The Effect of Freezing Sheep’s Milk on the Meltability, Texture, Melting and Fat Crystallization Profiles of Fresh Pasta Filata Cheese
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sheep’s and Cow’s Milk Samples
2.2. Mixture of Milk
2.3. Cheese Preparation Protocols
2.4. Composition and Freezing Point
2.5. Acidity and Conductivity
2.6. Water Activity
2.7. Viscosity
2.8. Texture Profile Analyses
2.9. Meltability
2.10. Oiling-Off
2.11. Differential Scanning Calorimetry (DSC)
2.12. Nuclear Magnetic Resonance (NMR)
2.13. Acceptability of Appearance and Consumer Penalty Analysis
2.14. Statistical Analyses
3. Results and Discussion
3.1. Composition and Physicochemical Properties of Milk and Fresh Pasta Filata Cheese
3.2. Texture Profile, Meltability and Stretching
3.3. Melt/Flow Profiles of Cheeses
3.4. Characteristics of Water Distribution and Mobility in Cheese Based on Nuclear Magnetic Resonance (NMR) and Differential Scanning Calorimetry (DSC) Analysis
3.5. Investigation of Consumer Perception
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tribst, A.A.L.; Ribeiro, L.R.; de Castro Leite Júnior, B.R.; de Oliveira, M.M.; Cristianini, M. Fermentation profile and characteristics of yoghurt manufactured from frozen sheep milk. Int. Dairy J. 2018, 78, 36–45. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Crops and Livestock Products, World Production Quantity of Whole Fresh, Sheep Milk in 2019. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 6 May 2021).
- Nudda, A.; Atzori, A.S.; Correddu, F.; Battacone, G.; Lunesu, M.F.; Cannas, A.; Pulina, G. Effects of nutrition on main components of sheep milk. Small Rumin. Res. 2020, 184, 106015. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical characteristics and relevance for functional food development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Renes, E.; Fernández, D.; Abarquero, D.; Ladero, V.; Álvarez, M.A.; Tornadijo, M.E.; Fresno, J.M. Effect of forage type, season, and ripening time on selected quality properties of sheep milk cheese. J. Dairy Sci. 2021, 104, 2539–2552. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Past, present, and future perspectives of small ruminant dairy research. J. Dairy Sci. 2001, 84, 2097–2115. [Google Scholar] [CrossRef]
- Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep milk: A pertinent functional food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J. Lactose hydrolysis and lactase activity in fermented mixtures containing mare’s, cow’s, sheep’s and goat’s milk. Int. J. Food Sci. Technol. 2016, 51, 2140–2148. [Google Scholar] [CrossRef]
- Cais-Sokolińska, D.; Wójtowski, J.; Pikul, J. Rheological, texture and sensory properties of kefir from mare’s milk and its mixtures with goat and sheep milk. Mljekarstvo 2016, 66, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Boukria, O.; El Hadrami, E.M.; Boudalia, S.; Safarov, J.; Leriche, F.; Aït-Kaddour, A. The effect of mixing milk of different species on chemical, physicochemical, and sensory features of cheeses: A Review. Foods. 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Alichanidis, E.; Moatsou, G.; Polychroniadou, A. Composition and properties of non-cow milk and products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: London, UK, 2016; pp. 81–116. [Google Scholar] [CrossRef]
- Moatsou, G.; Sakkas, L. Sheep milk components: Focus on nutritional advantages and biofunctional potential. Small Rumin. Res. 2019, 180, 86–99. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Park, Y.W.; Gaucheron, F.; Bouhallab, S. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin. Res. 2007, 68, 207–220. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Falcade, L.T.P.; Ribeiro, L.R.; de Castro Leite Júnior, B.R.; de Oliveira, M.M. Impact of extended refrigerated storage and freezing/thawing storage combination on physicochemical and microstructural characteristics of raw whole and skimmed sheep milk. Int. Dairy J. 2019, 94, 29–37. [Google Scholar] [CrossRef]
- Wendorff, W.L.; Kalit, S. Processing of sheep milk, In Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 222–260. [Google Scholar] [CrossRef]
- Zhang, R.H.; Mustafa, A.F.; Ng-Kwai-Hang, K.F.; Zhao, X. Effects of freezing on composition and fatty acid profiles of sheep milk and cheese. Small Rumin. Res. 2006, 64, 203–210. [Google Scholar] [CrossRef]
- Pazzolla, M.; Dettori, M.L.; Manca, F.; Noce, A.; Piras, G.; Pira, E.; Puggioni, O.; Vacca, G.M. The effect of long-term freezing on renneting properties of sarda sheep milk. Agric. Conspec. Sci. 2013, 78, 275–279. [Google Scholar]
- Wendorff, W.L. Freezing qualities of raw ovine milk for further processing. J. Dairy Sci. 2001, 84, E74–E78. [Google Scholar] [CrossRef]
- Albenzio, M.; Santillo, A.; Caroprese, M.; Braghieri, A.; Sevi, A.; Napolitano, F. Composition and sensory profiling of probiotic Scamorza ewe milk cheese. J. Dairy Sci. 2013, 96, 2792–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripaldi, C.; Palocci, G.; Di Giovanni, S.; Marri, N.; Boselli, C.; Giangolini, G.; Amatiste, S. Microbiological and chemical characteristics of pasta filata type cheese from raw ewe milk, using thermophilic and mesophilic starters. Arch Lebensmittelhyg 2018, 69, 123–129. [Google Scholar]
- Niro, S.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Tipaldi, L.; Panfili, G.; Coppola, R. Innovative Caciocavallo cheeses made from a mixture of cow milk with ewe or goat milk. J. Dairy Sci. 2014, 97, 1296–1304. [Google Scholar] [CrossRef] [Green Version]
- International Dairy Federation. Cheese and Processed Cheese Products: Determination of Dry Matter; IDF 1986, Standard 4; International Dairy Federation (IDF): Brussels, Belgium, 1986. [Google Scholar]
- International Organization for Standardization. Milk and Milk Products—Guidelines for the Application of Near Infrared Spectrometry; ISO 21543 [IDF 201:2020]; International Organization for Standardization: Geneva, Switzerland, 2020. [Google Scholar]
- International Organization for Standardization. Milk Determination of Freezing Point—Thermistor Cryoscope Method (Reference Method); ISO 5764 [IDF 108:2009]; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Cais-Sokolińska, D.; Bierzuńska, P.; Kaczyński, Ł.K.; Baranowska, H.M.; Tomaszewska-Gras, J. Stability of texture, meltability and water mobility model of pizza-style cheeses from goat’s milk. J. Food Eng. 2018, 222, 226–236. [Google Scholar] [CrossRef]
- Schenkel, P.; Samudrala, R.; Hinrichs, J. Thermo-physical properties of semi-hard cheese made with different fat fractions: Influence of melting point and fat globule size. Int. Dairy J. 2013, 30, 79–87. [Google Scholar] [CrossRef]
- Hartmann, K.I.; Samudrala, R.; Hofmann, T.; Schieberle, P.; Hitzmann, B.; Hinrichs, J. Thermo-physical parameters applied for instrumental profiling and statistical evaluation of German Emmental cheese. Int. Dairy J. 2015, 49, 118–124. [Google Scholar] [CrossRef]
- Węglarz, W.P.; Harańczyk, H. Two-dimensional analysis of the nuclear relaxation function in the time domain: The program CracSpin. J. Phys. D. Appl. Phys. 2000, 33, 1909–1920. [Google Scholar] [CrossRef]
- Baranowska, H.M.; Tomaszewska-Gras, J.; Cais-Sokolińska, D.; Bierzuńska, P.; Kaczyński, Ł.K. Water mobility and thermal properties of smoked soft cheese. Mljekarstvo 2017, 67, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Caboni, P.; Maxia, D.; Scano, P.; Addis, M.; Dedola, A.; Pes, M.; Murgia, A.; Casula, M.; Profumo, A.; Pirisi, A. A gas chromatography-mass spectrometry untargeted metabolomics approach to discriminate Fiore Sardo cheese produced from raw or thermized ovine milk. Int. J. Dairy Sci. 2019, 102, 5005–5018. [Google Scholar] [CrossRef]
- Bučević-Popović, V.; Delaš, I.; Međugorac, S.; Pavela-Vrančić, M.; Kulišić-Bilušić, T. Oxidative stability and antioxidant activity of bovine, caprine, ovine and asinine milk. Int. J. Dairy Technol. 2014, 67, 394–401. [Google Scholar] [CrossRef]
- Faccia, M.; Trani, A.; Gambacorta, G.; Loizzo, P.; Cassone, A.; Caponio, F. Production technology and characterization of Fior di latte cheeses made from sheep and goat milks. J. Dairy Sci. 2014, 98, 1402–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tribst, A.A.L.; Falcade, L.T.P.; Carvalho, N.S.; de Castro Leite Júnior, B.R.; de Oliveira, M.M. Using stirring and homogenization to improve the fermentation profile and physicochemical characteristics of set yogurt from fresh, refrigerated and frozen/thawed sheep milk. LWT 2020, 130, 109557. [Google Scholar] [CrossRef]
- Sánchez, A.F.; Muñoz, J.P.; Caballero-Villalobos, J.; Sánchez, R.A.; Garzón, A.; Sánchez de Pedro, E.A. Coagulation process in Manchega sheep milk from Spain: A path analysis approach. J. Dairy Sci. 2021, 104, 7544–7554. [Google Scholar] [CrossRef]
- Yanthi, N.D.; Said, S.; Anggraeni, A.; Damayanti, R. Correlation of electric conductivity values with the dairy milk quality. JITV 2018, 32, 82–88. [Google Scholar] [CrossRef]
- Kaşikçi, G.; Çetin, Ö.; Bingöl, E.B.; Gündüz, M.C. Relations between electrical conductivity, somatic cell count, California mastitis test and some quality parameters in the diagnosis of subclinical mastitis in dairy cows. Turkish J. Vet. Anim. Sci. 2012, 36, 49–55. [Google Scholar]
- Qayyum, A.; Khan, J.A.; Hussain, R.; Avais, M.; Ahmad, N.; Sarwar-Khan, M. Investigation of milk and blood serum biochemical profile as an indicator of sub-clinical mastitis in Cholistani cattle. Pak. Vet. J. 2016, 36, 275–279. [Google Scholar]
- Fahmid, S.; Hassan, E.; Naeem, H.; Barrech, S.; Lodhi, S.; Latif, S. Determination of mastitis by measuring milk electrical conductivity. Int. J. Adv. Res. Biol. Sci. 2016, 3, 1–4. [Google Scholar]
- Agranovich, D.; Ishai, P.B.; Katz, G.; Bezman, D.; Feldman, Y. Dielectric spectroscopy study of water dynamics in frozen bovine milk. Colloids Surf. B. 2016, 141, 390–396. [Google Scholar] [CrossRef]
- The Codex Alimentarius Commission Codex Stan 262. Codex General Standard for Mozzarella; WHO/FAO International Food Standards: Rome, Italy, 2019. [Google Scholar]
- Yu, Z.; Qiao, C.; Zhang, X.; Yan, L.; Li, L.; Liu, Y. Screening of frozen-thawed conditions for keeping nutritive compositions and physicochemical characteristics of goat milk. J. Dairy Sci. 2021, 104, 4108–4118. [Google Scholar] [CrossRef] [PubMed]
- Suranindyah, Y.; Pretiwi, P. Quality and emulsion stability of milk from Ettawah crossed bred goat during frozen storage. Procedia Food Sci. 2015, 3, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Katsiari, M.C.; Voutsinas, L.P.; Kondyli, E. Manufacture of yoghurt from stored frozen sheep’s milk. Food Chem. 2002, 77, 413–420. [Google Scholar] [CrossRef]
- Voutsinas, L.P.; Katsiari, M.C.; Pappas, C.P.; Mallatou, H. Production of brined soft cheese from frozen ultrafiltered sheep’s milk. Part 2 compositional, physicochemical, microbiological and organoleptic properties of cheese. Food Chem. 1995, 52, 235–247. [Google Scholar] [CrossRef]
- Kindstedt, P.S.; Hillier, A.J.; Mayes, J.J. Technology, biochemistry and functionality of pasta filata/pizza cheese. In Technology of Cheesemaking; Law, B.A., Tamime, A.Y., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2010; pp. 330–352. [Google Scholar] [CrossRef]
- Kljajevic, N.V.; Jovanovic, S.T.; Miloradovic, Z.N.; Macej, O.D.; Vucic, T.R.; Zdravkovic, I.R. Influence of the frozen storage period on the coaglation properties of caprine milk. Int. Dairy J. 2016, 58, 36–38. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Falcade, L.T.P.; de Oliveira, M.M. Strategies for raw sheep milk storage in smallholdings: Effect of freezing or long–term refrigerated storage on microbial growth. J. Dairy Sci. 2019, 102, 4960–4971. [Google Scholar] [CrossRef]
- Ponce de Leon-Gonzalez, L.; Wendorff, W.L.; Ingham, B.H.; Thomas, D.L.; Jaeggi, J.J.; Houck, K.B. Influence of ovine milk in mixture with bovine milk on the quality of reduced fat Muenster-type cheese. J. Dairy Sci. 2002, 85, 36–42. [Google Scholar] [CrossRef]
- Everett, D.W.; Auty, M.A.E. Cheese structure and current methods of analysis. Int. Dairy J. 2008, 18, 759–773. [Google Scholar] [CrossRef]
- Addis, M.; Pes, M.; Fiori, M.; Nieddu, G.; Furesi, S.; Pirisi, A. Effect of protein-to-fat ratio of sheep milk on the composition, rheological properties and yield of PDO Pecorino Romano cheese. Small Rumin. Res. 2018, 162, 1–7. [Google Scholar] [CrossRef]
- Joshi, N.S.; Muthukumarappan, K.; Dave, R.I. Effect of calcium on microstructure and meltability of part skim Mozzarella cheese. J. Dairy Sci. 2004, 87, 1975–1985. [Google Scholar] [CrossRef]
- Vacca, G.M.; Cipolat-Gotet, C.; Paschino, P.; Casu, S.; Usai, M.G.; Bittante, G.; Pazzola, M. Variation of milk technological properties in sheep milk: Relationships among composition, coagulation and cheese-making traits. Int. Dairy J. 2019, 97, 5–14. [Google Scholar] [CrossRef]
- Ko, S.; Gunasekaran, S. Evaluation of cheese meltability using convection and conduction melt profilers. Int. J. Dairy Technol. 2014, 67, 194–201. [Google Scholar] [CrossRef]
- Kuo, M.-I.; Gunasekaran, S. Effect of freezing and frozen storage on microstructure of Mozzarella and pizza cheeses. LWT 2009, 42, 9–16. [Google Scholar] [CrossRef]
- Gianferri, R.; Maioli, M.; Delfini, M.; Brosio, E. A low-resolution and high-resolution nuclear magnetic resonance integrated approach to investigate the physical structure and metabolic profile of Mozzarella di Bufala Campana cheese. Int. Dairy J. 2007, 17, 167–176. [Google Scholar] [CrossRef]
- Boiani, M.; Sundekilde, U.; Bateman, L.M.; McCarthy, D.G.; Maguire, A.R.; Gulati, A.; Guinee, T.P.; Fenelon, M.; Hennessy, D.; FitzGerald, R.J.; et al. Integration of high and low field 1H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening. Int. Dairy J. 2019, 91, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Aminifar, M.; Hamedi, M.; Emam-Djomeh, Z.; Mehdinia, A. The effect of ovine and bovine milk on the textural properties of Lighvan cheese during ripening. Int. J. Dairy Technol. 2012, 66, 45–53. [Google Scholar] [CrossRef]
Parameters | Cow’s Milk | Sheep’s Milk | SEM | ||
---|---|---|---|---|---|
Mean | P5–P95 | Mean | P5–P95 | ||
Solids-not-fat (g/kg) | 83.4 a | 82.9–83.8 | 121.1 b | 120.8–121.3 | 0.074 |
Fat (g/kg) | 46.3 a | 46.1–46.5 | 86.1 b | 85.8–86.4 | 0.037 |
Casein (g/kg) | 27.1 a | 26.8–27.4 | 41.8 b | 41.5–42.0 | 0.044 |
Whey protein (g/kg) | 6.4 a | 6.1–6.7 | 9.5 b | 9.2–9.8 | 0.048 |
Lactose (g/kg) | 43.6 a | 43.3–43.8 | 47.1 b | 46.9–47.4 | 0.035 |
Fat/protein | 1.4 | 1.7 | |||
Ash (g/kg) | 6.8 a | 6.6–7.0 | 9.1 b | 8.9–9.3 | 0.024 |
pH | 6.64 a | 6.60–6.67 | 6.65 a | 6.62–6.67 | 0.000 |
Titratable acidity (% lactic acid) | 0.162 a | 0.160–0.165 | 0.216 b | 0.214–0.218 | 0.000 |
Conductivity (mS/cm) | 4.12 b | 4.10–4.14 | 3.85 a | 3.82–3.89 | 0.001 |
Freezing point (°C) | −0.528 b | −0.533–−0.523 | −0.571 a | −0.574–−0.568 | 0.000 |
Viscosity (mPa∙s) | 4.22 a | 4.18–4.27 | 6.71 b | 6.68–6.75 | 0.001 |
Density, in 20 °C (kg/m3) | 1.031 a | 1.029–1.034 | 1.037 b | 1.033–1.040 | 0.000 |
Water activity | 0.9838 b | 0.9836–0.9839 | 0.9761 a | 0.9759–0.9763 | 0.000 |
Parameters | Pasta Filata Cheese | SEM | ||||
---|---|---|---|---|---|---|
C | CS | CSF | S | SF | ||
Moisture (g/kg) | 602.7 c | 568.5 b | 569.2 b | 488.8 a | 491.1 a | 0.169 |
Fat (g/kg) | 190.5 a | 188.6 a | 189.7 a | 189.3 a | 191.4 a | 0.078 |
Fat/dry matter (w/w) | 0.48 | 0.44 | 0.44 | 0.37 | 0.38 | |
Protein (g/kg) | 174.2 a | 204.1 b | 198.7 b | 266.8 c | 270.3 c | 0.069 |
Protein/dry matter (w/w) | 0.44 | 0.47 | 0.46 | 0.52 | 0.53 | |
Protein/fat (w/w) | 0.9 | 1.1 | 1.1 | 1.4 | 1.4 | |
Salt (g/kg) | 0.47 a | 0.46 a | 0.45 a | 0.46 a | 0.46 a | 0.000 |
pH | 5.13 a | 5.12 a | 5.11 a | 5.12 a | 5.12 a | 0.000 |
Acidity (% lactic acid) | 0.702 a | 0.709 a | 0.695 a | 0.716 a | 0.702 a | 0.000 |
Water activity | 0.9605 a | 0.9586 a | 0.9714 b | 0.9614 a | 0.9773 b | 0.000 |
Parameters | Pasta Filata Cheese | SEM | ||||
---|---|---|---|---|---|---|
C | CS | CSF | S | SF | ||
Extensibility force (g) | 35.4 c | 33.8 b | 37.4 d | 26.6 a | 42.5 e | 0.069 |
Stretching (mm) | 127.8 a | 131.4 b | 129.8 a | 132.3 b | 133.1 b | 0.082 |
Hardness (g) | 264.3 b | 259.7 b | 322.8 c | 188.7 a | 364.8 d | 0.042 |
Brittleness (mm) | 108.1 a | 113.9 b | 108.9 a | 122.7 c | 111.0 b | 0.059 |
Cutting force (g) | 34.9 c | 30.6 b | 41.4 d | 23.7 a | 54.8 e | 0.045 |
Parameters | Pasta Filata Cheese | SEM | ||||
---|---|---|---|---|---|---|
C | CS | CSF | S | SF | ||
M—Tube Test (mm) | 7.2 b | 8.6 c | 6.9 b | 11.1 d | 6.4 a | 0.043 |
M—Schreiber Test (scale 0–10) | 3.3 a | 3.8 b | 3.2 a | 5.2 c | 3.2 a | 0.037 |
F—Oiling–off (%) | 3.13 a | 2.92 a | 11.56 c | 4.21 b | 51.85 d | 0.001 |
Parameters | Pasta Filata Cheese | ||||
---|---|---|---|---|---|
C | CS | CSF | S | SF | |
First heating Temperature | |||||
TI on (°C) | 11.78 b | 11.15 ab | 10.27 ab | 11.78 b | 8.625 a |
TIpeak (°C) | 15.97 c | 13.15 a | 16.88 d | 13.85 ab | 14.69 b |
TIend | 37.71 a | 37.57 a | 38.97 a | 36.54 a | 37.36 a |
Enthalpy ΔHm1 (J/g of fat) | 36.06 a | 44.18 ab | 84.43 d | 57.72 bc | 67.15 cd |
Second heating Temperature | |||||
TIIon (°C) | 12.18 c | 7.92 a | 12.61 c | 7.43 a | 10.60 b |
TIIpeak (°C) | 15.88 c | 13.12 a | 16.42 c | 13.29 a | 14.98 b |
Tend | 36.24 b | 34.01 a | 36.59 b | 34.17 a | 35.99 b |
Enthalpy ΔHm2 (J/g of fat) | 41.95 a | 70.88 b | 105.82 d | 85.39 c | 80.15 c |
Ice melting Temperature | |||||
Tionset (°C) | −4.14 d | −13.80 c | −13.27 c | −19.92 a | −16.50 b |
Tipeak (°C) | −0.11 c | −7.30 b | −6.54 b | −13.24 a | −7.57 b |
Enthalpy ΔHice (J/g of water) | 232.74 c | 100.36 a | 99.77 a | 90.16 a | 153.85 b |
Unfreezable water (g/100 g of water) | 29.97 a | 69.80 c | 69.98 c | 72.87 c | 53.7 b |
Relaxation Parameters | Pasta Filata Cheese | SEM | ||||
---|---|---|---|---|---|---|
C | CS | CSF | S | SF | ||
T1 (ms) | 279.3 d | 228.4 c | 120.9 a | 125.9 b | 121.3 a | 0.206 |
T21 (ms) | 24.1 c | 10.8 a | 10.7 a | 10.9 ab | 11.3 b | 0.050 |
T22 (ms) | 164.1 e | 32.2 a | 59.4 b | 61.7 c | 64.1 d | 0.032 |
Pasta Filata Cheese | ||||||
---|---|---|---|---|---|---|
C | CS | CSF | S | SF | ||
9 | Like extremely (%) | 2.06 | 5.15 | 0 | 0 | 0 |
8 | Like very much (%) | 27.84 | 40.21 | 1.03 | 2.06 | 0 |
7 | Like moderately (%) | 30.93 | 35.05 | 28.87 | 40.21 | 0 |
6 | Like slightly (%) | 11.34 | 1.03 | 39.18 | 21.65 | 17.53 |
5 | Neither like nor dislike (%) | 27.84 | 16.49 | 22.68 | 25.77 | 50.52 |
4 | Dislike slightly (%) | 0 | 2.06 | 6.19 | 3.09 | 15.46 |
3 | Dislike moderately (%) | 0 | 0 | 2.06 | 7.22 | 12.37 |
2 | Dislike very much (%) | 0 | 0 | 0 | 0 | 4.12 |
1 | Dislike extremely (%) | 0 | 0 | 0 | 0 | 0 |
Skewness | 0.66 | 1.28 | 1.09 | 1.22 | 2.02 | |
p–value | 0.005 | 0.004 | 0.009 | 0.018 | 0.003 | |
SD | 13.41 | 15.48 | 14.61 | 14.16 | 15.93 | |
CV | 124.38 | 143.65 | 135.55 | 131.36 | 147.78 | |
Dislike responses (%) | 0 | 2.06 | 8.25 | 10.31 | 31.95 |
Pasta Filata Cheese | |||||||
---|---|---|---|---|---|---|---|
C | CS | CSF | S | SF | |||
Aroma | acidity | not enough | – | – | – | 14.43 | – |
too much | – | – | – | – | 13.40 | ||
Flavor | refreshing | not enough | – | – | 16.49 | 19.59 | 35.05 |
too much | – | – | – | – | – | ||
sweet milk | not enough | – | – | – | – | 14.43 | |
too much | – | – | – | 11.34 | – | ||
Texture | elasticity | not enough | – | – | 17.53 | – | 47.42 |
too much | – | – | – | – | – | ||
smoothness | not enough | – | – | – | – | – | |
too much | – | – | – | – | – | ||
Appearance | shininess | not enough | – | – | 17.53 | – | 24.74 |
too much | – | – | – | 12.37 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegalski, J.; Cais-Sokolińska, D.; Tomaszewska-Gras, J.; Baranowska, H.M. The Effect of Freezing Sheep’s Milk on the Meltability, Texture, Melting and Fat Crystallization Profiles of Fresh Pasta Filata Cheese. Animals 2021, 11, 2740. https://doi.org/10.3390/ani11092740
Biegalski J, Cais-Sokolińska D, Tomaszewska-Gras J, Baranowska HM. The Effect of Freezing Sheep’s Milk on the Meltability, Texture, Melting and Fat Crystallization Profiles of Fresh Pasta Filata Cheese. Animals. 2021; 11(9):2740. https://doi.org/10.3390/ani11092740
Chicago/Turabian StyleBiegalski, Jakub, Dorota Cais-Sokolińska, Jolanta Tomaszewska-Gras, and Hanna M. Baranowska. 2021. "The Effect of Freezing Sheep’s Milk on the Meltability, Texture, Melting and Fat Crystallization Profiles of Fresh Pasta Filata Cheese" Animals 11, no. 9: 2740. https://doi.org/10.3390/ani11092740
APA StyleBiegalski, J., Cais-Sokolińska, D., Tomaszewska-Gras, J., & Baranowska, H. M. (2021). The Effect of Freezing Sheep’s Milk on the Meltability, Texture, Melting and Fat Crystallization Profiles of Fresh Pasta Filata Cheese. Animals, 11(9), 2740. https://doi.org/10.3390/ani11092740