Effect of Dietary Supplementation with Lipids of Different Unsaturation Degree on Feed Efficiency and Milk Fatty Acid Profile in Dairy Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Measurements and Sampling Procedures
2.2.1. Diets
2.2.2. Animal Performance and Feed Efficiency Indicators
2.2.3. Milk FA Composition
2.3. Laboratory Analysis
2.3.1. Experimental Diets
2.3.2. Milk Composition
2.4. Statical Analysis
3. Results
3.1. Animal Performance and Feed Efficiency Indicators
3.2. Milk Short- and Medium-Chain FA
3.3. Milk C18 FA
3.4. Other Milk FA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Shingfield, K.J.; Chilliard, Y.; Toivonen, V.; Kairenius, P.; Givens, D.I. Trans Fatty Acids and Bioactive Lipids in Ruminant Milk. Adv. Exp. Med. Biol. 2008, 606, 3–65. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.A.; de la Fuente, M.; Hervás, G. Effect of supplementation of grazing dairy ewes with a cereal concentrate on animal performance and milk fatty acid profile. J. Dairy Sci. 2009, 92, 3964–3972. [Google Scholar] [CrossRef] [Green Version]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and goats respond differently to feeding strategies directed to improve the fatty acid profile of milk fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef]
- Mele, M.; Buccioni, A.; Serra, A. Lipid requirements in the nutrition dairy ewes. Ital. J. Anim. Sci. 2005, 4, 53–62. [Google Scholar] [CrossRef]
- Gargouri, A.; Caja, G.; Casals, R.; Mezghani, I. Lactational evaluation of effects of calcium soap of fatty acids on dairy ewes. Small Rumin. Res. 2006, 66, 1–10. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. A 100-Year Review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [Green Version]
- Bodas, R.; Manso, T.; Mantecón, A.R.; Juárez, M.; de la Fuente, M.A.; Gómez-Cortés, P. Comparison of the fatty acid profiles in cheeses from ewes fed diets supplemented with different plant oils. Agric. Food Chem. 2010, 58, 10493–10502. [Google Scholar] [CrossRef] [PubMed]
- Castro-Carrera, T.; Frutos, P.; Leroux, C.; Chilliard, Y.; Hervás, G.; Belenguer, A.; Bernard, L.; Toral, P.G. Dietary sunflower oil modulates milk fatty acid composition without major changes in adipose and mammary tissue fatty acid profile or related gene mRNA abundance in sheep. Animal 2015, 9, 582–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Bello-Pérez, E.; Darabighane, B.; Miccoli, F.E.; Gómez-Cortés, P.; Gonzalez-Ronquillo, M.; Mele, M. Effect of Dietary Vegetable Sources Rich in Unsaturated Fatty Acids on Milk Production, Composition, and Cheese Fatty Acid Profile in Sheep: A Meta-Analysis. Front. Vet. Sci. 2021, 8, 641364. [Google Scholar] [CrossRef] [PubMed]
- Rico, J.E.; Allen, M.S.; Lock, A.L. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows. J. Dairy Sci. 2014, 97, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- De Souza, J.; Preseault, C.L.; Lock, A.L. Altering the ratio of dietary palmitic, stearic, and oleic acids in diets with or without whole cottonseed affects nutrient digestibility, energy partitioning, and production responses of dairy cows. J. Dairy Sci. 2018, 101, 172–185. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Regulation and nutritional manipulation of milk fat: Low-fat milk syndrome. Livest. Prod. Sci. 2001, 70, 15–29. [Google Scholar] [CrossRef]
- Parente, M.O.M.; Susin, I.; Nolli, C.P.; Ferreira, E.M.; Gentil, R.S.; Polizel, D.M.; Pires, A.V.; Alves, S.P.; Bessa, R.J.B. Effects of supplementation with vegetable oils, including castor oil, on milk production of ewes and on growth of their lambs. J. Anim. Sci. 2018, 96, 354–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mele, M.; Buccioni, A.; Petacchi, F.; Serra, A.; Banni, S.; Antongiovanni, M.; Secchiari, P. Effect of forage/concentrate ratio and soybean oil supplementation on milk yield, and composition from Sarda ewes. Anim. Res. 2006, 55, 273–285. [Google Scholar] [CrossRef]
- Castro, T.; Manso, T.; Jimeno, V.; Del Alamo, M.; Mantecón, A.R. Effects of dietary sources of vegetable fats on performance of dairy ewes and conjugated linoleic acid (CLA) in milk. Small Rumin. Res. 2009, 84, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Kliem, K.E.; Shingfield, K.J.; Humphries, D.J.; Givens, D.I. Effect of replacing calcium salts of palm oil distillate with incremental amounts of conventional or high oleic acid milled rapeseed on milk fatty acid composition in cows fed maize silage-based diets. Animal 2011, 5, 1311–1321. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Cantalapiedra-Hijar, G.; Abo-Ismail, M.; Carstens, G.E.; Guan, L.L.; Hegarty, R.; Kenny, D.A.; McGee, M.; Plastow, G.; Relling, A.; Ortigues-Marty, I. Review: Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal 2018, 12, s321–s335. [Google Scholar] [CrossRef] [Green Version]
- Løvendahl, P.; Difford, G.F.; Li, B.; Chagunda, M.G.G.; Huhtanen, P.; Lidauer, M.H.; Lassen, J.; Lund, P. Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal 2018, 12, s336–s349. [Google Scholar] [CrossRef] [Green Version]
- Marie, C.; Barillet, F.; Such, X.; Bocquier, F.; Caja, G. Feed efficiency of dairy ewes according to milk genetic merit. Options Méditerr. B 2002, 42, 57–71. [Google Scholar]
- González-García, E.; Santos, J.P.D.; Hassoun, P. Residual feed intake in dairy ewes: An evidence of intraflock variability. Animals 2020, 10, 1593. [Google Scholar] [CrossRef]
- Toral, P.G.; Hervás, G.; Fernández-Díez, C.; Belenguer, A.; Frutos, P. Rumen biohydrogenation and milk fatty acid profile in dairy ewes divergent for feed efficiency. J. Dairy Sci. 2021, 104, 5569–5582. [Google Scholar] [CrossRef] [PubMed]
- Connor, E.E.; Hutchison, J.L.; Olson, K.M.; Norman, H.D. Triennial Lactation Symposium: Opportunities for improving milk production efficiency in dairy cattle. J. Anim. Sci. 2012, 90, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Arthur, P.F.; Pryce, J.E.; Herd, R.M. Lessons learnt from 25 years of feed efficiency research in Australia. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production (WCGALP), Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- INRA. Alimentation des Ruminants; Editions Quae: Versailles, France, 2018. [Google Scholar]
- Hurley, A.M.; Lopez-Villalobos, N.; McParland, S.; Kennedy, E.; Lewis, E.; O’Donovan, M.; Burke, J.L.; Berry, D.P. Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows. J. Dairy Sci. 2016, 99, 468–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryce, J.E.; Gonzalez-Recio, O.; Nieuwhof, G.; Wales, W.J.; Coffey, M.P.; Hayes, B.J.; Goddard, M.E. Hot topic: Definition and implementation of a breeding value for feed efficiency in dairy cows. J. Dairy Sci. 2015, 98, 7340–7350. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Ahvenjärvi, S.; Toivonen, V.; Ärölä, A.; Nurmela, K.V.V.; Huhtanen, P.; Griinari, J.M. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci. 2003, 77, 165–179. [Google Scholar] [CrossRef]
- Bichi, E.; Hervás, G.; Toral, P.G.; Loor, J.J.; Frutos, P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J. Dairy Sci. 2013, 96, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Toral, P.G.; Hervás, G.; Carreño, D.; Leskinen, H.; Belenguer, A.; Shingfield, K.J.; Frutos, P. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. J. Dairy Sci. 2017, 100, 6187–6198. [Google Scholar] [CrossRef]
- Wang, Y.; Proctor, S.D. Current issues surrounding the definition of trans-fatty acids: Implications for health, industry and food labels. Br. J. Nutr. 2013, 110, 1369–1383. [Google Scholar] [CrossRef]
- Ran-Ressler, R.R.; Bae, S.; Lawrence, P.; Wang, D.H.; Thomas Brenna, J. Branched-chain fatty acid content of foods and estimated intake in the USA. Br. J. Nutr. 2014, 112, 565–572. [Google Scholar] [CrossRef]
- Dewanckele, L.; Toral, P.G.; Vlaeminck, B.; Fievez, V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J. Dairy Sci. 2020, 103, 7655–7681. [Google Scholar] [CrossRef]
- Moate, P.J.; Chalupa, W.; Boston, R.C.; Lean, I.J. Milk Fatty Acids. I. Variation in the Concentration of Individual Fatty Acids in Bovine Milk. J. Dairy Sci. 2007, 90, 4730–4739. [Google Scholar] [CrossRef] [Green Version]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Rico, D.E.; Ying, Y.; Harvatine, K.J. Effect of a high-palmitic acid fat supplement on milk production and apparent total-tract digestibility in high- and low-milk yield dairy cows. J. Dairy Sci. 2014, 97, 3739–3751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliem, K.E.; Shingfield, K.J. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. Eur. J. Lipid Sci. Technol. 2016, 118, 1661–1683. [Google Scholar] [CrossRef]
- Temme, E.H.M.; Mensink, R.P.; Hornstra, G. Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids on serum lipids and lipoproteins in healthy women and men. Am. J. Clin. Nutr. 1996, 63, 897–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parodi, P.W. Has the Association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? Int. Dairy J. 2009, 19, 345–361. [Google Scholar] [CrossRef]
- Lourenço, M.; Ramos-Morales, E.; Wallace, R.J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, F.; Combes, S.; Zened, A.; Meynadier, A. Rumen microbiota and dietary fat: A mutual shaping. J. Appl. Microbiol. 2017, 123, 782–797. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Frutos, P.; Mantecon, A.R.; Juarez, M.; De La Fuente, M.A.; Hervás, G. Addition of Olive Oil to Dairy Ewe Diets: Effect on Milk Fatty Acid Profile and Animal Performance. J. Dairy Sci. 2008, 91, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- Rego, O.A.; Alves, S.P.; Antunes, L.M.S.; Rosa, H.J.D.; Alfaia, C.F.M.; Prates, J.A.M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Bessa, R.J.B. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J. Dairy Sci. 2009, 92, 4530–4540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szumacher-Strabel, M.; Cieslak, A.; Nowakowska, A.; Potkanski, A. The effect of rapeseed oil and a combination of linseed and fish oils in the diets for sheep on milk fatty acid profile. Zuchtungskunde 2008, 80, 412–419. [Google Scholar]
- Mosley, E.E.; Powell, G.L.; Riley, M.B.; Jenkins, T.C. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 2002, 43, 290–296. [Google Scholar] [CrossRef]
- Toral, P.G.; Hervás, G.; Peiró, V.; Frutos, P. Conditions Associated with Marine Lipid-Induced Milk Fat Depression in Sheep Cause Shifts in the In Vitro Ruminal Metabolism of 1-13C Oleic Acid. Animals 2018, 8, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and nutritional regulation of stearoyl-CoA desaturase genes in the ruminant mammary gland: Relationship with milk fatty acid composition. In Stearoyl-CoA Desaturase Genes in Lipid Metabolism; Ntambi, J.M., Ed.; Springer Science+Business Media: New York, NY, USA, 2013; pp. 161–194. [Google Scholar]
- Kairenius, P.; Leskinen, H.; Toivonen, V.; Muetzel, S.; Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Wallace, R.J.; Shingfield, K.J. Effect of dietary fish oil supplements alone or in combination with sunflower and linseed oil on ruminal lipid metabolism and bacterial populations in lactating cows. J. Dairy Sci. 2018, 101, 3021–3035. [Google Scholar] [CrossRef] [Green Version]
- Wijendran, V.; Hayes, K.C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597–615. [Google Scholar] [CrossRef]
- Salter, A.M. Dietary fatty acids and cardiovascular disease. Animal 2013, 7, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Toral, P.G.; Gervais, R.; Hervás, G.; Létourneau-Montminy, M.P.; Frutos, P. Relationships between trans-10 shift indicators and milk fat traits in dairy ewes: Insights into milk fat depression. Anim. Feed. Sci. Technol. 2020, 261, 114389. [Google Scholar] [CrossRef]
- Korver, S. Genetic aspects of feed intake and feed efficiency in dairy cattle: A review. Livest. Prod. Sci. 1988, 20, 1–13. [Google Scholar] [CrossRef]
- Archer, J.A.; Richardson, E.C.; Herd, R.M.; Arthur, P.F. Potential for selection to improve efficiency of feed use in beef cattle: A review. Aust. J. Agric. Res. 1999, 50, 147–161. [Google Scholar] [CrossRef]
- Artegoitia, V.M.; Foote, A.P.; Lewis, R.M.; Freetly, H.C. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers. Sci. Rep. 2017, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.R.R.; French, E.A.; Armentano, L.E. Use of milk fatty acids to estimate plasma nonesterified fatty acid concentrations as an indicator of animal energy balance. J. Dairy Sci. 2017, 100, 6164–6176. [Google Scholar] [CrossRef] [PubMed]
- Khiaosa-ard, R.; Kleefisch, M.-T.; Zebeli, Q.; Klevenhusen, F. Milk fatty acid composition reflects metabolic adaptation of early lactation cows fed hay rich in water-soluble carbohydrates with or without concentrates. Anim. Feed Sci. Technol. 2020, 264, 114470. [Google Scholar] [CrossRef]
Diet | ||||
---|---|---|---|---|
Control | PA | OO | SBO | |
Ingredients, g/kg of fresh matter | ||||
Dehydrated alfalfa, particle size > 4 cm | 500 | 491 | 491 | 491 |
Whole corn grain | 140 | 138 | 138 | 138 |
Whole barley grain | 100 | 98 | 98 | 98 |
Soybean meal, solvent 440 g crude protein/kg | 150 | 147 | 147 | 147 |
Sugar beet pulp, pellets | 50 | 49 | 49 | 49 |
Molasses, liquid | 40 | 39 | 39 | 39 |
Vitamin-mineral supplement 1 | 20 | 20 | 20 | 20 |
Oil supplement 2 | 0 | 18 | 18 | 18 |
Composition, g/kg diet dry matter (except for dry matter itself; g/kg of fresh matter) | ||||
Dry matter | 900 | 906 | 902 | 901 |
Organic matter | 908 | 908 | 906 | 909 |
Crude protein | 182 | 176 | 173 | 171 |
Neutral detergent fiber | 302 | 293 | 301 | 303 |
Acid detergent fiber | 215 | 213 | 215 | 216 |
Starch | 130 | 144 | 130 | 137 |
Total fatty acids | 22.95 | 41.44 | 41.42 | 41.44 |
14:0 | 0.13 | 0.28 | 0.13 | 0.14 |
16:0 | 5.10 | 23.77 | 7.50 | 7.07 |
cis-9 16:1 | 0.04 | 0.04 | 0.26 | 0.06 |
18:0 | 0.85 | 0.85 | 1.38 | 1.42 |
cis-9 18:1 | 3.39 | 3.33 | 16.50 | 7.69 |
cis-11 18:1 | 0.20 | 0.20 | 0.74 | 0.51 |
cis-9 cis-12 18:2 | 9.42 | 9.23 | 10.85 | 19.26 |
cis-9 cis-12 cis-15 18:3 | 2.99 | 2.93 | 3.06 | 4.27 |
20:0 | 0.19 | 0.19 | 0.27 | 0.25 |
22:0 | 0.18 | 0.18 | 0.21 | 0.27 |
24:0 | 0.24 | 0.23 | 0.25 | 0.26 |
Diet | ||||||
---|---|---|---|---|---|---|
Control | PA | OO | SBO | SED 1 | p-Value | |
Feed conversion ratio (FCR) | 1.76 a | 1.73 a | 1.67 ab | 1.54 b | 0.07 | 0.012 |
Energy conversion ratio (ECR) | 2.39 | 2.48 | 2.39 | 2.21 | 0.09 | 0.052 |
Residual feed intake (RFI) | 0.014 | −0.100 | 0.045 | −0.114 | 0.094 | 0.233 |
Residual energy intake (REI) | −0.036 | 1.362 | 0.317 | 0.528 | 0.819 | 0.353 |
DM intake, kg/d | 3.32 | 3.26 | 3.33 | 3.06 | 0.11 | 0.066 |
Body weight, kg | 75.4 | 75.5 | 75.0 | 76.5 | 0.6 | 0.122 |
Body weight change, kg | 7.2 | 5.7 | 7.3 | 3.7 | 1.4 | 0.044 2 |
Yield, kg/d | ||||||
Milk | 2.40 | 2.42 | 2.48 | 2.35 | 0.10 | 0.590 |
Energy corrected milk (ECM) | 2.01 | 2.08 | 2.13 | 2.11 | 0.09 | 0.611 |
Fat | 0.132 b | 0.138 ab | 0.150 a | 0.144 ab | 0.006 | 0.039 |
Protein | 0.118 | 0.115 | 0.121 | 0.114 | 0.004 | 0.415 |
Lactose | 0.122 | 0.121 | 0.126 | 0.118 | 0.005 | 0.528 |
Total solids | 0.395 | 0.396 | 0.422 | 0.399 | 0.016 | 0.296 |
Fatty acid yield, mmol/d | ||||||
Total fatty acids | 541 c | 579 bc | 660 a | 633 ab | 28 | <0.001 |
<C16 | 283 b | 292 b | 337 a | 320 ab | 15 | 0.004 |
C16 | 148 b | 172 a | 145 b | 135 b | 8 | <0.001 |
>C16 | 113 b | 115 b | 177 a | 177 a | 11 | <0.001 |
Milk composition, g/kg raw milk | ||||||
Fat | 54.8 c | 56.8 bc | 60.3 ab | 61.7 a | 1.7 | 0.001 |
Protein | 48.6 | 47.6 | 49.1 | 48.5 | 0.9 | 0.388 |
Lactose | 50.6 | 49.7 | 50.7 | 50.3 | 0.7 | 0.475 |
Total solids | 163.8 | 163.3 | 169.7 | 170.2 | 2.7 | 0.016 2 |
Diet | SED 1 | p-Value | ||||
---|---|---|---|---|---|---|
Control | PA | OO | SBO | |||
4:0 | 3.24 b | 3.39 ab | 3.44 a | 3.53 a | 0.07 | <0.001 |
6:0 | 2.86 b | 2.85 b | 3.04 ab | 3.10 a | 0.07 | 0.001 |
8:0 | 3.00 | 2.86 | 3.13 | 3.10 | 0.11 | 0.074 |
10:0 | 10.90 a | 9.93 ab | 9.65 b | 9.43 b | 0.38 | 0.003 |
cis-9 10:1 | 0.305 | 0.291 | 0.288 | 0.284 | 0.016 | 0.576 |
12:0 | 6.95 a | 6.04 b | 5.09 c | 5.05 c | 0.31 | <0.001 |
cis-9 12:1 | 0.122 a | 0.111 a | 0.083 b | 0.081 b | 0.008 | <0.001 |
trans-9 12:1 | 0.056 a | 0.052 a | 0.042 b | 0.041 b | 0.003 | <0.001 |
14:0 | 13.21 a | 11.69 b | 10.74 c | 10.61 c | 0.34 | <0.001 |
cis-7 14:1 | 0.022 a | 0.019 b | 0.017 bc | 0.015 c | 0.001 | <0.001 |
cis-9 14:1 | 0.195 a | 0.177 ab | 0.152 b | 0.151 b | 0.011 | <0.001 |
cis-12 14:1 | 0.110 a | 0.102 a | 0.078 b | 0.073 b | 0.007 | <0.001 |
16:0 | 28.94 b | 32.84 a | 24.98 c | 24.25 c | 0.75 | <0.001 |
trans-5 16:1 | 0.028 | 0.028 | 0.028 | 0.023 | 0.002 | 0.027 2 |
trans-6 + 7 + 8 16:1 | 0.106 | 0.093 | 0.130 | 0.126 | 0.019 | 0.152 |
trans-9 16:1 | 0.054 b | 0.060 b | 0.086 b | 0.146 a | 0.013 | <0.001 |
cis-9 16:1 | 0.758 b | 0.849 a | 0.666 c | 0.649 c | 0.032 | <0.001 |
cis-11 16:1 | 0.016 a | 0.015 a | 0.012 b | 0.012 b | 0.001 | <0.001 |
cis-13 16:1 | 0.013 a | 0.012 a | 0.009 b | 0.010 b | 0.001 | <0.001 |
∑ saturated C4-C14 fatty acids | 40.14 a | 36.81 b | 35.07 b | 34.81 b | 0.99 | <0.001 |
Diet | SED 1 | p-value | ||||
---|---|---|---|---|---|---|
Control | PA | OO | SBO | |||
18:0 | 6.10 b | 5.57 b | 9.51 a | 8.41 a | 0.43 | <0.001 |
10-oxo-18:0 | 0.012 bc | 0.006 c | 0.024 a | 0.018 ab | 0.003 | <0.001 |
13-oxo-18:0 | 0.007 a | 0.003 b | 0.004 ab | 0.005 ab | 0.001 | 0.017 |
cis-9 18:1 2 | 10.43 c | 10.62 c | 15.56 a | 13.66 b | 0.65 | <0.001 |
cis-11 18:1 | 0.329 | 0.349 | 0.388 | 0.356 | 0.023 | 0.106 |
cis-12 18:1 | 0.234 b | 0.221 b | 0.254 b | 0.670 a | 0.033 | <0.001 |
cis-13 18:1 | 0.052 c | 0.047 c | 0.066 b | 0.085 a | 0.004 | <0.001 |
cis-15 18:1 | 0.085 bc | 0.080 c | 0.101 b | 0.153 a | 0.006 | <0.001 |
cis-16 18:1 | 0.038 bc | 0.034 c | 0.046 b | 0.071 a | 0.003 | <0.001 |
trans-4 18:1 | 0.015 c | 0.013 c | 0.061 a | 0.033 b | 0.004 | <0.001 |
trans-5 18:1 | 0.011 c | 0.009 c | 0.046 a | 0.027 b | 0.003 | <0.001 |
trans-6 + 7 + 8 18:1 | 0.158 c | 0.154 c | 0.574 a | 0.403 b | 0.028 | <0.001 |
trans-9 18:1 | 0.142 b | 0.122 b | 0.391 a | 0.337 a | 0.023 | <0.001 |
trans-10 18:1 | 0.232 b | 0.212 b | 0.490 a | 0.548 a | 0.027 | <0.001 |
trans-11 18:1 | 0.597 c | 0.639 bc | 1.119 b | 1.888 a | 0.177 | <0.001 |
trans-12 18:1 | 0.258 c | 0.241 c | 0.541 b | 0.647 a | 0.029 | <0.001 |
trans-15 18:1 | 0.188 c | 0.175 c | 0.292 b | 0.396 a | 0.021 | <0.001 |
trans-16 + cis-14 18:1 | 0.292 c | 0.259 c | 0.385 b | 0.525 a | 0.020 | <0.001 |
cis-9 cis-12 18:2 | 2.33 b | 2.26 b | 1.81 c | 2.71 a | 0.09 | <0.001 |
cis-9 trans-12 18:2 | 0.033 c | 0.030 c | 0.044 b | 0.064 a | 0.004 | <0.001 |
cis-9 trans-13 18:2 3 | 0.198 c | 0.185 c | 0.257 b | 0.372 a | 0.017 | <0.001 |
cis-9 trans-14 18:2 | 0.100 c | 0.096 c | 0.128 b | 0.175 a | 0.007 | <0.001 |
trans-9 cis-12 18:2 | 0.025 bc | 0.024 c | 0.031 b | 0.047 a | 0.002 | <0.001 |
trans-11 cis-15 + trans-10 cis-15 18:2 | 0.063 b | 0.057 b | 0.060 b | 0.116 a | 0.009 | <0.001 |
trans-12 cis-15 18:2 | 0.014 b | 0.013 b | 0.015 b | 0.023 a | 0.002 | <0.001 |
trans-10 trans-14 18:2 | 0.012 b | 0.010 b | 0.018 a | 0.018 a | 0.001 | <0.001 |
trans-11 trans-15 18:2 | 0.012 b | 0.011 b | 0.016 b | 0.028 a | 0.002 | <0.001 |
cis-9 trans-11 CLA 4 | 0.325 c | 0.334 c | 0.554 b | 0.880 a | 0.077 | <0.001 |
trans-9 cis-11 CLA | 0.013 b | 0.012 b | 0.017 ab | 0.021 a | 0.002 | 0.001 |
trans-10 cis-12 CLA | 0.003 b | 0.003 b | 0.003 b | 0.006 a | 0.001 | 0.002 |
trans-11 cis-13 CLA 5 | 0.011 | 0.010 | 0.010 | 0.013 | 0.002 | 0.433 |
trans-11 trans-13 CLA | 0.053 ab | 0.058 a | 0.034 c | 0.043 bc | 0.005 | <0.001 |
∑ other trans, trans CLA 6 | 0.011 b | 0.010 b | 0.017 a | 0.017 a | 0.002 | <0.001 |
cis-9 cis-12 cis-15 18:3 | 0.667 a | 0.643 a | 0.482 b | 0.635 a | 0.029 | <0.001 |
cis-9 trans-11 trans-15 18:3 | 0.006 b | 0.006 b | 0.006 b | 0.012 a | 0.001 | <0.001 |
cis-9 trans-12 cis-15 18:3 | 0.012 b | 0.013 ab | 0.016 a | 0.014 ab | 0.001 | 0.035 |
trans-9 cis-12 cis-15 18:3 7 | 0.007 b | 0.006 b | 0.011 a | 0.013 a | 0.001 | <0.001 |
trans-9 trans-12 trans-15 18:3 | 0.002 | 0.002 | 0.005 | 0.002 | 0.002 | 0.258 |
saturated C4-C14 fatty acids/cis-9 18:1 | 3.88 a | 3.58 a | 2.31 b | 2.62 b | 0.23 | <0.001 |
Diet | SED 1 | p-Value | ||||
---|---|---|---|---|---|---|
Control | PA | OO | SBO | |||
20:0 2 | 0.274 | 0.268 | 0.271 | 0.281 | 0.011 | 0.694 |
cis-8 + 9 20:1 | 0.011 | 0.010 | 0.010 | 0.011 | 0.001 | 0.069 |
cis-11 20:1 | 0.037 b | 0.036 b | 0.050 a | 0.046 a | 0.002 | <0.001 |
trans-11 20:1 | 0.003 b | 0.003 b | 0.008 a | 0.006 a | 0.001 | <0.001 |
20:2n-6 | 0.017 ab | 0.018 a | 0.015 b | 0.017 ab | 0.001 | 0.009 |
20:3n-6 | 0.024 | 0.025 | 0.022 | 0.026 | 0.002 | 0.233 |
20:3n-3 | 0.008 | 0.007 | 0.008 | 0.006 | 0.001 | 0.449 |
20:4n-6 | 0.152 a | 0.149 a | 0.120 b | 0.146 ab | 0.010 | 0.009 |
20:4n-3 | 0.001 b | 0.001 b | 0.001 b | 0.003 a | 0.000 | <0.001 |
20:5n-3 | 0.049 ab | 0.058 a | 0.042 b | 0.044 b | 0.004 | <0.001 |
22:0 | 0.090 ab | 0.078 bc | 0.075 c | 0.096 a | 0.005 | <0.001 |
cis-13 22:1 | 0.003 b | 0.004 b | 0.004 b | 0.009 a | 0.001 | <0.001 |
22:4n-6 | 0.021 | 0.021 | 0.017 | 0.022 | 0.002 | 0.058 |
22:5n-6 | 0.010 ab | 0.014 a | 0.008 b | 0.012 a | 0.001 | 0.001 |
22:5n-3 | 0.088 | 0.098 | 0.083 | 0.088 | 0.008 | 0.312 |
22:6n-3 | 0.024 | 0.025 | 0.025 | 0.028 | 0.003 | 0.593 |
24:0 | 0.037 a | 0.031 b | 0.029 b | 0.032 ab | 0.002 | 0.004 |
cis-15 24:1 | 0.010 | 0.009 | 0.008 | 0.007 | 0.001 | 0.192 |
∑C20–22 n-6 polyunsaturated fatty acids | 0.225 ab | 0.229 a | 0.189 b | 0.219 ab | 0.014 | 0.034 |
∑C20–22 n-3 polyunsaturated fatty acids | 0.082 | 0.090 | 0.075 | 0.081 | 0.006 | 0.098 |
Diet | SED 1 | p-Value | ||||
---|---|---|---|---|---|---|
Control | PA | OO | SBO | |||
5:0 | 0.020 | 0.021 | 0.019 | 0.019 | 0.001 | 0.527 |
7:0 | 0.045 | 0.044 | 0.040 | 0.045 | 0.003 | 0.341 |
9:0 | 0.077 | 0.073 | 0.065 | 0.066 | 0.006 | 0.084 |
11:0 | 0.124 a | 0.107 ab | 0.085 b | 0.087 b | 0.010 | 0.001 |
anteiso 13:0 | 0.010 ab | 0.010 a | 0.008 b | 0.008 ab | 0.001 | 0.019 |
iso 13:0 | 0.024 a | 0.019 ab | 0.016 b | 0.015 b | 0.003 | 0.012 |
iso 14:0 | 0.099 | 0.093 | 0.081 | 0.078 | 0.008 | 0.0312 |
15:0 | 0.938 a | 0.858 a | 0.711 b | 0.742 b | 0.033 | <0.001 |
anteiso 15:0 | 0.392 a | 0.375 ab | 0.318 c | 0.329 bc | 0.021 | 0.003 |
iso 15:0 3 | 0.219 a | 0.199 ab | 0.183 b | 0.175 b | 0.013 | 0.005 |
cis-9 15:1 | 0.011 | 0.010 | 0.009 | 0.010 | 0.001 | 0.303 |
trans-6 + 7 15:1 | 0.020 | 0.021 | 0.017 | 0.020 | 0.002 | 0.080 |
iso 16:0 | 0.221 a | 0.203 ab | 0.173 b | 0.200 ab | 0.015 | 0.023 |
4,8,12-trimethyl-13:0 | 0.056 b | 0.057 b | 0.056 b | 0.066 a | 0.003 | 0.002 |
17:0 | 0.516 | 0.511 | 0.456 | 0.466 | 0.022 | 0.016 2 |
anteiso 17:0 | 0.420 a | 0.406 a | 0.353 b | 0.391 ab | 0.017 | 0.003 |
iso 17:0 4 | 0.591 | 0.564 | 0.553 | 0.567 | 0.023 | 0.418 |
cis-9 17:1 | 0.173 | 0.176 | 0.147 | 0.148 | 0.012 | 0.030 2 |
iso 18:0 | 0.048 | 0.049 | 0.037 | 0.042 | 0.006 | 0.149 |
19:0 5 | 0.088 a | 0.080 ab | 0.075 b | 0.085 ab | 0.004 | 0.016 |
21:0 6 | 0.071 a | 0.064 ab | 0.057 b | 0.060 b | 0.004 | 0.003 |
23:0 | 0.064 a | 0.052 b | 0.045 b | 0.047 b | 0.004 | <0.001 |
∑odd-chain fatty acids | 2.15 a | 2.02 a | 1.72 b | 1.80 b | 0.06 | <0.001 |
∑branched-chain fatty acids | 2.10 a | 2.00 ab | 1.78 c | 1.89 bc | 0.06 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hervás, G.; Toral, P.G.; Fernández-Díez, C.; Badia, A.D.; Frutos, P. Effect of Dietary Supplementation with Lipids of Different Unsaturation Degree on Feed Efficiency and Milk Fatty Acid Profile in Dairy Sheep. Animals 2021, 11, 2476. https://doi.org/10.3390/ani11082476
Hervás G, Toral PG, Fernández-Díez C, Badia AD, Frutos P. Effect of Dietary Supplementation with Lipids of Different Unsaturation Degree on Feed Efficiency and Milk Fatty Acid Profile in Dairy Sheep. Animals. 2021; 11(8):2476. https://doi.org/10.3390/ani11082476
Chicago/Turabian StyleHervás, Gonzalo, Pablo G. Toral, Cristina Fernández-Díez, Antonella Della Badia, and Pilar Frutos. 2021. "Effect of Dietary Supplementation with Lipids of Different Unsaturation Degree on Feed Efficiency and Milk Fatty Acid Profile in Dairy Sheep" Animals 11, no. 8: 2476. https://doi.org/10.3390/ani11082476
APA StyleHervás, G., Toral, P. G., Fernández-Díez, C., Badia, A. D., & Frutos, P. (2021). Effect of Dietary Supplementation with Lipids of Different Unsaturation Degree on Feed Efficiency and Milk Fatty Acid Profile in Dairy Sheep. Animals, 11(8), 2476. https://doi.org/10.3390/ani11082476