Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN (United Nations). World Population Prospects 2019: Highlights. United Nations Department of Economic and Social Affairs. 2019. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 4 May 2021).
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals; Food & Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- World Bank (WB). Fish to 2030: Prospects for Fisheries And Aquaculture (Agriculture and Environmental Services Discussion Paper; no. 3). 2013. Available online: http://documents.worldbank.org/curated/en/458631468152376668/Fish-to-2030-prospects-for-fisheries-and-aquaculture (accessed on 4 May 2021).
- Doan, H.V.; Chompunut, L.; Seyed, H.H.; Tran, Q.H.; Vlastimil, S.; Einar, R.; Mahmoud, A.O.D.; Maria, Á.E. Administration of watermelon rind powder to Nile tilapia (Oreochromis niloticus) culture under biofloc system: Effect on growth performance, innate immune response, and disease resistance. Aquaculture 2020, 528, 735574. [Google Scholar] [CrossRef]
- Kucharczyk, D.; Daria, J.; Joanna, N.; Nazira, O. Optimization of artificial insemination outcomes of African catfish (Clarias gariepinus) with differing hatchery conditions. Anim. Reprod. Sci. 2019, 211, 106222. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, H.M.; Shukry, M.; Saad, M.F.; Mohamed, N.A.; Nowosad, J.; Kucharczyk, D. Effects of GnRHa and hCG with or without dopamine receptor antagonists on the spawning efficiency of African catfish (Clarias gariepinus) reared in hatchery conditions. Anim. Reprod. Sci. 2021, 231, 106798. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Waagbø, R.; Biancarosa, I.; Pelusio, N.; Li, Y.; Krogdahl, Å.; Lock, E. Potential of insect-based diets for Atlantic Salmon (Salmo salar). Aquaculture 2018, 491, 72–81. [Google Scholar] [CrossRef]
- Stejskal, V.; Tran, H.Q.; Prokesova, M.; Gebauer, T.; Giang, P.T.; Gai, F.; Gasco, L. Partially Defatted Hermetia illucens Larva Meal in Diet of Eurasian Perch (Perca fluviatilis) Juveniles. Animals 2020, 10, 1876. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and nutRition for All; FAO: Rome, Italy, 2016; p. 200. Available online: http://www.fao.org/3/a-i5555e.pdf. (accessed on 4 May 2021).
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the suitability of a partially defatted Black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef]
- van Huis, A.; van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO Forestry Paper 171; FAO: Rome, Italy, 2013; Available online: www.fao.org/docrep/018/i3253e/i3253e.pdf (accessed on 6 June 2021).
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed. Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- van Huis, A. Insects as food in sub-Saharan Africa. Insect Sci. Appl. 2003, 23, 163–185. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddick, E.W. Insect protein as a partial replacement for fishmeal in the diets of juvenile fish and crustaceans: Invertebrates and entomopathogens. In Mass Production of Beneficial Organisms; Morales Ramos, J.A., Rojas, M.G., Shapiro-Ilan, D.I., Eds.; Elsevier Science: Burlington, MA, USA, 2013; pp. 565–582. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Tomberlin, J.K.; Joyce, J.A.; Kiser, B.C.; Sumner, S.M. Rearing methods for the Black soldier fly (Diptera: Stratiomyidae): Table 1. J. Med. Entomol. 2002, 39, 695–698. [Google Scholar] [CrossRef] [Green Version]
- Tomberlin, J.K.; Sheppard, D.C.; Joyce, J. Selected life-history traits of Black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Ann. Entomol. Soc. Am. 2002, 95, 379–386. [Google Scholar] [CrossRef]
- Newton, L.; Sheppard, C.; Watson, D.W.; Burtle, G.; Dove, R. Using the Black Soldier Fly, Hermetia illucens, as a Value-Added Tool for the Management of Swine Manure; Report for Mike Williams; Director of the Animal and Poultry Waste Management Center, North Carolina State University: Raleigh, NC, USA, 2005; Available online: https://p2infohouse.org/ref/37/36122.pdf (accessed on 24 April 2021).
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly Prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 3, 59–67. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, oncorhynchus mykiss, fed enriched Black soldier fly Prepupae, Hermetia illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington DC, USA, 2011. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 14th ed.; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods of Dietary Fiber, Neutral Detergent Fiber and Non-Starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- De-pach, Y.M. Effect of Feed Enzymes and Energy Level on Broiler Chicken (Gallus domesticus) Performance in Kenya. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2012. [Google Scholar]
- Begum, A.; Mondal, S.; Ferdous, Z.; Zafar, M.A.; Ali, M.M. Impact of water quality parameters on monosex tilapia (Oreochromis niloticus) production under pond condition. Int. J. Anim. Fish. Sci. 2014, 2, 14–21. Available online: https://gscience.gurpukur.com/journal/page-14-21-impact-of-water-quality-parameters-on-monosex-tilapia-oreochromis-niloticus-production-under-pond-condition/ (accessed on 6 June 2021).
- Dewalle, D.R.; Swistock, B.R.; Sharpe, W.E. Episodic flow—Duration analysis: Assessing toxic exposure of brook trout (Salvenius fontinalis) to episodic increases in aluminium. Can. J. Fish. Aquat. Sci. 1995, 52, 816–827. [Google Scholar] [CrossRef]
- Makori, A.J.; Abuom, P.O.; Kapiyo, R.; Anyona, D.N.; Dida, G.O. Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso north Sub-County, Busia County. Fish. Aquat. Sci. 2017, 20, 30. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.K.M. Development of Black Soldier Fly Larvae Rearing Technique to Supplement Fish Feed. Master’s Thesis, Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2014. [Google Scholar]
- Lim, C.; Yildirim-Aksoy, M.; Klesius, P. Lipid and Fatty Acid Requirements of Tilapias. N. Am. J. Aquac. 2011, 73, 188–193. [Google Scholar] [CrossRef]
- Maina, J.G.; Beames, R.M.; Higgs, D.; Mbugua, P.N.; Iwama, G.; Kisia, S.M. Digestibility and feeding value of some feed ingredients fed to tilapia Oreochromis niloticus (L.). Aquac. Res. 2002, 33, 853–862. [Google Scholar] [CrossRef]
- Li, M.H.; Oberle, D.F.; Lucas, P.M. Effects of dietary fiber concentrations supplied by corn bran on feed intake, growth, and feed efficiency of channel catfish. N. Am. J. Aquac. 2012, 74, 148–153. [Google Scholar] [CrossRef]
- Khan, A.M. Histidine requirement of cultivable fish species: A review. Oceanogr. Fish. Open Access J. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Phonekhampheng, O. On-Farm Feed Resources for Catfish (Clarias gariepinus) Production in Laos: Evaluation of Some Local Feed Resources. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2008; 65p. [Google Scholar]
- Bondari, K.; Sheppard, D.C. Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquac. Res. 1987, 18, 209–220. [Google Scholar] [CrossRef]
- Goddard, S. Feed Management in Intensive Aquaculture; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Ngugi, C.C.; Bowman, J.R.; Omolo, B.O. A New Guide to Fish Farming in Kenya. College of Agricultural Science, Oregon State University: Corvallis, OR, USA, 2007. [Google Scholar]
- Khan, S.; Naz, S.; Sultan, A.; Alhidary, I.; Abdelrahman, M.; Khan, R.; Khan, N.; Khan, M.; Ahmad, S. Worm meal: A potential source of alternative protein in poultry feed. World’s Poult. Sci. J. 2016, 72, 93–102. [Google Scholar] [CrossRef]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with Black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State of the World Fisheries and Aquaculture 2012; FAO: Rome, Italy, 2012; Available online: ftp://ftp.fao.org/FI/brochure/SOFIA/2012/english_flyer.pdf (accessed on 6 June 2021).
Ingredient | Control | BM33 | BM67 | BM100 |
---|---|---|---|---|
Maize germ meal | 25.0 | 25.0 | 25.0 | 25.0 |
Wheat pollard meal | 42.8 | 35.4 | 28.1 | 17.9 |
FM | 32.2 | 22.8 | 13.3 | 0.0 |
BM | 0.0 | 16.8 | 33.6 | 57.1 |
Calculated quantity | 100.0 | 100.0 | 100.0 | 100.0 |
Estimated nutrient composition | ||||
Protein content (% DM) | 30.3 | 30.0 | 29.7 | 29.5 |
Energy (KCal/kg DM) | 3031.4 | 3099.6 | 3168.0 | 3263.6 |
Crude fat (% DM) | 3.5 | 8.9 | 14.3 | 21.6 |
Crude fibre (% DM) | 2.4 | 3.7 | 4.9 | 6.6 |
Parameter | Mean Value | Optimal Range |
---|---|---|
pH | 8.9 ± 0.20 | 6–9 |
Conductivity | 108.0 ± 7.07 | 100–2000 |
Temperatures (°C) | 26.8 ± 1.66 | 25–27 |
Total dissolved solids | 53.8 ± 3.67 | ≥3 |
Salinity | 0.1 ± 0.001 | - |
Phosphate (mg/L) | 0.4 ± 0.01 | - |
Ammonia (mg/L) | 0.1 ± 0.00 | 0.02–0.5 |
Nitrates (mg/L) | 0.4 ± 0.00 | 0.2–2.19 |
Parameter | Control | BM33 | BM67 | BM100 | F-Value | p-Value |
---|---|---|---|---|---|---|
Dry matter | 96.0 ± 0.33 a | 98.0 ± 0.28 a | 97.0 ± 0.32 a | 98.0 ± 0.45 a | 12.54 | 0.59 |
Ash | 8.0 ± 0.24 a | 6.5 ± 0.31 a | 6.0 ± 0.11 a | 5.0 ± 0.26 a | 8.38 | 0.09 |
Crude protein | 29.4 ± 0.12 a | 28.2 ± 0.16 a | 29.0 ± 0.22 a | 28.6 ± 0.34 a | 4.56 | 0.34 |
NDF | 24.0 ± 0.33 a | 28.0 ± 0.21 a | 27.0 ± 0.16 a | 27.0 ± 0.24 a | 6.94 | 0.19 |
ADF | 7.0 ± 0.06 a | 9.5 ± 0.32 a | 6.0 ± 0.17 a | 6.5 ± 0.11 a | 2.29 | 0.41 |
Ether extract | 5.2 ± 0.01 a | 10.20 ± 0.19 b | 13.4 ± 0.09 b | 14.4 ± 0.43 b | 5.11 | 0.03 |
Parameter | Control | BM33 | BM67 | BM100 | F-Value | p-Value |
---|---|---|---|---|---|---|
Initial body weight (g) | 35.3 ± 0.05 a | 35.1 ± 0.01 a | 35.4 ± 0.01 a | 35.2 ± 0.06 a | 8.32 | 0.89 |
Final body weight (g) | 153.7 ± 7.17 a | 176.5 ± 12.74 b | 141.1 ± 17.56 a,c | 125.5 ± 9.29 c | 12.65 | 0.02 |
Daily weight gain (g) | 0.9 ± 0.02 a | 1.0 ± 0.08 b | 0.8 ± 0.01 a,c | 0.7 ± 0.05 c | 14.54 | 0.01 |
Daily Feed Intake (g/day) | 2.3 ± 0.03 a | 2.6 ± 0.02 b | 2.2 ± 0.08 c | 2.1 ± 0.04 c | 17.43 | 0.02 |
Feed Conversion Ratio | 2.7 a | 2.1 a | 2.6 a | 2.9 a | 6.87 | 0.14 |
Survival rate | 98.4 ± 0.04 a | 98.1 ± 0.06 a | 97.9 ± 0.02 a | 97.6 ± 0.05 a | 4.29 | 0.88 |
Treatment | Control | BM33 | BM67 | BM100 | F-Value | p-Value |
---|---|---|---|---|---|---|
Total feed cost USD/fish (C) | 0.201 ± 0.002 a | 0.223 ± 0.004 b | 0.187 ± 0.001 a | 0.172 ± 0.005 c | 27.41 | 0.0001 |
Live weight at harvesting (g) | 0.154 ± 0.007 a | 0.177 ± 0.006 b | 0.142 ± 0.008 c | 0.125 ± 0.007 d | 41.95 | 0.0001 |
Sale of fish (S) a | 0.615 ± 0.003 a | 0.706 ± 0.001 b | 0.568 ± 0.004 a | 0.502 ± 0.001 c | 42.08 | 0.0001 |
Gross profit margin (P) b | 0.414 ± 0.005 a | 0.483 ± 0.003 a | 0.381 ± 0.006 a,b | 0.329 ± 0.004 b | 14.95 | 0.0012 |
Cost Benefit Ratio (CBR) c | 2.076 ± 0.001 a | 2.172 ± 0.002 a | 2.043 ± 0.003 a | 1.917 ± 0.005 a | 0.79 | 0.5324 |
Return on Investment (RoI) d | 207.6 ± 0.003 a | 217.2 ± 0.006 a | 204.1 ± 0.004 a | 191.7 ± 0.003 a | 0.79 | 0.5323 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wachira, M.N.; Osuga, I.M.; Munguti, J.M.; Ambula, M.K.; Subramanian, S.; Tanga, C.M. Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.). Animals 2021, 11, 2599. https://doi.org/10.3390/ani11092599
Wachira MN, Osuga IM, Munguti JM, Ambula MK, Subramanian S, Tanga CM. Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.). Animals. 2021; 11(9):2599. https://doi.org/10.3390/ani11092599
Chicago/Turabian StyleWachira, Moses N., Isaac M. Osuga, Jonathan M. Munguti, Mary K. Ambula, Sevgan Subramanian, and Chrysantus M. Tanga. 2021. "Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.)" Animals 11, no. 9: 2599. https://doi.org/10.3390/ani11092599
APA StyleWachira, M. N., Osuga, I. M., Munguti, J. M., Ambula, M. K., Subramanian, S., & Tanga, C. M. (2021). Efficiency and Improved Profitability of Insect-Based Aquafeeds for Farming Nile Tilapia Fish (Oreochromis niloticus L.). Animals, 11(9), 2599. https://doi.org/10.3390/ani11092599