Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre (Argyrosomus regius) Juveniles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Fish Growth Trial
2.3. Cold Challenges
2.4. Effect of Dietary Treatments on Lipid Profile after a Cold Challenge
2.5. Statistical Analyses
3. Results
3.1. Fish Growth Trial
3.2. Effect of Diets Supply on Fish Survival after Cold Shock Challenge
3.3. Effect of Dietary Treatments on FA Profile after a Cold Challenge
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yúfera, M.; Nguyen, M.V.; Navarro-Guillén, C.; Moyano, F.J.; Jordal, A.E.O.; Espe, M.; Conceição, L.E.C.; Engrola, S.; Le, M.H.; Rønnestad, I. Effect of increased rearing temperature on digestive function in cobia early juvenile. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 230, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Nowosad, J.; Targońska, K.; Chwaluczyk, R.; Kaszubowski, R.; Kucharczyk, D. Effect of temperature on the effectiveness of artificial reproduction of dace [Cyprinidae (Leuciscus leuciscus (L.))] under laboratory and field conditions. J. Therm. Biol. 2014, 45, 62–68. [Google Scholar] [CrossRef]
- Overgaard, J.; MacMillan, H.A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 2017, 79, 187–208. [Google Scholar] [CrossRef]
- Cao-Hoang, L.; Dumont, F.; Marechal, P.A.; Gervais, P. Inactivation of Escherichia coli and Lactobacillus plantarum in relation to membrane permeabilization due to rapid chilling followed by cold storage. Arch. Microbiol. 2010, 192, 299–305. [Google Scholar] [CrossRef]
- Kujawa, R.; Mamcarz, A.; Kucharczyk, D. Effect of temperature on embryonic development of asp (Aspius aspius L.). Pol. Arch. Hydrobiol. 1997, 44, 5. [Google Scholar]
- Hachero-Cruzado, I.; García-López, Á.; Herrera, M.; Vargas-Chacoff, L.; Martínez-Rodríguez, G.; Mancera, J.M.; Navas, J.I. Reproductive performance and seasonal plasma sex steroid and metabolite levels in a captive wild broodstock of brill Scophthalmus rhombus L. Aquac. Res. 2007, 38, 1161–1174. [Google Scholar] [CrossRef]
- Kupren, K.; Mamcarz, A.; Kucharczyk, D. Effect of variable and constant thermal conditions on embryonic and early larval development of fish from the genus Leuciscus (Cyprinidae, Teleostei). Czech J. Anim. Sci. 2011, 56, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Carballo, C.; Firmino, J.; Anjos, L.; Santos, S.; Power, D.M.; Manchado, M. Short- and long-term effects on growth and expression patterns in response to incubation temperatures in Senegalese sole. Aquaculture 2018, 495, 222–231. [Google Scholar] [CrossRef]
- Manjarrés-Hernández, A.; Guisande, C.; García-Roselló, E.; Heine, J.; Pelayo-Villamil, P.; Pérez-Costas, E.; González-Vilas, L.; González-Dacosta, J.; Duque, S.R.; Granado-Lorencio, C.; et al. Predicting the effects of climate change on future freshwater fish diversity at global scale. Nat. Conserv. 2021, 43, 1–24. [Google Scholar] [CrossRef]
- Williams, E.E.; Hazel, J.R. Membrane fluidity and hemilayer temperature sensitivity in trout hepatocytes during brief in vitro cold exposure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 266, R773–R780. [Google Scholar] [CrossRef]
- Sinensky, M. Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Buda, C.; Dey, I.; Balogh, N.; Horvath, L.I.; Maderspach, K.; Juhasz, M.; Yeo, Y.K.; Farkas, T. Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc. Natl. Acad. Sci. USA 1994, 91, 8234–8238. [Google Scholar] [CrossRef] [Green Version]
- Dey, I.; Buda, C.; Wiik, T.; Halver, J.E.; Farkas, T. Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature. Proc. Natl. Acad. Sci. USA 1993, 90, 7498–7502. [Google Scholar] [CrossRef] [Green Version]
- Farkas, T.; Kitajka, K.; Fodor, E.; Csengeri, I.; Lahdes, E.; Yeo, Y.K.; Krasznai, Z.; Halver, J.E. Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl. Acad. Sci. USA 2000, 97, 6362–6366. [Google Scholar] [CrossRef] [Green Version]
- Fodor, E.; Jones, R.H.; Buda, C.; Kitajka, K.; Dey, I.; Farkas, T. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: An experimental and model study. Lipids 1995, 30, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Hazel, J.R.; Landrey, S.R. Time course of thermal adaptation in plasma membranes of trout kidney. I. Headgroup composition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1988, 255, R622–R627. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.Á.; Sala-Rabanal, M.; Ibarz, A.; Padrós, F.; Blasco, J.; Fernández-Borràs, J.; Sánchez, J. Functional alterations associated with “winter syndrome” in gilthead sea bream (Sparus aurata). Aquaculture 2003, 223, 15–27. [Google Scholar] [CrossRef]
- Ibarz, A.; Beltrán, M.; Fernández-Borràs, J.; Gallardo, M.A.; Sánchez, J.; Blasco, J. Alterations in lipid metabolism and use of energy depots of gilthead sea bream (Sparus aurata) at low temperatures. Aquaculture 2007, 262, 470–480. [Google Scholar] [CrossRef]
- Ibarz, A.; Blasco, J.; Beltrán, M.; Gallardo, M.A.; Sánchez, J.; Sala, R.; Fernández-Borràs, J. Cold-induced alterations on proximate composition and fatty acid profiles of several tissues in gilthead sea bream (Sparus aurata). Aquaculture 2005, 249, 477–486. [Google Scholar] [CrossRef]
- Ibarz, A.; Padrós, F.; Gallardo, M.Á.; Fernández-Borràs, J.; Blasco, J.; Tort, L. Low-temperature challenges to gilthead sea bream culture: Review of cold-induced alterations and ‘Winter Syndrome’. Rev. Fish Biol. Fish. 2010, 20, 539–556. [Google Scholar] [CrossRef]
- Duncan, N.J.; Estévez, A.; Fernández-Palacios, H.; Gairin, I.; Hernández-Cruz, C.M.; Roo, J.; Schuchardt, D.; Vallés, R. 17—Aquaculture production of meagre (Argyrosomus regius): Hatchery techniques, ongrowing and market. In Advances in Aquaculture Hatchery Technology; Allan, G., Burnell, G., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 519–541. [Google Scholar]
- Fountoulaki, E.; Grigorakis, K.; Kounna, C.; Rigos, G.; Papandroulakis, N.; Diakogeorgakis, J.; Kokou, F. Growth performance and product quality of meagre (Argyrosomus regius) fed diets of different protein/lipid levels at industrial scale. Ital. J. Anim. Sci. 2017, 16, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Oviedo, G.; del Mar, M. Recovery of Meagre (Argyrosomus Regius) Population in the Balearic Coastal Ecosystem (Western Mediterranean); University of the Balearic Islands: Palma, Spain, 2013. [Google Scholar]
- Mohammed-Geba, K.; González, A.A.; Suárez, R.A.; Galal-Khallaf, A.; Martos-Sitcha, J.A.; Ibrahim, H.M.; Martínez-Rodríguez, G.; Mancera, J.M. Molecular performance of Prl and Gh/Igf1 axis in the Mediterranean meager, Argyrosomus regius, acclimated to different rearing salinities. Fish Physiol. Biochem. 2017, 43, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Kounna, C.; Fountoulaki, E.; Miliou, H.; Chatzifotis, S. Water temperature effects on growth performance, proximate body and tissue composition, morphometric characteristics and gastrointestinal evacuation processes of juvenile meagre, Argyrosomus regius (Asso 1801). Aquaculture 2021, 540, 736683. [Google Scholar] [CrossRef]
- Kır, M.; Sunar, M.C.; Altındağ, B.C. Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures. J. Therm. Biol. 2017, 65, 125–129. [Google Scholar] [CrossRef]
- Kružić, N.; Mustać, B.; Župan, I.; Čolak, S. Meagre (Argyrosomus regius Asso, 1801) aquaculture in Croatia. Croat. J. Fish. 2016, 74, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Anttila, K.; Dhillon, R.S.; Boulding, E.G.; Farrell, A.P.; Glebe, B.D.; Elliott, J.A.K.; Wolters, W.R.; Schulte, P.M. Variation in temperature tolerance among families of Atlantic salmon (Salmo salar) is associated with hypoxia tolerance, ventricle size and myoglobin level. J. Exp. Biol. 2013, 216, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Klerks, P.L.; Athrey, G.N.; Leberg, P.L. Response to selection for increased heat tolerance in a small fish species, with the response decreased by a population bottleneck. Front. Ecol. Evol. 2019, 7, 270. [Google Scholar] [CrossRef] [Green Version]
- Kokou, F.; Sasson, G.; Nitzan, T.; Doron-Faigenboim, A.; Harpaz, S.; Cnaani, A.; Mizrahi, I. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife 2018, 7, e36398. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, H.M.; El-Sayed, A.-F.M.; Ezzat, A.A.; Essa, M.A.; Helal, A.M. Dietary lipid sources affect cold tolerance of Nile tilapia (Oreochromis niloticus). J. Therm. Biol. 2019, 79, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Atwood, H.L.; Tomasso, J.R.; Webb, K.; Gatlin III, D.M. Low-temperature tolerance of Nile tilapia, Oreochromis niloticus: Effects of environmental and dietary factors. Aquac. Res. 2003, 34, 241–251. [Google Scholar] [CrossRef]
- Craig, S.R.; Neill, W.H.; Gatlin, D.M. Effects of dietary lipid and environmental salinity on growth, body composition, and cold tolerance of juvenile red drum (Sciaenops ocellatus). Fish Physiol. Biochem. 1995, 14, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.M.; Kohler, C.C. Cold Tolerance and Fatty Acid Composition of Striped Bass, White Bass, and Their Hybrids. N. Am. J. Aquac. 1999, 61, 278–285. [Google Scholar] [CrossRef]
- Carballo, C.; Berbel, C.; Guerrero-Cózar, I.; Jiménez-Fernández, E.; Cousin, X.; Bégout, M.L.; Manchado, M. Evaluation of different tags on survival, growth and stress response in the flatfish Senegalese sole. Aquaculture 2018, 494, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Román-Padilla, J.; Rodríguez-Rúa, A.; Ponce, M.; Manchado, M.; Hachero-Cruzado, I. Effects of dietary lipid profile on larval performance and lipid management in Senegalese sole. Aquaculture 2017, 468, 80–93. [Google Scholar] [CrossRef]
- Hachero-Cruzado, I.; Rodríguez-Rua, A.; Román-Padilla, J.; Ponce, M.; Fernández-Díaz, C.; Manchado, M. Characterization of the genomic responses in early Senegalese sole larvae fed diets with different dietary triacylglycerol and total lipids levels. Comp. Biochem. Physiol. Part D Genom. Proteom. 2014, 12, 61–73. [Google Scholar] [CrossRef]
- Tocher, D.R.; Bendiksen, E.Å.; Campbell, P.J.; Bell, J.G. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 2008, 280, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.; Peres, H.; Saleh, R.; Fontanillas, R.; Rosenlund, G.; Oliva-Teles, A.; Izquierdo, M. Dietary requirement for n-3 long-chain polyunsaturated fatty acids for fast growth of meagre (Argyrosomus regius, Asso 1801) fingerlings. Aquaculture 2018, 488, 105–113. [Google Scholar] [CrossRef]
- Estévez, A.; Treviño, L.; Kotzamanis, Y.; Karacostas, I.; Tort, L.; Gisbert, E. Effects of different levels of plant proteins on the ongrowing of meagre (Argyrosomus regius) juveniles at low temperatures. Aquac. Nutr. 2011, 17, e572–e582. [Google Scholar] [CrossRef]
- Güroy, D.; Karadal, O.; Güroy, B.; Mantoğlu, S.; Çelebi, K.; Şimşek, O.; Eroldoğan, O.T.; Genç, M.A.; Genç, E. The effects of dietary protein levels with amino acid supplementation on the growth performance, haematological profile and histology of meagre (Argyrosomus regius) in two different size classes. Aquac. Res. 2017, 48, 5751–5764. [Google Scholar] [CrossRef]
- Hachero-Cruzado, I.; Rodriguez-Rua, A.; Torrent, I.; Roman-Padilla, J.; Manchado, M. Assessment of growth, lipid metabolism and gene expression responses in senegalese sole larvae fed with low dietary phospholipid levels. Front. Physiol. 2020, 11, 572545. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.E.; Myklebust, R.; Kaino, T.; Ringø, E. Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol. Biochem. 1999, 21, 35–44. [Google Scholar] [CrossRef]
- Gisbert, E.; Villeneuve, L.; Zambonino-Infante, J.L.; Quazuguel, P.; Cahu, C.L. Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 2005, 40, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-P.; Jiang, W.-D.; Liu, Y.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.-Y.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; et al. Exogenous phospholipids supplementation improves growth and modulates immune response and physical barrier referring to NF-κB, TOR, MLCK and Nrf2 signaling factors in the intestine of juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2015, 47, 46–62. [Google Scholar] [CrossRef]
- Papadakis, I.E.; Kentouri, M.; Divanach, P.; Mylonas, C.C. Ontogeny of the digestive system of meagre Argyrosomus regius reared in a mesocosm, and quantitative changes of lipids in the liver from hatching to juvenile. Aquaculture 2013, 388, 76–88. [Google Scholar] [CrossRef]
- Kanazawa, A. Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 1997, 155, 129–134. [Google Scholar] [CrossRef]
- Zhao, J.; Ai, Q.; Mai, K.; Zuo, R.; Luo, Y. Effects of dietary phospholipids on survival, growth, digestive enzymes and stress resistance of large yellow croaker, Larmichthys crocea larvae. Aquaculture 2013, 410, 122–128. [Google Scholar] [CrossRef]
- Babin, P.J.; Vernier, J.M. Plasma lipoproteins in fish. J. Lipid Res. 1989, 30, 467–489. [Google Scholar] [CrossRef]
- Chapman, M.J. Animal lipoproteins: Chemistry, structure, and comparative aspects. J. Lipid Res. 1980, 21, 789–853. [Google Scholar] [CrossRef]
- Vance, J.E.; Adeli, K. CHAPTER 18—Assembly and secretion of triacylglycerol-rich lipoproteins. In Biochemistry of Lipids, Lipoproteins and Membranes, 5th ed.; Vance, D.E.V.E., Ed.; Elsevier: San Diego, CA, USA, 2008; pp. 507–531. [Google Scholar]
- Feng, S.; Cai, Z.; Zuo, R.; Mai, K.; Ai, Q. Effects of dietary phospholipids on growth performance and expression of key genes involved in phosphatidylcholine metabolism in larval and juvenile large yellow croaker, Larimichthys crocea. Aquaculture 2017, 469, 59–66. [Google Scholar] [CrossRef]
- Cai, Z.; Mai, K.; Ai, Q. Regulation of hepatic lipid deposition by phospholipid in large yellow croaker. Br. J. Nutr. 2017, 118, 999–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buang, Y.; Wang, Y.-M.; Cha, J.-Y.; Nagao, K.; Yanagita, T. Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid. Nutrition 2005, 21, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Rossmeisl, M.; Medrikova, D.; van Schothorst, E.M.; Pavlisova, J.; Kuda, O.; Hensler, M.; Bardova, K.; Flachs, P.; Stankova, B.; Vecka, M.; et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2014, 1841, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Sastry, P.S. Lipids of nervous tissue: Composition and metabolism. Prog. Lipid Res. 1985, 24, 69–176. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Ciardo, M.G.; Ferrer-Montiel, A. Lipids as central modulators of sensory TRP channels. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Bennett, W.A.; Judd, F.W. Comparison of methods for determining low temperature tolerance: Experiments with pinfish, Lagodon rhomboides. Copeia 1992, 1992, 1059–1065. [Google Scholar] [CrossRef]
- Ford, T.; Beitinger, T.L. Temperature tolerance in the goldfish, Carassius auratus. J. Therm. Biol. 2005, 30, 147–152. [Google Scholar] [CrossRef]
- Kır, M.; Demirci, Ö. Thermal tolerance and standard metabolic rate of juvenile European sea bass (Dicentrarchus labrax, Linnaeus, 1758) acclimated to four temperatures. J. Therm. Biol. 2018, 78, 209–213. [Google Scholar] [CrossRef]
- Ibarz, A.; Blasco, J.; Sala-Rabanal, M.; Gallardo, Á.; Redondo, A.; Fernández-Borràs, J. Metabolic rate and tissue reserves in gilthead sea bream (Sparus aurata) under thermal fluctuations and fasting and their capacity for recovery. Can. J. Fish. Aquat. Sci. 2007, 64, 1034–1042. [Google Scholar] [CrossRef]
- Kitajka, K.; Buda, C.; Fodor, E.; Halver, J.E.; Farkas, T. Involvement of phospholipid molecular species in controlling structural order of vertebrate brain synaptic membranes during thermal evolution. Lipids 1996, 31, 1045–1050. [Google Scholar] [CrossRef]
Dietary Composition | Diets | |
---|---|---|
CTRL | PL-Enriched | |
Ingredients | ||
Fish meal | 17.5 | 17.5 |
Squid meal | 2.5 | 2.5 |
Soybean meal | 5 | 5 |
Whole wheat | 3.04 | 3.04 |
Soy protein concentrate | 8 | 8 |
Pea protein | 4.5 | 4.5 |
Wheat gluten | 14 | 14 |
Corn gluten | 10 | 10 |
Soluble fish protein concentrate (CPSP® 90) | 2.5 | 2.5 |
Amino acids enrichment | 1.8 | 1.8 |
Fish oil | 14.5 | 8.5 |
Rapeseed oil | 0 | 1.5 |
Tuna oil | 0 | 1 |
Krill oil | 0 | 3.5 |
Soy lecithin | 0.5 | 0.5 |
Aquatex G2000® | 9 | 9 |
Premix® | 1 | 1 |
Lutavit C35® | 0.43 | 0.43 |
Lutavit E50® | 0.03 | 0.03 |
Monocalcium phosphate | 2.5 | 2.5 |
Sel-Plex® | 0.09 | 0.09 |
Antioxidant | 0.2 | 0.2 |
Glycerol | 2.5 | 2.5 |
Binder | 0.5 | 0.5 |
Proximate composition | ||
Protein | 50.2 | 50.2 |
Lipid | 18.3 | 18.4 |
Starch | 7.6 | 7.6 |
Ash | 4.9 | 4.9 |
Lipid profile | ||
Total PL | 0.94 | 2.57 |
Saturated Fatty acids (FA) | 4.2 | 4.5 |
Monounsaturated FA | 7.3 | 6.4 |
Polyunsaturated FA | 4.6 | 4.9 |
Trial | Diet | Weight (g) | 95% Confidence Limit | Tdeath | 95% Confidence Limit | ||
---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | ||||
Cold Challenge 1 | CTRL | 69.71 | 60.48 | 78.96 | 7.75 | 7.59 | 7.91 |
PL | 63.45 | 54.15 | 72.76 | 7.66 | 7.54 | 7.78 | |
Cold Challenge 2 | CTRL | 81.20 | 75.21 | 87.16 | 7.80 | 7.76 | 7.84 |
PL | 79.10 | 74.33 | 83.88 | 7.79 | 7.75 | 7.83 |
Experiment | Diet | LD50 (CD6H) | 95% Confidence Limit | LD90 (CD6H) | 95% Confidence Limit | ||
---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | ||||
Cold Challenge 1 | CTRL | 21.51 | 18.54 | 23.84 | 36.30 | 33.27 | 40.55 |
PL | 24.93 | 21.18 | 27.92 | 42.07 | 38.29 | 47.16 | |
Cold Challenge 2 | CTRL | 59.18 | 57.57 | 60.72 | 77.37 | 75.27 | 79.75 |
PL | 66.61 | 64.95 | 68.26 | 87.09 | 84.54 | 90.05 |
Fatty Acid | CTRL | PL | P(diet) | P(T14/7) | P(d * T14/7) | ||
---|---|---|---|---|---|---|---|
T14 °C | T7 °C | T14 °C | T7 °C | ||||
14:0 | 12.8 ± 2.1 | 13.9 ± 1.0 | 8.8 ± 1.3 | 11.8 ± 2.0 | 0.003 | 0.026 | 0.270 |
15:0 | 1.8 ± 0.3 | 1.9 ± 0.2 | 1.0 ± 0.1 | 1.6 ± 0.3 | 0.001 | 0.011 | 0.141 |
16:0 | 60.2 ± 10.1 | 69.5 ± 6.9 | 43.2 ± 6.9 | 58.0 ± 11.0 | 0.008 | 0.019 | 0.555 |
16:1n-7 | 29.2 ± 5.0 | 32.2 ± 2.4 | 16.5 ± 1.8 | 23.3 ± 4.1 | 0.000 | 0.018 | 0.301 |
17:0 | 1.5 ± 0.5 | 2.3 ± 0.1 | 3.7 ± 0.3 | 5.2 ± 0.8 | 0.000 | 0.001 | 0.226 |
18:0 | 9.5 ± 3.4 | 11.2 ± 1.2 | 8.8 ± 2.2 | 10.9 ± 5.68 | 0.779 | 0.311 | 0.908 |
18:1n-9 | 60.3 ± 15.1 | 66.1 ± 12.2 | 53.2 ± 10.3 | 72.9 ± 19.6 | 0.985 | 0.110 | 0.361 |
18:2n-6 | 41.1 ± 7.1 | 44.7 ± 7.3 | 30.4 ± 4.8 | 43.8 ± 8.6 | 0.134 | 0.034 | 0.192 |
18:3n-6 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.006 | 0.055 | 0.179 |
18:3n-3 | 5.6 ± 0.8 | 6.0 ± 0.9 | 4.6 ± 0.8 | 6.6 ± 1.37 | 0.666 | 0.029 | 0.136 |
20:1n-9 | 24.5 ± 4.2 | 28.1 ± 2.4 | 14.1 ± 2.6 | 17.3 ± 5.8 | 0.000 | 0.114 | 0.933 |
20:2n-6 | 1.7 ± 0.2 | 1.9 ± 0.4 | 1.1 ± 0.1 | 1.6 ± 0.3 | 0.011 | 0.033 | 0.532 |
20:3n-6 | 0.4 ± 0.2 | 0.4 ± 0.2 | 0.2 ± 0.1 | 0.3 ± 0.2 | 0.142 | 0.579 | 0.934 |
20:4n-6 (ARA) | 1.5 ± 0.3 | 1.6 ± 0.2 | 0.9 ± 0.1 | 1.3 ± 0.1 | 0.002 | 0.037 | 0.277 |
20:3n-3 | 1.1 ± 0.2 | 1.0 ± 0.2 | 0.8 ± 0.2 | 0.9 ± 0.2 | 0.117 | 0.853 | 0.292 |
20:4n-3 | 0.5 ± 0.1 | 0.5 ± 0.1 | 0.4 ± 0.0 | 0.5 ± 0.1 | 0.303 | 0.250 | 0.255 |
20:5n-3 (EPA) | 17.7 ± 2.0 | 18.7 ± 3.0 | 10.7 ± 2.4 | 14.6 ± 2.8 | 0.001 | 0.081 | 0.276 |
22:1n-9 | 3.5 ± 0.5 | 4.0 ± 0.5 | 2.3 ± 0.3 | 3.0 ± 0.8 | 0.001 | 0.052 | 0.822 |
22:6n-3 (DHA) | 33.5 ± 4.1 | 34.8 ± 5.2 | 17.9 ± 3.1 | 25.7 ± 3.4 | 0.000 | 0.046 | 0.137 |
SAT | 85.8 ± 14.7 | 98.8 ± 8.2 | 65.7 ± 10.4 | 87.5 ± 19.2 | 0.042 | 0.026 | 0.538 |
MUFA | 119.3 ± 23.6 | 132.4 ± 16.3 | 87.5 ± 14.8 | 118.0 ± 30.0 | 0.058 | 0.071 | 0.449 |
PUFA | 103.4 ± 14.7 | 110.1 ± 14.5 | 67.4 ± 10.1 | 95.7 ± 16.1 | 0.004 | 0.028 | 0.148 |
n-3 PUFA | 58.3 ± 7.0 | 60.9 ± 8.9 | 34.4 ± 6.3 | 48.3 ± 7.5 | 0.000 | 0.049 | 0.159 |
n-6 PUFA | 44.6 ± 7.7 | 48.6 ± 8.1 | 32.8 ± 5.1 | 47.0 ± 9.1 | 0.104 | 0.034 | 0.204 |
n-3 HUFA | 52.7 ± 6.3 | 54.9 ± 8.3 | 29.8 ± 5.7 | 41.7 ± 6.3 | 0.000 | 0.059 | 0.176 |
DHA/EPA | 1.89 ± 0.1 | 1.9 ± 0.1 | 1.7 ± 0.1 | 1.8 ± 0.1 | 0.026 | 0.644 | 0.385 |
ARA/EPA | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.581 | 0.715 | 0.831 |
MUFA/SAT | 1.4 ± 0.1 | 1.3 ± 0.1 | 1.3 ± 0.1 | 1.3 ± 0.1 | 0.566 | 0.639 | 0.516 |
MUFA/PUFA | 1.1 ± 0.1 | 1.2 ± 0.1 | 1.3 ± 0.1 | 1.2 ± 0.1 | 0.135 | 0.881 | 0.220 |
MUFA/n-3PUFA | 2.0 ± 0.2 | 2.2 ± 0.2 | 2.6 ± 0.4 | 2.4 ± 0.4 | 0.031 | 0.961 | 0.358 |
MUFA/n-3HUFA | 2.2 ± 0.2 | 2.4 ± 0.3 | 3.0 ± 0.5 | 2.8 ± 0.5 | 0.016 | 0.943 | 0.398 |
SAT/PUFA | 0.8 ± 0.0 | 0.9 ± 0.1 | 1.0 ± 0.1 | 0.9 ± 0.1 | 0.036 | 0.832 | 0.052 |
SAT/n-3PUFA | 1.5 ± 0.1 | 1.6 ± 0.2 | 1.9 ± 0.2 | 1.8 ± 0.2 | 0.004 | 0.741 | 0.117 |
SAT/n-3HUFA | 1.6 ± 0.1 | 1.8 ± 0.20 | 2.2 ± 0.2 | 2.1 ± 0.3 | 0.002 | 0.744 | 0.152 |
Fatty Acid | CTRL | PL | P(diet) | P(T14/7) | P(d * T14/7) | ||
---|---|---|---|---|---|---|---|
T14 °C | T7 °C | T14 °C | T7 °C | ||||
14:0 | 2.6 ± 1.0 | 1.0 ± 0.3 | 1.3 ± 0.6 | 1.8 ± 0.5 | 0.547 | 0.145 | 0.009 |
15:0 | nd | nd | nd | nd | - | - | - |
16:0 | 30.8 ± 10.6 | 25.2 ± 2.1 | 30.6 ± 4.4 | 35.9 ± 4.4 | 0.119 | 0.960 | 0.106 |
16:1n-7 | 6.0 ± 3.3 | 3.1 ± 0.6 | 3.7 ± 0.7 | 4.0 ± 0.8 | 0.438 | 0.159 | 0.097 |
17:0 | nd | nd | nd | nd | 0.994 | 0.816 | 0.342 |
18:0 | 15.7 ± 7.5 | 16.1 ± 1.6 | 19.5 ± 3.0 | 23.4 ± 2.7 | 0.025 | 0.721 | 0.430 |
18:1n-9 | 35.1 ± 16.5 | 28.1 ± 5.8 | 34.4 ± 3.0 | 37.5 ± 6.5 | 0.376 | 0.683 | 0.310 |
18:2n-6 | 9.5 ± 5.4 | 4.2 ± 0.9 | 5.4 ± 1.5 | 6.3 ± 0.8 | 0.500 | 0.149 | 0.053 |
18:3n-6 | nd | nd | nd | nd | - | - | - |
18:3n-3 | 1.6 ± 1.1 | 0.4 ± 0.1 | 0.6 ± 0.3 | 0.8 ± 0.1 | 0.372 | 0.141 | 0.032 |
20:0 | nd | nd | nd | nd | |||
20:1n-9 | 4.9 ± 2.4 | 2.3 ± 0.3 | 2.5 ± 0.8 | 2.9 ± 0.5 | 0.205 | 0.121 | 0.041 |
20:2n-6 | 0.7 ± 0.2 | 0.4 ± 0.1 | 0.4 ± 0.2 | 0.5 ± 0.2 | 0.153 | 0.381 | 0.052 |
20:3n-6 | nd | nd | nd | nd | - | - | - |
20:4n-6 (ARA) | 2.2 ± 0.8 | 2.3 ± 0.3 | 2.7 ± 0.6 | 3.2 ± 0.2 | 0.024 | 0.318 | 0.420 |
20:3n-3 | nd | nd | nd | nd | - | - | - |
20:4n-3 | nd | nd | nd | nd | - | - | - |
20:5n-3 (EPA) | 8.3 ± 3.6 | 6.2 ± 0.7 | 8.1 ± 0.9 | 9.5 ± 2.0 | 0.169 | 0.731 | 0.126 |
22:1n-9 | 1.2 ± 0.8 | 0.8 ± 0.2 | 1.0 ± 0.2 | 0.9 ± 0.2 | 0.764 | 0.283 | 0.359 |
22:6n-3 (DHA) | 41.4 ± 18.9 | 40.8 ± 3.0 | 45.0 ± 14.4 | 60.0 ± 9.7 | 0.103 | 0.287 | 0.025 |
SAT | 49.1 ± 18.0 | 42.3 ± 3.5 | 51.4 ± 7.3 | 61.1 ± 7.5 | 0.068 | 0.782 | 0.143 |
MUFA | 47.2 ± 22.7 | 34.3 ± 6.8 | 41.6 ± 3.4 | 45.3 ± 7.6 | 0.675 | 0.474 | 0.210 |
PUFA | 63.8 ± 24.3 | 54.4 ± 3.7 | 62.3 ± 14.4 | 80.4 ± 8.6 | 0.125 | 0.570 | 0.090 |
n-3 PUFA | 51.3 ± 20.7 | 47.4 ± 3.2 | 53.8 ± 14.3 | 70.4 ± 8.1 | 0.080 | 0.357 | 0.150 |
n-6 PUFA | 12.5 ± 5.9 | 7.0 ± 1.3 | 8.6 ± 1.2 | 10.1 ± 0.6 | 0.781 | 0.218 | 0.043 |
n-3 HUFA | 49.7 ± 20.6 | 47.0 ± 3.2 | 53.2 ± 14.3 | 69.5 ± 8.1 | 0.074 | 0.323 | 0.178 |
DHA/EPA | 5.4 ± 3.5 | 6.6 ± 0.9 | 5.6 ± 2.0 | 6.6 ± 2.2 | 0.940 | 0.355 | 0.927 |
ARA/EPA | 0.3 ± 0.1 | 0.4 ± 0.0 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.801 | 0.334 | 0.475 |
MUFA/SAT | 1.0 ± 0.3 | 0.8 ± 0.1 | 0.8 ± 0.2 | 0.7 ± 0.2 | 0.330 | 0.243 | 0.604 |
MUFA/PUFA | 0.8 ± 0.3 | 0.6 ± 0.1 | 0.7 ± 0.2 | 0.6 ± 0.1 | 0.524 | 0.179 | 0.975 |
MUFA/n-3PUFA | 1.0 ± 0.4 | 0.7 ± 0.2 | 0.8 ± 0.3 | 0.6 ± 0.2 | 0.378 | 0.121 | 0.712 |
MUFA/n-3HUFA | 1.0 ± 0.4 | 0.7 ± 0.2 | 0.8 ± 0.3 | 0.7 ± 0.2 | 0.344 | 0.110 | 0.627 |
SAT/PUFA | 0.8 ± 0.0 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.0 | 0.459 | 0.234 | 0.176 |
SAT/n-3PUFA | 1.0 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 | 0.9 ± 0.0 | 0.776 | 0.083 | 0.829 |
SAT/n-3HUFA | 1.0 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.2 | 0.9 ± 0.0 | 0.634 | 0.130 | 0.929 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hachero-Cruzado, I.; Manchado, M. Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre (Argyrosomus regius) Juveniles. Animals 2021, 11, 2750. https://doi.org/10.3390/ani11092750
Hachero-Cruzado I, Manchado M. Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre (Argyrosomus regius) Juveniles. Animals. 2021; 11(9):2750. https://doi.org/10.3390/ani11092750
Chicago/Turabian StyleHachero-Cruzado, Ismael, and Manuel Manchado. 2021. "Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre (Argyrosomus regius) Juveniles" Animals 11, no. 9: 2750. https://doi.org/10.3390/ani11092750
APA StyleHachero-Cruzado, I., & Manchado, M. (2021). Dietary Phospholipids Enhance Growth Performance and Modulate Cold Tolerance in Meagre (Argyrosomus regius) Juveniles. Animals, 11(9), 2750. https://doi.org/10.3390/ani11092750