Exposure of Free-Ranging Wild Animals to Zoonotic Leptospira interrogans Sensu Stricto in Slovenia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Laboratory Methods
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mörner, T.; Obendorf, D.L.; Artois, M.; Woodford, M.H. Surveillance and monitoring of wildlife diseases. Rev. Sci. Tech. 2002, 21, 67–76. [Google Scholar] [CrossRef]
- Guberti, V.; Stancampiano, L.; Ferrari, N. Surveillance, monitoring and surveys of wildlife diseases: A public health and conservation approach. Hystrix. It J. Mamm 2014, 3–8. [Google Scholar]
- Cilia, G.; Bertelloni, F.; Albini, S.; Fratini, F. Insight into the Epidemiology of Leptospirosis: A Review of. Animals 2021, 11, 191. [Google Scholar] [CrossRef]
- Jeske, K.; Jacob, J.; Drewes, S.; Pfeffer, M.; Heckel, G.; Ulrich, R.G.; Imholt, C. Hantavirus-Leptospira coinfections in small mammals from central Germany. Epidemiol. Infect. 2021, 149, e97. [Google Scholar] [CrossRef]
- Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N.; Gilman, R.H.; Willig, M.R.; Gotuzzo, E.; et al. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 2003, 3, 757–771. [Google Scholar] [CrossRef]
- Bengis, R.G.; Leighton, F.A.; Fischer, J.R.; Artois, M.; Mörner, T.; Tate, C.M. The role of wildlife in emerging and re-emerging zoonoses. Rev. Sci. Tech. 2004, 23, 497–511. [Google Scholar] [PubMed]
- Picardeau, M. Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nat. Rev. Microbiol. 2017, 15, 297–307. [Google Scholar] [CrossRef]
- Adler, B.; Peña, D.L.; Moctezuma, A. Leptospira. In Pathogenesis of Bacterial Infections of Animals; Gyles, C., Prescott, J., Songer, G., Thoen, C., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2004; pp. 385–396. [Google Scholar]
- Vincent, A.T.; Schiettekatte, O.; Goarant, C.; Neela, V.K.; Bernet, E.; Thibeaux, R.; Ismail, N.; Mohd Khalid, M.K.N.; Amran, F.; Masuzawa, T.; et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl. Trop. Dis. 2019, 13, e0007270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmini, J.; Bourhy, P.; Schiettekatte, O.; Zinini, F.; Brisse, S.; Picardeau, M. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl. Trop. Dis. 2019, 13, e0007374. [Google Scholar] [CrossRef] [PubMed]
- Levett, P.N. Leptospirosis. Clin. Microbiol. Rev. 2001, 14, 296–326. [Google Scholar] [CrossRef] [Green Version]
- Cvetnic, Z.; Margaletic, J.; Toncic, J.; Turk, N.; Milas, Z.; Spicic, S.; Lojkic, M.; Terzic, S.; Jemersic, L.; Humski, A.; et al. A serological survey and isolation of leptospires from small rodents and wild boars in the Republic of Croatia. Vet. Med. Czech. 2003, 11, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, J.; Zhang, T.; Qiu, H.; Li, Z.; Zhang, E.; Li, S.; Chang, Y.F.; Guo, X.; Jiang, X.; et al. Genetic characteristics of pathogenic Leptospira in wild small animals and livestock in Jiangxi Province, China, 2002-2015. PLoS Negl. Trop. Dis. 2019, 13, e0007513. [Google Scholar] [CrossRef] [PubMed]
- Krijger, I.M.; Ahmed, A.A.A.; Goris, M.G.A.; Cornelissen, J.B.W.J.; Groot Koerkamp, P.W.G.; Meerburg, B.G. Wild rodents and insectivores as carriers of pathogenic Leptospira and Toxoplasma gondii in The Netherlands. Vet. Med. Sci 2020, 6, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Hartskeerl, R.A.; Terpstra, W.J. Leptospirosis in wild animals. Vet. Q. 1996, 18 (Suppl. 3), S149–S150. [Google Scholar] [CrossRef]
- Espí, A.; Prieto, J.M.; Alzaga, V. Leptospiral antibodies in Iberian red deer (Cervus elaphus hispanicus), fallow deer (Dama dama) and European wild boar (Sus scrofa) in Asturias, Northern Spain. Vet. J. 2010, 183, 226–227. [Google Scholar] [CrossRef] [Green Version]
- Andreoli, E.; Radaelli, E.; Bertoletti, I.; Bianchi, A.; Scanziani, E.; Tagliabue, S.; Mattiello, S. Leptospira spp. infection in wild ruminants: A survey in Central Italian Alps. Vet. Ital. 2014, 50, 285–291. [Google Scholar] [CrossRef]
- Ayral, F.; Djelouadji, Z.; Raton, V.; Zilber, A.L.; Gasqui, P.; Faure, E.; Baurier, F.; Vourc’h, G.; Kodjo, A.; Combes, B. Hedgehogs and Mustelid Species: Major Carriers of Pathogenic Leptospira, a Survey in 28 Animal Species in France (20122015). PLoS ONE 2016, 11, e0162549. [Google Scholar] [CrossRef]
- Millán, J.; Candela, M.G.; López-Bao, J.V.; Pereira, M.; Jiménez, M.A.; León-Vizcaíno, L. Leptospirosis in wild and domestic carnivores in natural areas in Andalusia, Spain. Vector Borne Zoonotic Dis. 2009, 9, 549–554. [Google Scholar] [CrossRef]
- Fornazari, F.; Langoni, H.; Marson, P.M.; Nóbrega, D.B.; Teixeira, C.R. Leptospira reservoirs among wildlife in Brazil: Beyond rodents. Acta Trop. 2018, 178, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Żmudzki, J.; Arent, Z.; Jabłoński, A.; Nowak, A.; Zębek, S.; Stolarek, A.; Bocian, Ł.; Brzana, A.; Pejsak, Z. Seroprevalence of 12 serovars of pathogenic Leptospira in red foxes (Vulpes vulpes) in Poland. Acta Vet. Scand. 2018, 60, 34. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.S.; Pinto, P.S.; Lilenbaum, W. A systematic review of leptospirosis on wild animals in Latin America. Trop. Anim. Health Prod. 2018, 50, 229–238. [Google Scholar] [CrossRef]
- Sharma, S.; Vijayachari, P.; Sugunan, A.P.; Sehgal, S.C. Leptospiral carrier state and seroprevalence among animal population—A cross-sectional sample survey in Andaman and Nicobar Islands. Epidemiol. Infect. 2003, 131, 985–989. [Google Scholar] [CrossRef]
- Mwachui, M.A.; Crump, L.; Hartskeerl, R.; Zinsstag, J.; Hattendorf, J. Environmental and Behavioural Determinants of Leptospirosis Transmission: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirone, S.M.; Riemann, H.P.; Ruppanner, R.; Behymer, D.E.; Franti, C.E. Evaluation of the hemagglutination test for epidemiologic studies of leptospiral antibodies in wild mammals. J. Wildl. Dis. 1978, 14, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierque, E.; Thibeaux, R.; Girault, D.; Soupé-Gilbert, M.E.; Goarant, C. A systematic review of Leptospira in water and soil environments. PLoS ONE 2020, 15, e0227055. [Google Scholar] [CrossRef] [PubMed]
- Haake, D.A.; Dundoo, M.; Cader, R.; Kubak, B.M.; Hartskeerl, R.A.; Sejvar, J.J.; Ashford, D.A. Leptospirosis, water sports, and chemoprophylaxis. Clin. Infect. Dis. 2002, 34, e40–e43. [Google Scholar] [CrossRef]
- Lau, C.L.; Smythe, L.D.; Craig, S.B.; Weinstein, P. Climate change, flooding, urbanisation and leptospirosis: Fuelling the fire? Trans. R Soc. Trop. Med. Hyg. 2010, 104, 631–638. [Google Scholar] [CrossRef]
- Deutz, A.; Fuchs, K.; Schuller, W.; Müller, M.; Kerbl, U.; Klement, C. Studies on the seroseroprevalence of antibodies against Leptospira interrogans in hunters and wild boar from south-eastern Austria. Z. Jagdwiss 2002, 48, 60–65. [Google Scholar]
- Mason, R.J.; Fleming, P.J.; Smythe, L.D.; Dohnt, M.F.; Norris, M.A.; Symonds, M.L. Leptospira interrogans antibodies in feral pigs from New South Wales. J. Wildl. Dis. 1998, 34, 738–743. [Google Scholar] [CrossRef] [Green Version]
- Ko, A.I.; Goarant, C.; Picardeau, M. Leptospira: The dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat. Rev. Microbiol. 2009, 7, 736–747. [Google Scholar] [CrossRef]
- Sunil-Chandra, N.P.; Clement, J.; Maes, P.; De Silva, H.J.; Van Esbroeck, M.; Van Ranst, M. Concomitant leptospirosis-hantavirus co-infection in acute patients hospitalized in Sri Lanka: Implications for a potentially worldwide underestimated problem. Epidemiol. Infect. 2015, 143, 2081–2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podgoršek, D. Phenotypic and Genotypic Identification of Leptospira spp. and Evaluation of Microbiological Methods for Diagnosis of Infection; Biotehnical Faculty: Ljubljana, Slovenija, 2017. [Google Scholar]
- Bedernjak, J. Leptospiroza pri nas in v Svetu (Leptospirosis in Our Country and in the World); Bedernjak, J., Ed.; Pomurska Založba: Murska Sobota, Slovenija, 1993; p. 136. [Google Scholar]
- Goris, M.G.; Hartskeerl, R.A. Leptospirosis serodiagnosis by the microscopic agglutination test. Curr. Protoc. Microbiol. 2014, 32, Unit 12E.15. [Google Scholar] [CrossRef] [PubMed]
- Niloofa, R.; Fernando, N.; de Silva, N.L.; Karunanayake, L.; Wickramasinghe, H.; Dikmadugoda, N.; Premawansa, G.; Wickramasinghe, R.; de Silva, H.J.; Premawansa, S.; et al. Diagnosis of Leptospirosis: Comparison between Microscopic Agglutination Test, IgM-ELISA and IgM Rapid Immunochromatography Test. PLoS ONE 2015, 10, e0129236. [Google Scholar] [CrossRef] [Green Version]
- Musso, D.; La Scola, B. Laboratory diagnosis of leptospirosis: A challenge. J. Microbiol. Immunol. Infect. 2013, 46, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.R. Quantitative polymerase chain reaction: Filling the gap for early leptospirosis diagnosis. Clin. Infect. Dis. 2012, 54, 1256–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullan, S.; Panwala, T.H. Polymerase Chain Reaction: An Important Tool for Early Diagnosis of Leptospirosis Cases. J. Clin. Diagn Res. 2016, 10, DC08–DC11. [Google Scholar] [CrossRef]
- Vengušt, G.; Lindtner-Knific, R.; Žele, D.; Bidovec, A. Leptospira antibodies in wild boars (Sus scrofa) in Slovenia. Eur. J. Wildl. Res. 2008, 54, 749–752. [Google Scholar] [CrossRef]
- Soberon, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Slavica, A.; Cvetnić, Ž.; Milas, Z.; Janicki, Z.; Turk, N.; Konjevi, D.; Severin, K.; Tončić, J.; Lipej, Z. Incidence of leptospiral antibodies in different game species over a 10-year period (1996–2005) in Croatia. Eur. J. Wildl. 2008, 54, 305–311. [Google Scholar] [CrossRef]
- Grimm, K.; Rivera, N.A.; Fredebaugh-Siller, S.; Weng, H.Y.; Warner, R.E.; Maddox, C.W.; Mateus-Pinilla, N.E. Evidence of Leptospira Serovars in Wildlife and Leptospiral DNA in Water Sources in a Natural Area in East Central Illinois, USA. J. Wildl. Dis. 2020, 56, 316–327. [Google Scholar] [CrossRef]
- Di Azevedo, M.I.N.; Pires, B.C.; Libonati, H.; Pinto, P.S.; Cardoso Barbosa, L.F.; Carvalho-Costa, F.A.; Lilenbaum, W. Extra-renal bovine leptospirosis: Molecular characterization of the Leptospira interrogans Sejroe serogroup on the uterus of non-pregnant cows. Vet. Microbiol. 2020, 250, 108869. [Google Scholar] [CrossRef]
- Magalhães, G.M.; Alvarenga, P.B.D.; Medeiros-Ronchi, A.A.; Moreira, T.d.A.; Gundim, L.F.; Gomes, D.O.; Lima, A.M.C. Leptospirosis in slaughtered cows in the Triangulo Mineiro, Minas Gerais: Prevalence, serological profile and renal lesions. Biosci. J. 2020, 36, 539–545. [Google Scholar] [CrossRef] [Green Version]
- Levett, P.N. Usefulness of serologic analysis as a predictor of the infecting serovar in patients with severe leptospirosis. Clin. Infect. Dis. 2003, 36, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, S.C.; Vijayachari, P.; Sharma, S.; Sugunan, A.P. LEPTO Dipstick: A rapid and simple method for serodiagnosis of acute leptospirosis. Trans. R. Soc. Trop. Med. Hyg. 1999, 93, 161–164. [Google Scholar] [CrossRef]
- Eckert, J.; Conraths, F.J.; Tackmann, K. Echinococcosis: An emerging or re-emerging zoonosis? Int. J. Parasitol. 2000, 30, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Slovenia-Forest-Service. Slovenia Forest Service Report on Forest for Year 2019. Available online: www.zgs.si/zavod/publikacije/letna_porocila/index.html (accessed on 7 June 2021).
- Slovenia-Forest-Service. Slovenia Forest Service Report on Forest for Year 2013. Available online: www.zgs.si/zavod/publikacije/letna_porocila/index.html (accessed on 7 June 2021).
- Akerstedt, J.; Lillehaug, A.; Larsen, I.L.; Eide, N.E.; Arnemo, J.M.; Handeland, K. Serosurvey for canine distemper virus, canine adenovirus, Leptospira interrogans, and Toxoplasma gondii in free-ranging canids in Scandinavia and Svalbard. J. Wildl. Dis. 2010, 46, 474–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, H.; Winkler, P. [Results of serological studies of Leptospira antibodies in foxes]. Berl. Munch Tierarztl. Wochenschr. 1994, 107, 90–93. [Google Scholar]
- Milas, Z.; Turk, N.; Janicki, Z.; Slavica, A.; Starešina, V.; Barbić, L.J.; Lojkić, M.; Modrić, Z. Leptospiral antibodies in red foxes (Vulpes vulpes) in northwest Croatia. Vet. Arhiv. 2006, 76, 51–57. [Google Scholar]
- Slavica, A.; Dezdek, D.; Konjevic, D.; Cvetnic, Z.; Sindicic, M.; Stanin, D.; Habus, J.; Turk, N. Prevalence of leptospiral antibodies in the red fox (Vulpes vulpes) population of Croatia. Vet. Med. (Praha) 2011, 56, 209–213. [Google Scholar]
- Dupouey, J.; Faucher, B.; Edouard, S.; Richet, H.; Kodjo, A.; Drancourt, M.; Davoust, B. Human leptospirosis: An emerging risk in Europe? Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Boey, K.; Shiokawa, K.; Rajeev, S. Leptospira infection in rats: A literature review of global prevalence and distribution. PLoS Negl. Trop. Dis. 2019, 13, e0007499. [Google Scholar] [CrossRef]
- Genovesi, P.; Secchi, M.; Boitani, L. Diet of stone martens: An example of ecological flexibility. J. Zool 1996, 238, 545–555. [Google Scholar] [CrossRef]
- Millán, J.; Velarde, R.; Chirife, A.D.; León-Vizcaíno, L. Carriage of pathogenic Leptospira in carnivores at the wild/domestic interface. Pol. J. Vet. Sci. 2019, 22, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Humer, A.; Heltai, M.; Murariu, D.; Spassov, N.; Hackländer, K. Current status and distribution of golden jackals Canis aureus in Europe. Mamm. Rev. 2011, 42, 1–11. [Google Scholar] [CrossRef]
- Krofel, M. Confirmed presence of territorial groups of golden jackals (Canis aureus) in Slovenia. Nat. Slov. 2009, 11, 65–68. [Google Scholar]
- Potočnik, H.; Pokorny, B.; Flajšman, K.; Kos, I. Evrazijski Šakal (Eurasian Jackal); Leskovic, B., Ed.; Lovska zveza Slovenije: Ljubljana, Slovenia, 2019; p. 248. [Google Scholar]
- Nakonechnyi, I.V.; Perots’ka, L.V.; Pyvovarova, I.V.; Chornyi, V.A. Ecological and epizootic roles of Golden jackal, genus Canis aureus in the Northwest of Black Sea coast. Sci. Messenger LNU Vet. Med. Biotechnol. 2019, 21, 37–43. [Google Scholar] [CrossRef]
- Simčič, G.; Fležar, U.B.; Bartol, M.; Černe, R.; Berce, T.; Krofel, M.; Potočnik, H.; Jelenčič, M.; Kuralt, Ž. Spremljanje varstvenega stanja volkov v Sloveniji v letih 2018 in 2019 (Monitoring of wolf population in Slovenija in seasons 2018 and 2019). Lovec 2020, 103, 328–331. [Google Scholar]
- Bregoli, M.; Pesaro, S.; Ustulin, M.; Vio, D.; Beraldo, P.; Galeotti, M.; Cocchi, M.; Lucchese, L.; Bertasio, C.; Boniotti, M.B.; et al. Environmental Exposure of Wild Carnivores to Zoonotic Pathogens. Int. J. Environ. Res. Public Health 2021, 18, 2512. [Google Scholar] [CrossRef]
- Zarnke, R.L.; Ballard, W.B. Serologic survey for selected microbial pathogens of wolves in Alaska, 1975-1982. J. Wildl. Dis. 1987, 23, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Goyal, S.M.; Diesch, S.L.; Mech, L.D.; Fritts, S.H. Seroepidemiology of leptospirosis in Minnesota wolves. J. Wildl. Dis 1991, 27, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Žerjav, S.; Černe, R.; Stergar, M.; Krofel, M.; Majić Skrbinšek, A.; Skrbinšek, T.; Berce, T.; Bartol, M.; Potočnik, H.; Kos, I.; et al. Project LIFE Lynx - Preventing the Extinction of the Dinaric-SE Alpine Lynx Population. Lovec 2017, 9, 428–429. [Google Scholar]
- Labelle, P.; Mikaelian, I.; Martineau, D.; Beaudin, S.; Blanchette, N.; Lafond, R.; St-Onge, S. Seroprevalence of leptospirosis in lynx and bobcats from Quebec. Can. Vet. J. 2000, 41, 319–320. [Google Scholar]
- Krofel, M.; Huber, D.; Kos, I. Diet of Eurasian lynx Lynx lynx in the northern Dinaric Mountains (Slovenia and Croatia). Acta Theriol. 2011, 56, 315–322. [Google Scholar] [CrossRef]
- Melis, C.; Nilsen, E.B.; Panzacchi, M.; Linnell, J.D.; Odden, J. Roe deer face competing risks between predators along a gradient in abundance. Ecosphere 2013, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jerina, K.; Stergar, M.; Jelenko, I.; Pokorny, B. Spatial Distibution, Fitness, and Population Dynamics of Ungulates in Slovenia: Studies on the Effects of Spatially Explicite Habitat and Species-Specific Factors and Predicting Future Trends; Biotechnical Faculty of the University of Ljubljana: Ljubljana, Slovenia, 2010; p. 48. [Google Scholar]
- Burbaitė, L.; Csányi, S. Roe deer population and harvest changes in Europe. Estonian J. Ecol 2009, 58, 169–180. [Google Scholar] [CrossRef]
- Linnell, J.D.C.; Zachos, F. Status and distribution patterns of European ungulates: Genetics, population history and conservation. In Ungulate Management in Europe—Problems and Practices; Putman, R., Apollonio, M., Andersen, R., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 12–53. [Google Scholar]
- Zmudzki, J.; Jablonski, A.; Arent, Z.; Zebek, S.; Nowak, A.; Stolarek, A. Parzeniecka-Jaworska, M. First report of Leptospira infections in red deer, roe deer, and fallow deer in Poland. J. Vet. 2016, 60, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Witt, W.; Dedek, J.; Loepelmann, H. Occurrence of Leptospira antibodies in red, roe and fallow deer and mouflon. Monatsh Veterinarmed 1988, 43, 65–68. [Google Scholar]
- Burbaité, L.; Csányi, S. Red deer population and harvest changes in Europe. Acta Zool Lit. 2010, 20, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Adamič, M.; Jerina, K. Ungulates and their management in Slovenia. In European Ungulates and Their Management in the 21st Century; Apollonio, M., Andersen, R., Putman, R., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 507–527. [Google Scholar]
- Bužan, E.; Bryja, J.; Zemanová, B.; Kryštufek, B. Population genetics of chamois in the contact zone between the Alps and the Dinaric mountains: Uncovering the role of habitat fragmentation and past management. Cons Genet. 2013, 14, 401–412. [Google Scholar] [CrossRef]
- Ayral, F.; Kodjo, A.; Guédon, G.; Boué, F.; Richomme, C. Muskrats are greater carriers of pathogenic Leptospira than coypus in ecosystems with temperate climates. PLoS ONE 2020, 15, e0228577. [Google Scholar] [CrossRef] [Green Version]
- Bollo, E.; Pregel, P.; Gennero, S.; Pizzoni, E.; Rosati, S.; Nebbia, P.; Biolatti, B. Health status of a population of nutria (Myocastor coypus) living in a protected area in Italy. Res. Vet. Sci. 2003, 75, 21–25. [Google Scholar] [CrossRef]
- Vein, J.; Leblond, A.; Belli, P.; Kodjo, A.; Berny, P.J. The role of the coypu (Myocastor coypus), an invasive aquatic rodent species, in the epidemiological cycle of leptospirosis: A study in two wetlands in the East of France. Eur. J. Wildl. Res. 2014, 60, 125–133. [Google Scholar] [CrossRef]
- Shearer, K.E.; Harte, M.J.; Ojkic, D.; Delay, J.; Campbell, D. Detection of Leptospira spp. in wildlife reservoir hosts in Ontario through comparison of immunohistochemical and polymerase chain reaction genotyping methods. Can. Vet. J. 2014, 55, 240–248. [Google Scholar] [PubMed]
- Poeppl, W.; Orola, M.J.; Herkner, H.; Müller, M.; Tobudic, S.; Faas, A.; Mooseder, G.; Allerberger, F.; Burgmann, H. High prevalence of antibodies against Leptospira spp. in male Austrian adults: A cross-sectional survey, April to June 2009. Euro Surveill. 2013, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monahan, A.M.; Miller, I.S.; Nally, J.E. Leptospirosis: Risks during recreational activities. J. Appl. Microbiol. 2009, 107, 707–716. [Google Scholar] [CrossRef] [PubMed]
Species Common Name | Latin Name | No. of Animals |
---|---|---|
Alpine chamois | Rupicapra rupicapra | 21 |
Brown hare | Lepus europaeus | 2 |
European badger | Meles meles | 2 |
European mouflon | Ovis musimon | 4 |
Fallow deer | Dama dama | 1 |
Golden jackal | Canis aureus | 2 |
Nutria | Myocastor coypus | 1 |
Red deer | Cervus elaphus | 22 |
Red fox | Vulpes vulpes | 97 |
Roe deer | Capreolus capreolus | 80 |
Stone marten | Martes foina | 12 |
* Eurasian lynx | Lynx lynx | 2 |
* Grey wolf | Canis lupus | 3 |
Total samples | 249 |
Common Name | Total No. | No. Pos. | Proportion of Positives (and CI) | Serovars | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alpine chamois | 21 | 2 | 10 (0–22)% | Ictero | Brat | Tar | - | - | - | - | - | - |
Brown hare * | 2 | 0 | - | - | - | - | - | - | - | - | - | - |
European badger * | 2 | 0 | - | - | - | - | - | - | - | - | - | - |
European mouflon * | 4 | 0 | - | - | - | - | - | - | - | - | - | - |
Fallow deer * | 1 | 0 | - | - | - | - | - | - | - | - | - | - |
Red deer | 22 | 7 | 32 (12–51)% | Ictero | Brat | Pom | Grip | Sejroe | Aut | Can | - | - |
Roe deer | 80 | 20 | 25 (16–34)% | Ictero | Brat | Pom | Grip | Sejroe | - | - | - | - |
European badger * | 2 | 0 | - | - | - | - | - | - | - | - | - | - |
Eurasian lynx | 2 | 2 | Large carnivores 86 (60–100)% | Ictero | Sejroe | - | - | - | - | - | - | - |
Golden jackal | 2 | 2 | Ictero | Pom | Hardjo | Sejroe | Sax | - | - | - | - | |
Gray wolf | 3 | 2 | Ictero | Grip | - | - | - | - | - | - | ||
Red fox | 97 | 33 | 34 (25–43)% | Ictero | Brat | Pom | Grip | Sejroe | Aus | Aut | Sax | Can |
Stone marten | 12 | 8 | 67 (40–93)% | Ictero | Brat | Pom | Aus | Sax | - | - | - | - |
249 | 77 | 30.9 (25.2–36.7)% |
Common Name | Serovars | Titre | |||||
---|---|---|---|---|---|---|---|
50 | 100 | 200 | 400 | 800 | ≥1600 | ||
Alpine chamois | Ictero | 0 | 1 | 0 | 0 | 0 | 0 |
Tarassovi | 1 | 0 | 0 | 0 | 0 | 0 | |
Eurasian lynx | Ictero | 0 | 1 | 0 | 0 | 0 | 0 |
Sejroe | 1 | 0 | 0 | 0 | 0 | 0 | |
Golden jackal | Ictero | 0 | 1 | 1 | 0 | 0 | 0 |
Pomona | 0 | 0 | 0 | 1 | 0 | 0 | |
Hardjo | 0 | 1 | 0 | 0 | 0 | 0 | |
Sejroe | 0 | 0 | 0 | 0 | 1 | 0 | |
Saxkoebing | 0 | 0 | 0 | 1 | 0 | 0 | |
Gray wolf | Ictero | 1 | 1 | 0 | 0 | 0 | 0 |
Grippo | 0 | 1 | 0 | 0 | 0 | 0 | |
Nutria | Bratislava | 0 | 1 | 0 | 0 | 0 | 0 |
Red fox | Ictero | 3 | 2 | 3 | 0 | 1 | 2 |
Bratislava | 2 | 4 | 7 | 2 | 1 | 0 | |
Pomona | 2 | 1 | 3 | 2 | 0 | 0 | |
Grippo | 1 | 0 | 0 | 0 | 0 | 0 | |
Sejroe | 2 | 4 | 2 | 1 | 0 | 0 | |
Australis | 7 | 1 | 6 | 0 | 2 | 1 | |
Autumnalis | 0 | 0 | 1 | 0 | 0 | 0 | |
Canicola | 0 | 1 | 0 | 1 | 0 | 0 | |
Saxkoebing | 0 | 2 | 3 | 1 | 0 | 0 | |
Red deer | Ictero | 0 | 1 | 0 | 0 | 0 | 0 |
Bratislava | 0 | 1 | 0 | 0 | 0 | 0 | |
Pomona | 1 | 1 | 0 | 1 | 0 | 0 | |
Grippo | 1 | 0 | 0 | 0 | 0 | 0 | |
Sejroe | 1 | 0 | 0 | 0 | 0 | 0 | |
Autumnalis | 0 | 1 | 0 | 0 | 0 | 0 | |
Canicola | 1 | 1 | 0 | 0 | 0 | 0 | |
Bratislava | 2 | 1 | 3 | 0 | 0 | 0 | |
Pomona | 0 | 0 | 1 | 0 | 0 | 0 | |
Australis | 2 | 1 | 1 | 1 | 2 | 1 | |
Saxkoebing | 1 | 0 | 0 | 0 | 0 | 0 | |
Roe deer | Ictero | 8 | 4 | 1 | 0 | 0 | 0 |
Bratislava | 4 | 0 | 0 | 0 | 0 | 0 | |
Pomona | 1 | 0 | 0 | 1 | 0 | 0 | |
Grippo | 1 | 0 | 0 | 0 | 0 | 0 | |
Sejroe | 1 | 0 | 0 | 0 | 0 | 0 | |
Stone marten | Ictero | 0 | 2 | 0 | 1 | 0 | 0 |
Species (Proportion of Positive Cases) | Mouflon (0%) | Alpine Chamois (10%) | Roe Deer (25%) | Red Deer (32%) | Red Fox (34%) | Stone Marten (67%) | Large Carnivores (86%) |
---|---|---|---|---|---|---|---|
Mouflon (0%) | 1.000 | 0.526 | 0.255 | 0.199 | 0.158 | 0.037 | 0.027 |
Alpine chamois (10%) | 0.526 | 1.000 | 0.129 | 0.080 | 0.028 | 0.002 | 0.001 |
Roe deer (25%) | 0.255 | 0.129 | 1.000 | 0.522 | 0.194 | 0.004 | 0.001 |
Red deer (32%) | 0.199 | 0.080 | 0.522 | 1.000 | 0.844 | 0.059 | 0.019 |
Red fox (34%) | 0.158 | 0.028 | 0.194 | 0.844 | 1.000 | 0.030 | 0.008 |
Stone marten (67%) | 0.037 | 0.002 | 0.004 | 0.059 | 0.030 | 1.000 | 0.376 |
Large carnivores (86%) | 0.027 | 0.001 | 0.001 | 0.019 | 0.008 | 0.376 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žele-Vengušt, D.; Lindtner-Knific, R.; Mlakar-Hrženjak, N.; Jerina, K.; Vengušt, G. Exposure of Free-Ranging Wild Animals to Zoonotic Leptospira interrogans Sensu Stricto in Slovenia. Animals 2021, 11, 2722. https://doi.org/10.3390/ani11092722
Žele-Vengušt D, Lindtner-Knific R, Mlakar-Hrženjak N, Jerina K, Vengušt G. Exposure of Free-Ranging Wild Animals to Zoonotic Leptospira interrogans Sensu Stricto in Slovenia. Animals. 2021; 11(9):2722. https://doi.org/10.3390/ani11092722
Chicago/Turabian StyleŽele-Vengušt, Diana, Renata Lindtner-Knific, Nina Mlakar-Hrženjak, Klemen Jerina, and Gorazd Vengušt. 2021. "Exposure of Free-Ranging Wild Animals to Zoonotic Leptospira interrogans Sensu Stricto in Slovenia" Animals 11, no. 9: 2722. https://doi.org/10.3390/ani11092722
APA StyleŽele-Vengušt, D., Lindtner-Knific, R., Mlakar-Hrženjak, N., Jerina, K., & Vengušt, G. (2021). Exposure of Free-Ranging Wild Animals to Zoonotic Leptospira interrogans Sensu Stricto in Slovenia. Animals, 11(9), 2722. https://doi.org/10.3390/ani11092722