Optimization of a Protocol for the Cryopreservation of Sperm in Pellets for the Common Pheasant (Phasianus colchicus mongolicus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Reagents
2.3. Birds
2.4. Semen Processing
2.5. Methodology of Freezing into Pellets
2.6. Thawed Sperm Quality
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Fresh Semen
4.2. The Extender
4.3. The Freezing Process and the Cryoprotectant
4.4. The Protocols and the Evaluated Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woelders, H. Cryopreservation of Avian Semen. In Cryopreservation and Freeze-Drying Protocols; Wolkers Willem, F., Oldenhof, H., Eds.; Springer: New York, NY, USA, 2021; pp. 379–399. ISBN 978-1-0716-0783-1. [Google Scholar]
- Peña, F.J.; Saravia, F.; Núñez-Martínez, I.; Johannisson, A.; Wallgren, M.; Rodriguez Martinez, H. Do Different Portions of the Boar Ejaculate Vary in Their Ability to Sustain Cryopreservation? Anim. Reprod. Sci. 2006, 93, 101–113. [Google Scholar] [CrossRef]
- Jovičić, M.; Chmelíková, E.; Sedmíková, M. Cryopreservation of Boar Semen. Czech. J. Anim. Sci. 2020, 65, 115–123. [Google Scholar] [CrossRef]
- Holt, W.V. Fundamental Aspects of Sperm Cryobiology: The Importance of Species and Individual Differences. Theriogenology 2000, 53, 47–58. [Google Scholar] [CrossRef]
- Lake, P.E.; Cherms, F.L.; Wishart, G.J. Effect of Aeration on the Fertilising Ability of Turkey Semen Stored for 48 Hours at 5 and 15 °C: A Study from the 33rd to the 47th Week of Age. Reprod. Nutr. Dev. 1984, 24, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Wishart, G.J. The Effect Of Continuous Aeration On The Fertility Of Fowl And Turkey Semen Stored Above 0 °C. Br. Poult. Sci. 1981, 22, 445–450. [Google Scholar] [CrossRef]
- Donoghue, A.M.; Wishart, G.J. Storage of Poultry Semen. Anim. Reprod. Sci. 2000, 62, S0378–S4320. [Google Scholar] [CrossRef] [Green Version]
- Pegg, D.E. Principles of Cryopreservation. Methods Mol. Biol. 2015, 1257, 3–19. [Google Scholar] [CrossRef]
- Blesbois, E. Freezing Avian Semen. Avian Biol. Res. 2011, 4. [Google Scholar] [CrossRef]
- Blesbois, E. Current Status in Avian Semen Cryopreservation. World’s Poult. Sci. J. 2007, 63, 213–222. [Google Scholar] [CrossRef]
- Shanmugam, M.; Mahapatra, R. Pellet Method of Semen Cryopreservation: Effect of Cryoprotectants, Semen Diluents and Chicken Lines. Braz. Arch. Biol. Technol. 2019, 62. [Google Scholar] [CrossRef] [Green Version]
- Kowalczy, A. The Effect of Cryopreservation Process on Morphology and Fertilising Ability of Japanese Quail (Coturnix Japonica) Spermatozoa. Cryo-Letters 2008, 29, 199–208. [Google Scholar]
- Seigneurin, F.; Grasseau, I.; Chapuis, H.; Blesbois, E. An Efficient Method of Guinea Fowl Sperm Cryopreservation. Poult. Sci. 2013, 92, 2988–2996. [Google Scholar] [CrossRef] [PubMed]
- Váradi, É.; Végi, B.; Liptói, K.; Barna, J. Methods for Cryopreservation of Guinea Fowl Sperm. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.E.; Singh, R.P.; Pukazhenthi, B.; Keefer, C.L.; Songsasen, N. Cryopreservation Effects on Sperm Function and Fertility in Two Threatened Crane Species. Cryobiology 2018, 82, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Sontakke, S.D.; Umapathy, G.; Sivaram, V.; Kholkute, S.D.; Shivaji, S. Semen Characteristics, Cryopreservation, and Successful Artificial Insemination in the Blue Rock Pigeon (Columba Livia). Theriogenology 2004, 62, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Saint Jalme, M.; Lecoq, R.; Seigneurin, F.; Blesbois, E.; Plouzeau, E. Cryopreservation of Semen from Endangered Pheasants: The First Step towards a Cryobank for Endangered Avian Species. Theriogenology 2003, 59, S0093–S0691. [Google Scholar] [CrossRef]
- Zhang, Y.Y. Semen Characterization and Sperm Storage in Cabot’s Tragopan. Poult. Sci. 2006, 85, 892–898. [Google Scholar] [CrossRef] [PubMed]
- CITES Convention on International Trade in Endangered Species of Wild Fauna and Flora. Available online: https://cites.org/eng/disc/text.php (accessed on 17 August 2021).
- Marzoni, M.; Castillo, A.; Chiarini, R.; Bolognesi, P.G.; Romboli, I. Cryopreservation of Pheasant Semen: Effect of Dilution Ratio and Cooling Time on Spermatozoa Viability and Mobility. In Proceedings of the 1st Mediterranean Summit WPSA, Chalkidiki, Greece, 7–10 May 2008; Tserveni-Goussi, A., Yannakopoulos, A., Fortomaris, P., Arsenos, G., Sossidou, E., Eds.; University Studio Press: Thessaloniki, Greece, 2008; pp. 451–455. [Google Scholar]
- Castillo, A.; Chiarini, R.; Bolognesi, P.G.; Romboli, I.; Marzoni, M. Cryopreservation of Pheasant Semen: Effect of DMA Concentration and Its Equilibration Time on Spermatozoa Viability and Mobility. In Proceedings of the 1st Mediterranean Summit of WPSA, Chalkidiki, Greece, 7–10 May 2008; Tserveni-Goussi, A., Yannakopoulos, A., Fortomaris, P., Arsenos, G., Sossidou, E., Eds.; University Studio Press: Thessaloniki, Greece, 2008; pp. 456–460. [Google Scholar]
- Marzoni, M.; Castillo, A.; Romboli, I. Pheasant Semen Cryopreserved in Pellets: Effect of Drop Volume on Spermatozoa Viability and Mobility. In Proceedings of the Avian Biology Research, Norwich, UK, 7–8 July 2009. [Google Scholar]
- Marzoni, M.; Castillo, A.; Romboli, I. In Vivo Responses of Cryopreserved Pheasant Semen. In Proceedings of the Avian Biology Research, Norwich, UK, 7–8 July 2009. [Google Scholar]
- Castillo, A.; Romboli, I.; Marzoni, M. Cryopreserved Pheasant Semen Thawed by the Hotplate Method and Tested in Vivo. In Proceedings of the Avian Biology Research, Ede, The Netherlands, 30–31 August 2011. [Google Scholar]
- Marzoni, M.; Castillo, A.; Romboli, I. Hatchability of Pheasant Eggs Fertilised with Cryopreserved Semen from Dietary Manipulated Males. In Proceedings of the Avian Biology Research, Pisa, Italy, 13–15 June 2012. [Google Scholar]
- Castillo, A.; Marzoni, M.; Romboli, I. Some Advices to Breed Common Pheasants Used as Donors of Good Quality Semen. In Proceedings of the Avian Biology Research, Norwich, UK, 7–8 July 2009. [Google Scholar]
- Quinn, J.P.; Burrows, W.H. Artificial Insemination in Fowls. J. Hered. 1936, 27, 31–38. [Google Scholar] [CrossRef]
- Castillo, A.; Lenzi, C.; Pirone, A.; Baglini, A.; Russo, C.; Soglia, D.; Schiavone, A.; Marzoni, M. In Vitro Traits and In Vivo Performance of Cryopreserved Sperms from Pheasants Fed Antioxidants Enriched Diet; 2021; Unpublished. [Google Scholar]
- Lake, P.E. Observations on Freezing Fowl Spermatozoa in Liquid Nitrogen. In Proceedings of the International Congress of Animal Reproduction and Artificial Insemination, Milano, Italy, 26–30 June 1968. [Google Scholar]
- Bakst, M.; Cecil, H.C. Techniques for Semen Evaluation, Semen Storage and Fertility Determination; Lab Manual ed.; Poultry Science Association: Champaign, IL, USA, 2007. [Google Scholar]
- Bakst Murray, R.; Cecil, H.C. Sperm viability 1. Nigrosin/Eosin stain for determining liveydead and abnormal sperm counts. In Techniques for Semen Evaluation, Semen Storage, and Fertility Determination; The Poultry Science Association, Ed.; The Poultry Science Association: Champaign, IL, USA, 1997. [Google Scholar]
- Froman, D.P.; McLean, D.J. Objective Measurement of Sperm Motility Based upon Sperm Penetration of Accudenz®. Poult. Sci. 1996, 75, 776–784. [Google Scholar] [CrossRef]
- Tselutin, K.; Seigneurin, F.; Blesbois, E. Comparison of Cryoprotectants and Methods of Cryopreservation of Fowl Spermatozoa. Poult. Sci. 1999, 78, 586–590. [Google Scholar] [CrossRef]
- Castillo, A.; Marzoni, M.; Chiarini, R.; Romboli, I. Storage of Pheasant Semen: Some Aspects on Quality and Fertilising Ability. Anim. Repord. Sci. 2000, 60–61, 481–492. [Google Scholar]
- Marzoni, M.; Castillo, A.; Chiarini, R.; Romboli, I. Comparison of Different Extenders for Holding Pheasant Semen. Ital. J. Anim. Sci. 2003, 2, 184–186. [Google Scholar]
- Marzoni, M.; Castillo, A.; Chiarini, R.; Romboli, I. Effect of Vitamin E/Selenium Ratio on Mobility of Pheasant Spermatozoa. In Proceedings of the Avian Biology Research, Tours, France, 23 August 2010. [Google Scholar]
- Watson, P.F. The Causes of Reduced Fertility with Cryopreserved Semen. Anim. Reprod. Sci. 2000, 60–61, 481–492. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Blesbois, E. Functional Aspects of Seminal Plasma in Bird Reproduction. Int. J. Mol. Sci. 2020, 21, 5664. [Google Scholar] [CrossRef] [PubMed]
- Thelie, A.; Bailliard, A.; Seigneurin, F.; Zerjal, T.; Tixier-Boichard, M.; Blesbois, E. Chicken Semen Cryopreservation and Use for the Restoration of Rare Genetic Resources. Poult. Sci. 2019, 98, 447–455. [Google Scholar] [CrossRef]
- Zaniboni, L.; Cassinelli, C.; Mangiagalli, M.G.; Gliozzi, T.M.; Cerolini, S. Pellet Cryopreservation for Chicken Semen: Effects of Sperm Working Concentration, Cryoprotectant Concentration, and Equilibration Time during in Vitro Processing. Theriogenology 2014, 82, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, N.; Romagnoli, L.; Manchisi, A.; Rosato, M.P. Cryopreservation of Turkey Semen by the Pellet Method: Effects of Variables Such as the Extender, Cryoprotectant Concentration, Cooling Time and Warming Temperature on Sperm Quality Determined through Principal Components Analysis. Theriogenology 2011. [Google Scholar] [CrossRef] [PubMed]
- Hudson, G.H.; Omprakash, A.v.; Premavalli, K. Effect of Semen Diluents, Dilution Rates and Storage Periods on Live and Abnormal Spermatozoa of Pearl Guinea Fowls. Asian J. Anim. Vet. Adv. 2016, 11, 411–416. [Google Scholar] [CrossRef]
- Gliozzi, T.M.; Zaniboni, L.; Iaffaldano, N.; Cerolini, S. Spermatozoa DNA and Plasma Membrane Integrity after Pellet Optimized Processing for Cryopreservation in Meat Type Chicken Breeders. Br. Poult. Sci. 2017, 58, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Said, T.M.; Gaglani, A.; Agarwal, A. Implication of Apoptosis in Sperm Cryoinjury. Reprod. BioMed. Online 2010, 21, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, P.; Leibo, S.P.; Chu, E.H.Y. A Two-Factor Hypothesis of Freezing Injury. Evidence from Chinese Hamster Tissue-Culture Cells. Exp. Cell Res. 1972, 71, 345–355. [Google Scholar] [CrossRef]
- Baust, J.G.; Gao, D.; Baust, J.M. Cryopreservation: An Emerging Paradigm Change. Organogenesis 2009, 5, 90–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ken, M.; Jason, P.A.; Janet, A.W.E.; Locksley, E.M. Life in the Frozen State; Barry, J.F., Nick, L., Erica, E.B., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Silyukova, Y.L.; Stanishevskaya, O.I.; Dementieva, N.V. The Current State of the Problem of in Vitro Gene Pool Preservation in Poultry. Vavilovskii Zhurnal Genet. Selektsii 2020, 24, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Moreno, J.; Castaño, C.; Toledano-Díaz, A.; Coloma, M.A.; López-Sebastián, A.; Prieto, M.T.; Campo, J.L. Semen Cryopreservation for the Creation of a Spanish Poultry Breeds Cryobank: Optimization of Freezing Rate and Equilibration Time. Poult. Sci. 2011, 90, 2047–2053. [Google Scholar] [CrossRef]
- Donoghue, A.M.; Sonstegard, T.S.; King, L.M.; Smith, E.J.; Burt, D.W. Turkey Sperm Mobility Influences Paternity in the Context of Competitive Fertilization. Biol. Reprod. 1999, 61, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Birkhead, T.R.; Martínez, J.G.; Burke, T.; Froman, D.P. Sperm Mobility Determines the Outcome of Sperm Competition in the Domestic Fowl. Proc. Biol. Sci. 1999, 266. [Google Scholar] [CrossRef] [Green Version]
- Froman, D.P. Application of the Sperm Mobility Assay to Primary Broiler Breeder Stock. J. Appl. Poult. Res. 2006, 15, 280–286. [Google Scholar] [CrossRef]
- King, L.M.; Kirby, J.D.; Froman, D.P.; Sonstegard, T.S.; Harry, D.E.; Darden, J.R.; Marini, P.J.; Walker, R.M.; Rhoads, M.L.; Donoghue, A.M. Efficacy of Sperm Mobility Assessment in Commercial Flocks and the Relationships of Sperm Mobility and Insemination Dose with Fertility in Turkeys. Poult. Sci. 2000, 79, 1797–1802. [Google Scholar] [CrossRef]
- King, L.M.; Holsberger, D.R.; Donoghue, A.M. Correlation of CASA Velocity and Linearity Parameters with Sperm Mobility Phenotype in Turkeys. J. Androl. 2000, 21. [Google Scholar] [CrossRef]
- Froman, D.P.; Feltmann, A.J. Sperm Mobility: A Quantitative Trait of the Domestic Fowl (Gallus Domesticus). Biol. Reprod. 1998, 58, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Froman, D.P.; Feltmann, A.J.; Mclean, D.J. Increased Fecundity Resulting from Semen Donor Selection Based Upon in Vitro Sperm Motility. Poult. Sci. 1997, 76, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.R.I.M.M. Preliminary Investigation on Fertility and Hatchability by the Use of Cryopreserved Cock Semen. Avian Biol. Res. 2010. [Google Scholar] [CrossRef]
Viability (%) | Normal (%) | Mobility Abs 5 | Recovered Mobility (%) | ||
---|---|---|---|---|---|
D 1 | 1:2 | 15.4 ± 7.25 | 29.9 ± 7.26 | 0.0150 ± 0.007 B | 15.0 ± 3.66 B |
1:3 | 15.2 ± 6.66 | 29.2 ± 5.93 | 0.0234 ± 0.012 A | 18.0 ± 6.07 A | |
Eq5 °C 2 | 10 | 17.2 ± 7.15 A | 29.6 ± 6.64 | 0.0204 ± 0.011 | 17.4 ± 5.22 |
30 | 12.8 ± 5.64 B | 29.4 ± 6.44 | 0.0180 ± 0.008 | 15.5 ± 5.20 | |
DMA 3 | 6 | 15.5 ± 6.71 | 30.6 ± 6.26 | 0.0227 ± 0.011 a | 17.5 ± 5.51 |
9 | 15.1 ± 7.18 | 28.1 ± 6.66 | 0.0157 ± 0.008 b | 15.6 ± 4.85 | |
Eq 4 | 1 | 13.2 ± 6.55 B | 28.3 ± 7.64 | 0.0199 ± 0.011 | 17.1 ± 5.14 |
5 | 16.7 ± 6.79 A | 30.3 ± 5.63 | 0.0186 ± 0.010 | 16.3 ± 5.38 | |
Effect | |||||
D | p = 0.8850 | p = 0.9052 | p = 0.0055 | p = 0.0213 | |
Eq5 °C | p = 0.0038 | p = 0.8666 | p = 0.3480 | p = 0.3832 | |
DMA | p = 0.5444 | p = 0.5094 | p = 0.0069 | p = 0.0994 | |
Eq | p = 0.0070 | p = 0.1702 | p = 0.6182 | p = 0.6175 | |
D*Eq5 °C | p = 0.8046 | p = 0.8769 | p = 0.9165 | p = 0.9856 | |
D*Eq5 °C*DMA | p = 0.0625 | p = 0.6226 | p = 0.2098 | p = 0.2443 | |
D*Eq5 °C*DMA*Eq | p = 0.5106 | p = 0.7744 | p = 0.5194 | p = 0.5479 |
D 1 | Eq5 °C 2 | DMA 3 | Eq 4 | Live (%) | Normal (%) | Mobility Abs 5 | Recovered Mobility (%) |
---|---|---|---|---|---|---|---|
1:2 | 10 | 6 | 1 | 7.1 ± 3.2 D | 22.5 ± 10.6 | 0.020 ± 0.000 ABC | 17.5 ± 0.2 abc |
5 | 15.4 ± 4.0 CD | 33.6 ± 6.8 | 0.018 ± 0.009 C | 15.8 ± 4.4 bc | |||
9 | 1 | 16.8 ± 7.8 BC | 26.5 ± 7.0 | 0.014 ± 0.006C | 14.2 ± 3.2 bc | ||
5 | 28.8 ± 1.6 A | 32.6 ± 1.4 | 0.013 ± 0.005 C | 13.8 ± 3.0 bc | |||
30 | 6 | 1 | 10.0 ± 3.7 CD | 26.8 ± 11.9 | 0.009 ± 0.007 C | 11.5 ± 4.7 c | |
5 | 14.6 ± 10.2 CD | 34.1 ± 4.9 | 0.019 ± 0.007 BC | 16.5 ± 3.3 abc | |||
9 | 1 | 8.0 ± 0.2 D | 23.8 ± 8.8 | 0.009 ± 0.001 C | 12.0 ± 0.9 c | ||
5 | 16.3 ± 3.2 BCD | 30.3 ± 6.1 | 0.017 ± 0.008 C | 15.5 ± 4.3 bc | |||
1:3 | 10 | 6 | 1 | 16.4 ± 7.8 BCD | 23.8 ± 8.8 | 0.035 ± 0.010 A | 22.3 ± 1.1 a |
5 | 20.7 ± 5.2 AB | 29.7 ± 5.8 | 0.032 ± 0.010 AB | 21.6 ± 3.8 ab | |||
9 | 1 | 10.2 ± 4.4 CD | 29.6 ± 12.0 | 0.015 ± 0.011 C | 15.3 ± 6.9 c | ||
5 | 19.2 ± 8.1 ABC | 26.5 ± 7.0 | 0.017 ± 0.013 C | 16.7 ± 8.0 abc | |||
30 | 6 | 1 | 17.6 ± 5.7 ABC | 32.5 ± 2.2 | 0.033 ± 0.004 AB | 22.1 ± 1.4 a | |
5 | 9.8 ± 4.3 D | 28.6 ± 5.4 | 0.012 ± 0.009 C | 11.2 ± 7.7 c | |||
9 | 1 | 9.1 ± 1.3 CD | 29.6 ± 13.6 | 0.022 ± 0.006 ABC | 20.0 ± 4.2 abc | ||
5 | 11.9 ± 2.2 CD | 25.6 ± 5.1 | 0.017 ± 0.008 C | 15.8 ± 3.7 abc |
Bent | Fracture | Coiling | Swo-Det 5 | Knotted | No Tail | ||
---|---|---|---|---|---|---|---|
(%) | |||||||
D 1 | 1:2 | 0.99 ± 1.75 | 25.0 ± 13.69 | 0.3 ± 1.17 | 16.0 ± 9.07 | 1.5 ± 1.97 | 1.3 ± 4.31 |
1:3 | 1.31 ± 2.12 | 24.1 ± 11.60 | 0.5 ± 2.63 | 14.2 ± 9.39 | 0.7 ± 1.43 | 1.3 ± 5.22 | |
Eq5 °C 2 | 10 | 1.76 ± 2.28 A | 24.0 ± 11.89 | 0.6 ± 2.76 | 13.2 ± 7.84 | 1.0 ± 1.53 | 0.6 ± 2.23 |
30 | 0.41 ± 1.07 B | 25.2 ± 13.34 | 0.1 ± 0.58 | 17.3 ± 10.43 | 1.1 ± 1.97 | 2.2 ± 6.76 | |
DMA 3 | 6 | 1.13 ± 1.71 | 24.0 ± 12.62 | 0.6 ± 2.71 | 15.4 ± 10.03 | 1.1 ± 1.56 | 0.2 ± 0.95 b |
9 | 1.22 ± 2.28 | 25.2 ± 12.46 | 0.1 ± 0.59 | 14.5 ± 8.16 | 1.1 ± 1.95 | 2.7 ± 7.12 a | |
EqDMA 4 | 1 | 1.58 ± 2.69 | 28.0 ± 15.16 a | 0.7 ± 3.15 | 12.1 ± 9.18 b | 0.4 ± 1.01b | 1.2 ± 5.84 |
5 | 0.90 ± 1.27 | 22.3 ± 9.96 b | 0.3 ± 1.01 | 16.9 ± 8.86 a | 1.5 ± 0.82a | 1.3 ± 4.10 | |
Effect | |||||||
D | p = 0.662 | p = 0.622 | p = 0.849 | p = 0.225 | p = 0.196 | p = 0.529 | |
Eq5 °C | p = 0.004 | p = 0.750 | p = 0.487 | p = 0.236 | p = 0.971 | p = 0.159 | |
DMA | p = 0.947 | p = 0.810 | p = 0.487 | p = 0.788 | p = 0.775 | p = 0.034 | |
EqDMA | p = 0.907 | p = 0.020 | p = 0.965 | p = 0.036 | p = 0.049 | p = 0.688 | |
D*Eq5 °C | p = 0.438 | p = 0.082 | p = 0.453 | p = 0.120 | p = 0.471 | p = 0.945 | |
D*Eq5 °C*DMA | p = 0.546 | p = 0.607 | p = 0.850 | p = 0.992 | p = 0.618 | p = 0.904 | |
D*Eq5 °C*DMA*EqDMA | p = 0.514 | p = 0.303 | p = 0.268 | p = 0.206 | p = 0.469 | p = 0.015 |
Looping | Coiling | No Head | ||
---|---|---|---|---|
(%) | ||||
D 1 | 1:2 | 10.2 ± 7.30 | 0.2 ± 0.51 | 2.5 ± 3.63 |
1:3 | 12.8 ± 8.20 | 0.3 ± 0.71 | 2.4 ± 3.07 | |
Eq5 °C 2 | 10 | 13.6 ± 7.68 | 0.4 ± 0.78 a | 2.8 ± 3.05 |
30 | 9.2 ± 7.51 | 0.1 ± 0.26 b | 2.1 ± 3.61 | |
DMA 3 | 6 | 10.1 ± 7.96 B | 0.3 ± 0.70 | 2.4 ± 3.30 |
9 | 13.8 ± 7.33 A | 0.2 ± 0.52 | 2.5 ± 3.36 | |
EqDMA 4 | 1 | 12.3 ± 7.69 | 0.2 ± 0.47 | 3.4 ± 3.68 |
5 | 11.2 ± 8.03 | 0.3 ± 0.29 | 1.9 ± 2.92 | |
Effect | ||||
D | p = 0.262 | p = 0.844 | p = 0.571 | |
Eq5 °C | p = 0.081 | p = 0.024 | p = 0.084 | |
DMA | p = 0.008 | p = 0.844 | p = 0.456 | |
EqDMA | p = 0.980 | p = 0.291 | p = 0.103 | |
D*Eq5 °C | p = 0.567 | p = 0.414 | p = 0.429 | |
D*Eq5 °C*DMA | p = 0.940 | p = 0.024 | p = 0.700 | |
D*Eq5 °C*DMA*EqDMA | p = 0.984 | p = 0.097 | p = 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, A.; Lenzi, C.; Pirone, A.; Baglini, A.; Cerolini, S.; Iaffaldano, N.; Sartore, S.; Russo, C.; Schiavone, A.; Marzoni Fecia di Cossato, M. Optimization of a Protocol for the Cryopreservation of Sperm in Pellets for the Common Pheasant (Phasianus colchicus mongolicus). Animals 2021, 11, 2472. https://doi.org/10.3390/ani11082472
Castillo A, Lenzi C, Pirone A, Baglini A, Cerolini S, Iaffaldano N, Sartore S, Russo C, Schiavone A, Marzoni Fecia di Cossato M. Optimization of a Protocol for the Cryopreservation of Sperm in Pellets for the Common Pheasant (Phasianus colchicus mongolicus). Animals. 2021; 11(8):2472. https://doi.org/10.3390/ani11082472
Chicago/Turabian StyleCastillo, Annelisse, Carla Lenzi, Andrea Pirone, Alessandro Baglini, Silvia Cerolini, Nicolaia Iaffaldano, Stefano Sartore, Claudia Russo, Achille Schiavone, and Margherita Marzoni Fecia di Cossato. 2021. "Optimization of a Protocol for the Cryopreservation of Sperm in Pellets for the Common Pheasant (Phasianus colchicus mongolicus)" Animals 11, no. 8: 2472. https://doi.org/10.3390/ani11082472
APA StyleCastillo, A., Lenzi, C., Pirone, A., Baglini, A., Cerolini, S., Iaffaldano, N., Sartore, S., Russo, C., Schiavone, A., & Marzoni Fecia di Cossato, M. (2021). Optimization of a Protocol for the Cryopreservation of Sperm in Pellets for the Common Pheasant (Phasianus colchicus mongolicus). Animals, 11(8), 2472. https://doi.org/10.3390/ani11082472