A High Incidence of Sperm with Cytoplasmic Droplets Affects the Response to Bicarbonate in Preserved Boar Semen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Semen Samples
2.3. Assessment of Sperm Morphology
2.4. Computer-Assisted Semen Analysis
2.5. Assessment of Plasma Membrane and Acrosome Integrity
2.6. Assessment of Responsiveness to Bicarbonate
2.7. Statistical Analysis
3. Results
3.1. Semen Parameters after 24 h Storage
3.2. Correlation between Responsiveness and Standard Semen Parameters
3.3. Responsiveness to Bicarbonate in Relation to the Occurrence of CD
3.4. Responsiveness to Bicarbonate in Relation to Storage Duration
3.5. Change in Cytoplasmic Droplet-Bearing Spermatozoa during Storage or Incubation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waberski, D.; Magnus, F.; Ardón, F.; Petrunkina, A.M.; Weitze, K.F.; Töpfer-Petersen, E. Binding of boar spermatozoa to oviductal epithelium in vitro in relation to sperm morphology and storage time. Reproduction 2006, 131, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovercamp, K.W.; Safranski, T.J.; Fischer, K.A.; Manandhar, G.; Sutovsky, M.; Herring, W.; Sutovsky, P. Arachidonate 15-lipoxygenase and ubiquitin as fertility markers in boars. Theriogenology 2007, 67, 704–718. [Google Scholar] [CrossRef] [PubMed]
- Gómez, L.G.; Mesa, H.; Sánches-Osorio, J.; Henao, F.J. Dynamics of Sus scrofa semen quality in the western-central region of Colombia. Boletín Científico Centro de Museos Museo de Historia Natural 2015, 19, 139–153. [Google Scholar]
- Waberski, D.; Meding, S.; Dirksen, G.; Weitze, K.; Leiding, C.; Hahn, R. Fertility of long-term-stored boar semen: Influence of extender (Androhep and Kiev), storage time and plasma droplets in the semen. Anim. Reprod. Sci. 1994, 36, 145–151. [Google Scholar] [CrossRef]
- Waberski, D.; Riesenbeck, A.; Schulze, M.; Weitze, K.F.; Johnson, L. Application of preserved boar semen for artificial insemination: Past, present and future challenges. Theriogenology 2019, 137, 2–7. [Google Scholar] [CrossRef]
- Gadea, J.; Sellés, E.; Marco, M.A. The predictive value of porcine seminal parameters on fertility outcome under commercial conditions. Reprod. Domest. Anim. 2004, 39, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Ruediger, K.; Mueller, K.; Jung, M.; Well, C.; Reissmann, M. Development of an in vitro index to characterize fertilizing capacity of boar ejaculates. Anim. Reprod. Sci. 2013, 140, 70–76. [Google Scholar] [CrossRef]
- Kaplan, M.; Russell, L.D.; Peterson, R.N.; Martan, J. Boar sperm cytoplasmic droplets: Their ultrastructure, their numbers in the epididymis and at ejaculation and their removal during isolation of sperm plasma membranes. Tissue Cell 1984, 16, 455–468. [Google Scholar] [CrossRef]
- Bonet, S.; Casas, I.; Holt, W.V.; Yeste, M. Boar Reproduction; Fundamentals and New Biotechnological Trends; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Moreno, R.D.; Ramalho-Santos, J.; Chan, E.K.; Wessel, G.M.; Schatten, G. The Golgi apparatus segregates from the lysosomal/acrosomal vesicle during rhesus spermiogenesis: Structural alterations. Dev. Biol. 2000, 219, 334–349. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.; White, I. Glycolytic enzymes in the spermatozoa and cytoplasmic droplets of bull, boar and ram, and their leakage after shock. Reproduction 1972, 30, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Au, C.E.; Hermo, L.; Byrne, E.; Smirle, J.; Fazel, A.; Kearney, R.E.; Smith, C.E.; Vali, H.; Fernandez-Rodriguez, J.; Simon, P.H.; et al. Compartmentalization of membrane trafficking, glucose transport, glycolysis, actin, tubulin and the proteasome in the cytoplasmic droplet/Hermes body of epididymal sperm. Open Biol. 2015, 5, 150080. [Google Scholar] [CrossRef]
- Hermo, L.; Oliveira, R.L.; Smith, C.E.; Au, C.E.; Bergeron, J.J.M. Dark side of the epididymis: Tails of sperm maturation. Andrology 2019, 7, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Dott, H.; Dingle, J. Distribution of lysosomal enzymes in the spermatozoa and cytoplasmic droplets of bull and ram. Exp. Cell Res. 1968, 52, 523–540. [Google Scholar] [CrossRef]
- Garbers, D.L.; Wakabayashi, T.; Reed, P.W. Enzyme profile of the cytoplasmic droplet from bovine epididymal spermatozoa. Biol. Reprod. 1970, 3, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, A.C.; Colenbrander, B. Isolation and characterization of boar spermatozoa with and without a cytoplasmic droplet. Int. J. Biochem. 1990, 22, 519–524. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, S.Q.; Zheng, Z.H.; Yan, W. The cytoplasmic droplet may be indicative of sperm motility and normal spermiogenesis. Asian J. Androl. 2013, 15, 799–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flesch, F.M.; Brouwers, J.F.; Nievelstein, P.F.; Verkleij, A.J.; van Golde, L.M.; Colenbrander, B.; Gadella, B.M. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J. Cell Sci. 2001, 114, 3543–3555. [Google Scholar] [CrossRef]
- Aziz, N.; Saleh, R.A.; Sharma, R.K.; Lewis-Jones, I.; Esfandiari, N.; Thomas, A.J., Jr.; Agarwal, A. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil. Steril. 2004, 81, 349–354. [Google Scholar] [CrossRef]
- Brouwers, J.F.; Silva, P.F.; Gadella, B.M. New assays for detection and localization of endogenous lipid peroxidation products in living boar sperm after BTS dilution or after freeze–thawing. Theriogenology 2005, 63, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef]
- Awda, B.J.; Mackenzie-Bell, M.; Buhr, M.M. Reactive oxygen species and boar sperm function. Biol. Reprod. 2009, 81, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riesenbeck, A.; Schulze, M.; Rüdiger, K.; Henning, H.; Waberski, D. Quality Control of Boar Sperm Processing: Implications from European AI Centres and Two Spermatology Reference Laboratories. Reprod. Domest. Anim. 2015, 50 (Suppl. 2), 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, D. Untersuchungen am Bullensperma unter Berücksichtigung der fertilitätsdiagnostischen Bedeutung der Befunde. Ph.D. Thesis, Habilitationsschrift. University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany, 1966. [Google Scholar]
- Henning, H.; Petrunkina, A.M.; Harrison, R.A.; Waberski, D. Bivalent response to long-term storage in liquid-preserved boar semen: A flow cytometric analysis. Cytom. Part A 2012, 81, 576–587. [Google Scholar] [CrossRef]
- Henning, H.; Ngo, T.; Waberski, D. Centrifugation stress reduces the responsiveness of spermatozoa to a capacitation stimulus in in vitro-aged semen. Andrology 2015, 3, 834–842. [Google Scholar] [CrossRef]
- Petrunkina, A.; Waberski, D.; Bollwein, H.; Sieme, H. Identifying non-sperm particles during flow cytometric physiological assessment: A simple approach. Theriogenology 2010, 73, 995–1000. [Google Scholar] [CrossRef]
- Petrunkina, A.M.; Volker, G.; Brandt, H.; Töpfer-Petersen, E.; Waberski, D. Functional significance of responsiveness to capacitating conditions in boar spermatozoa. Theriogenology 2005, 64, 1766–1782. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, M.G.; Visconti, P.E. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017, 5, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Henning, H.; Oldenhof, H.; Wolkers, W.; Petrunkina, A.; Waberski, D. The specific response to capacitating stimuli is a sensitive indicator of chilling injury in hypothermically stored boar spermatozoa. Andrology 2013, 1, 376–386. [Google Scholar] [CrossRef]
- Ecroyd, H.; Asquith, K.L.; Jones, R.C.; Aitken, R.J. The development of signal transduction pathways during epididymal maturation is calcium dependent. Dev. Biol. 2004, 268, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Naaby-Hansen, S.; Wolkowicz, M.J.; Klotz, K.; Bush, L.A.; Westbrook, V.A.; Shibahara, H.; Shetty, J.; Coonrod, S.A.; Reddi, P.P.; Shannon, J.; et al. Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa. Mol. Hum. Reprod. 2001, 7, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Berridge, M.J. The endoplasmic reticulum: A multifunctional signaling organelle. Cell Calcium 2002, 32, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, F.; Schäuble, N.; Lang, S.; Jung, M.; Honigmann, A.; Ahmad, M.; Dudek, J.; Benedix, J.; Harsman, A.; Kopp, A.; et al. Interaction of calmodulin with Sec61α limits Ca2+ leakage from the endoplasmic reticulum. Embo J. 2011, 30, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.X.; Yang, Z.M. Evaluation on sperm quality of freshly ejaculated boar semen during in vitro storage under different temperatures. Theriogenology 2000, 53, 1477–1488. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Hernández-Caravaca, I.; Matás, C.; Soriano-Úbeda, C.; Abril-Sánchez, S.; Izquierdo-Rico, M.J. Morphological study of boar sperm during their passage through the female genital tract. J. Reprod. Dev. 2015, 61, 407–413. [Google Scholar] [CrossRef]
- Diaz Franco, O.; Mesa, H.; Valencia Mejia, J.G.; Gomez Londono, G.; Henao Uribe, F.J. Acrosomal integrity and biochemical functionality assessment of the sperm membrane in boars with persistent cytoplasmic droplets. Rev. Cient. Fac. Cienc. Vet. Univ. Zulia 2009, 19, 500–505. [Google Scholar]
Parameter | Mean | sd | Minimum | Maximum |
---|---|---|---|---|
Total motility (%) | 89.9 | 5.5 | 70.9 | 98.4 |
Progressive motility (%) | 85.3 | 9.2 | 42.4 | 96.2 |
VAP (µm/s) | 66.5 | 11.7 | 25.0 | 94.2 |
VCL (µm/s) | 117.9 | 23.8 | 43.8 | 166.4 |
VSL (µm/s) | 51.3 | 9.2 | 19.7 | 80.9 |
ALH (µm) | 3.11 | 0.70 | 1.04 | 5.02 |
BCF (Hz) | 33.5 | 4.8 | 17.6 | 42.2 |
PI and PNA-FITC negative sperm (%) | 74.8 | 10.4 | 39.8 | 91.9 |
Morphological abnormal sperm (%) | 18.0 | 12.4 | 1.5 | 54.0 |
Cytoplasmic droplets (%) | 8.1 | 9.1 | 0.5 | 37.0 |
Proximal cytoplasmic droplets (%) | 5.7 | 7.6 | 0.0 | 33.5 |
Distal cytoplasmic droplets (%) | 3.3 | 3.3 | 0.0 | 19.0 |
Response in TyrBicCa | 53.7 | 13.7 | 16.5 | 74.4 |
Response in TyrCa | 9.0 | 5.2 | 0.0 | 23.0 |
Response in TyrControl | 4.6 | 3.9 | 0.0 | 17.7 |
Specific response to bicarbonate | 44.7 | 15.1 | 3.4 | 69.3 |
Specific response to calcium | 4.4 | 4.1 | −4.1 | 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henning, H.; Luther, A.-M.; Waberski, D. A High Incidence of Sperm with Cytoplasmic Droplets Affects the Response to Bicarbonate in Preserved Boar Semen. Animals 2021, 11, 2570. https://doi.org/10.3390/ani11092570
Henning H, Luther A-M, Waberski D. A High Incidence of Sperm with Cytoplasmic Droplets Affects the Response to Bicarbonate in Preserved Boar Semen. Animals. 2021; 11(9):2570. https://doi.org/10.3390/ani11092570
Chicago/Turabian StyleHenning, Heiko, Anne-Marie Luther, and Dagmar Waberski. 2021. "A High Incidence of Sperm with Cytoplasmic Droplets Affects the Response to Bicarbonate in Preserved Boar Semen" Animals 11, no. 9: 2570. https://doi.org/10.3390/ani11092570
APA StyleHenning, H., Luther, A.-M., & Waberski, D. (2021). A High Incidence of Sperm with Cytoplasmic Droplets Affects the Response to Bicarbonate in Preserved Boar Semen. Animals, 11(9), 2570. https://doi.org/10.3390/ani11092570