.67 | 0.22 |
Full viscera, kg | 7.83 | 7.86 | 8.45 | 7.79 | 0.28 | 0.93 | 0.13 | 0.92 | 0.16 | 0.86 | 0.12 |
Organs, g/kg of empty body weight | |||||||||||
Stomach complex | 26.22 | 26.52 | 27.16 | 26.81 | 0.79 | 0.79 | 0.41 | 0.60 | 0.57 | 0.79 | 0.76 |
Intestines | 53.97 | 50.49 | 52.27 | 51.71 | 0.48 | <0.01 | 0.03 | <0.01 | 0.02 | 0.10 | 0.42 |
Liver/spleen | 16.79 | 15.74 | 15.86 | 16.08 | 0.43 | 0.11 | 0.16 | 0.27 | 0.82 | 0.57 | 0.73 |
Heart/lungs | 20.86 | 19.73 | 19.71 | 19.97 | 0.66 | 0.17 | 0.11 | 0.28 | 0.49 | 0.75 | 0.32 |
Kidney | 2.42 | 2.34 | 2.55 | 2.35 | 0.09 | 0.37 | 0.17 | 0.43 | 0.12 | 0.92 | 0.15 |
Omental fat | 32.05 | 29.51 | 30.89 | 32.22 | 0.96 | 0.08 | 0.40 | 0.91 | 0.32 | 0.06 | 0.34 |
Mesenteric fat | 11.20 | 10.92 | 11.07 | 13.58 | 0.73 | 0.79 | 0.90 | 0.04 | 0.88 | 0.02 | 0.03 |
Visceral fat | 43.26 | 40.39 | 41.96 | 45.81 | 1.16 | 0.11 | 0.44 | 0.14 | 0.36 | 0.01 | 0.04 |
Treatments † | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Item | Control | EO | EO + ENZ | VM | SEM | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 |
Intake, g/d | |||||||||||
Dry matter | 924 | 924 | 924 | 924 | |||||||
Organic matter | 866 | 866 | 866 | 866 | |||||||
Starch | 499 | 499 | 499 | 499 | |||||||
NDF | 124.7 | 124.7 | 124.7 | 124.7 | |||||||
N | 20.20 | 20.20 | 20.20 | 20.20 | |||||||
Ether extract | 47.12 | 47.12 | 47.12 | 47.12 | |||||||
Gross energy, Mcal/d | 4.055 | 4.055 | 4.055 | 4.055 | |||||||
Fecal excretion, g/d | |||||||||||
Dry matter | 168.0 | 160.8 | 163.1 | 177.3 | 4.35 | 0.28 | 0.45 | 0.18 | 0.72 | 0.04 | 0.06 |
Organic matter | 143.6 | 137.1 | 138.5 | 154.0 | 5.44 | 0.28 | 0.39 | 0.17 | 0.81 | 0.03 | 0.05 |
Starch | 3.66 | 2.58 | 3.75 | 3.91 | 0.52 | 0.20 | 0.90 | 0.74 | 0.16 | 0.12 | 0.84 |
NDF | 60.96 | 58.30 | 59.81 | 63.44 | 3.06 | 0.56 | 0.80 | 0.59 | 0.74 | 0.28 | 0.43 |
N | 4.69 | 4.61 | 4.76 | 4.51 | 0.15 | 0.68 | 0.77 | 0.40 | 0.49 | 0.66 | 0.27 |
Ether extract | 8.91 | 9.77 | 9.35 | 8.57 | 1.18 | 0.50 | 0.73 | 0.78 | 0.73 | 0.35 | 0.54 |
Gross energy, Mcal/d | 0.685 | 0.645 | 0.648 | 0.696 | 0.074 | 0.71 | 0.73 | 0.92 | 0.97 | 0.64 | 0.66 |
Total tract digestion, % | |||||||||||
Dry matter | 81.94 | 82.76 | 82.37 | 80.79 | 0.71 | 0.29 | 0.57 | 0.16 | 0.60 | 0.04 | 0.07 |
Organic matter | 83.54 | 84.33 | 84.02 | 82.21 | 0.45 | 0.28 | 0.49 | 0.15 | 0.66 | 0.03 | 0.06 |
Starch | 99.29 | 99.48 | 99.23 | 99.22 | 0.15 | 0.24 | 0.71 | 0.66 | 0.14 | 0.13 | 0.95 |
NDF | 51.18 | 53.66 | 52.35 | 49.17 | 2.32 | 0.48 | 0.73 | 0.56 | 0.70 | 0.22 | 0.37 |
N | 76.99 | 77.26 | 76.42 | 77.73 | 0.76 | 0.81 | 0.62 | 0.52 | 0.47 | 0.68 | 0.27 |
Ether extract | 82.86 | 81.60 | 82.39 | 83.47 | 0.23 | 0.61 | 0.85 | 0.80 | 0.75 | 0.46 | 0.66 |
Digestible energy, % | 83.22 | 84.26 | 84.07 | 82.60 | 1.06 | 0.36 | 0.46 | 0.70 | 0.86 | 0.22 | 0.28 |
Digestible energy, cal/kg | 3.65 | 3.70 | 3.69 | 3.63 | 0.033 | 0.36 | 0.46 | 0.70 | 0.86 | 0.22 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ponce-Barraza, E.; Barreras, A.; Corona, L.; Zinn, R.A.; et al. Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs: Performance, Dietary Energetics, Carcass Traits, and Nutrient Digestion. Animals 2021, 11, 2390. https://doi.org/10.3390/ani11082390
Estrada-Angulo A, Arteaga-Wences YJ, Castro-Pérez BI, Urías-Estrada JD, Gaxiola-Camacho S, Angulo-Montoya C, Ponce-Barraza E, Barreras A, Corona L, Zinn RA, et al. Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs: Performance, Dietary Energetics, Carcass Traits, and Nutrient Digestion. Animals. 2021; 11(8):2390. https://doi.org/10.3390/ani11082390
Chicago/Turabian StyleEstrada-Angulo, Alfredo, Yesica J. Arteaga-Wences, Beatriz I. Castro-Pérez, Jesús D. Urías-Estrada, Soila Gaxiola-Camacho, Claudio Angulo-Montoya, Elizama Ponce-Barraza, Alberto Barreras, Luis Corona, Richard A. Zinn, and et al. 2021. "Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs: Performance, Dietary Energetics, Carcass Traits, and Nutrient Digestion" Animals 11, no. 8: 2390. https://doi.org/10.3390/ani11082390
APA StyleEstrada-Angulo, A., Arteaga-Wences, Y. J., Castro-Pérez, B. I., Urías-Estrada, J. D., Gaxiola-Camacho, S., Angulo-Montoya, C., Ponce-Barraza, E., Barreras, A., Corona, L., Zinn, R. A., Leyva-Morales, J. B., Perea-Domínguez, X. P., & Plascencia, A. (2021). Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs: Performance, Dietary Energetics, Carcass Traits, and Nutrient Digestion. Animals, 11(8), 2390. https://doi.org/10.3390/ani11082390