Low-Intensity, High-Frequency Grazing Strategy Increases Herbage Production and Beef Cattle Performance on Sorghum Pastures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Area
2.2. Experimental Design and Pasture Management
2.3. Sward Measurements
2.4. Animal Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Briske, D.D.; Derner, J.D.; Brown, J.R.; Fuhlendorf, S.D.; Teague, W.R.; Havstad, K.M.; Gillen, R.L.; Ash, A.J.; Willms, W.D. Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.R.; Bisinger, J.J. Forages and pastures symposium: Improving soil health and productivity on grasslands using managed grazing of livestock. J. Anim. Sci. 2015, 93, 2626–2640. [Google Scholar] [CrossRef]
- Lemaire, G.; Da Silva, S.C.; Agnusdei, M.; Wade, M.; Hodgson, J. Interactions between leaf lifespan and defoliation frequency in temperate and tropical pastures: A review. Grass Forage Sci. 2009, 64, 341–353. [Google Scholar] [CrossRef]
- Da Silva, S.C.; Sbrissia, A.F.; Pereira, L.E.T. Ecophysiology of C4 forage grasses-understanding plant growth for optimising their use and management. Agriculture 2015, 5, 598–625. [Google Scholar] [CrossRef] [Green Version]
- Kunrath, T.R.; Nunes, P.A.D.A.; Filho, W.D.S.; Cadenazzi, M.; Bremm, C.; Martins, A.P.; Carvalho, P.C.F. Sward height determines pasture production and animal performance in a long-term soybean-beef cattle integrated system. Agric. Syst. 2020, 177, 102716. [Google Scholar] [CrossRef]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothmann, M. Grazing methods: A viewpoint. Rangelands 2009, 31, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.C.F.; Prates, A.P.; Moojen, F.G.; Szymczak, L.S.; Albuquerque, P.A.; Neto, G.F.S.; Savian, J.V.; Eloy, L.; Moraes, A.; Bremm, C. Métodos de pastoreio: Uma perspectiva alternativa a décadas de debate e pouco avanço conceitual. In Anais do V Simpósio de Produção Animal a Pasto; Cecato, U., Mamédio, D., Sanches, R., Rodrigues, V.O., Galbeiro, S., Eds.; Universidade Estadual de Maringá: Maringá, Brazil, 2019; pp. 283–306. (In Portuguese) [Google Scholar]
- Congio, G.F.; Batalha, C.D.; Chiavegato, M.B.; Berndt, A.; Oliveira, P.P.; Frighetto, R.T.; Maxwell, T.M.; Gregorini, P.; Da Silva, S.C. Strategic grazing management towards sustainable intensification at tropical pasture-based dairy systems. Sci. Total Environ. 2018, 636, 872–880. [Google Scholar] [CrossRef]
- Berça, A.S.; Cardoso, A.D.S.; Longhini, V.Z.; Tedeschi, L.O.; Boddey, R.M.; Berndt, A.; Reis, R.A.; Ruggieri, A.C. Methane production and nitrogen balance of dairy heifers grazing palisade grass cv. Marandu alone or with forage peanut. J. Anim. Sci. 2019, 97, 4625–4634. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Jones, J.W.; Boote, K.J. Modeling growth, development, and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO: A review. Trans. ASAE 1992, 35, 2043–2056. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Slack, K.; Havilah, E. The effect of defoliation interval and height on growth and herbage quality of kikuyu grass (Pennisetum clandestinum). Trop. Grassl. 1999, 33, 138–145. [Google Scholar]
- McEvoy, M.; Delaby, L.; Kennedy, E.; Boland, T.M.; O’Donovan, M. Early lactation dairy cows: Development of equations to predict intake and milk performance at grazing. Livest. Sci. 2009, 122, 214–221. [Google Scholar] [CrossRef]
- McCarthy, B.; Delaby, L.; Pierce, K.M.; McCarthy, J.; Fleming, C.; Brennan, A.; Horan, B. The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency. J. Dairy Sci. 2016, 99, 3784–3797. [Google Scholar] [CrossRef] [Green Version]
- Peyraud, J.L.; Delagarde, R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013, 7, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Viglizzo, E.F.; Ricard, M.F.; Taboada, M.A.; Vázquez-Amábile, G. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Sci. Total Environ. 2019, 661, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.C.F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management? Trop. Grassl. 2013, 1, 137–155. [Google Scholar] [CrossRef]
- Schons, R.M.T.; Laca, E.A.; Savian, J.V.; Mezzalira, J.C.; Schneider, E.A.N.; Caetano, L.A.M.; Zubieta, A.S.; Benvenutti, M.A.; Carvalho, P.C.F. ‘Rotatinuous’ stocking: An innovation in grazing management to foster both herbage and animal production. Livest. Sci. 2021, 245, 104406. [Google Scholar] [CrossRef]
- Fariña, S.R.; Chilibroste, P. Opportunities and challenges for the growth of milk production from pasture: The case of farm systems in Uruguay. Agric. Syst. 2019, 176, 102631. [Google Scholar] [CrossRef]
- Gonçalves, E.N.; Carvalho, P.C.F.; Kunrath, T.R.; Carassai, I.J.; Bremm, C.; Fischer, V. Relações planta-animal em ambiente pastoril heterogêneo: Processo de ingestão de forragem. Rev. Bras. Zootec. 2009, 38, 1655–1662. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Amaral, M.F.; Mezzalira, J.C.; Bremm, C.; Da Trindade, J.K.; Gibb, M.J.; Suñe, R.W.M.; Carvalho, P.C.F. Sward structure management for a maximum short-term intake rate in annual ryegrass. Grass Forage Sci. 2013, 68, 271–277. [Google Scholar] [CrossRef]
- Fonseca, L.; Mezzalira, J.C.; Bremm, C.; Filho, R.S.A.; Gonda, H.L.; Carvalho, P.C.F. Management targets for maximising the short-term herbage intake rate of cattle grazing in Sorghum bicolor. Livest. Sci. 2012, 145, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Mezzalira, J.C.; Carvalho, P.C.F.; Fonseca, L.; Breem, C.; Cangiano, C.; Gonda, H.L.; Laca, E.A. Behavioural mechanisms of intake rate by heifers grazing swards of contrasting structures. Appl. Anim. Behav. Sci. 2014, 153, 1–9. [Google Scholar] [CrossRef]
- Mezzalira, J.C.; Bonnet, O.J.; Carvalho, P.C.F.; Fonseca, L.; Bremm, C.; Mezzalira, C.C.; Laca, E.A. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores. J. Anim. Ecol. 2017, 86, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P. The effects of stem density of tropical swards and age of grazing cattle on their foraging behaviour. Grass Forage Sci. 2008, 63, 1–8. [Google Scholar] [CrossRef]
- Soares, A.B.; Maccari, M.; Glienke, C.L.; Assmann, T.S.; Bortolli, M.A.; Elejalde, D.A.G.; Missio, R.L. Mixed production of Alexandergrass and sorghum under nitrogen fertilization and grazing intensities. Aust. J. Crop. Sci. 2020, 14, 85–91. [Google Scholar] [CrossRef]
- Briske, D.D. Developmental morphology and physiology of grasses. In Grazing Management: An Ecological Perspective; Heitschmidt, R.K., Stuth, J.W., Eds.; Timber Press: Portland, OR, USA, 1991; pp. 85–105. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen–Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- EMBRAPA. Sistema Brasileiro de Classificação de Solos; Centro Nacional de Pesquisa do Solo—CNPS; EMBRAPA: Brasilia, Brazil, 1999; p. 412. (In Portuguese) [Google Scholar]
- Rodrigues, J.A.S.; Schaffert, R.E.; Tardin, F.D.; Casela, C.R.; Parrella, R.A.C.; Da Costa, R.V. BRS 802: Híbrido de Sorgo de Pastejo—Alternativa de Produção de Forragem de Alta Qualidade Nutritiva, Comunicado Técnico; EMBRAPA: Distrito Federal, Brazil, 2009; p. 175. (In Portuguese) [Google Scholar]
- Rodrigues, J.A.S.; Menezes, C.B.D.; Machado, J.R.D.A.; Tabosa, J.N.; Simplício, J.B. O manejo cultural. In Sorgo: O Produtor Pergunta, a Embrapa Responde; Filho, I.A.P., Rodrigues, J.A.S., Eds.; Empresa Brasileira de Pesquisa Agropecuária: Brasília, Brazil, 2015; pp. 123–139. (In Portuguese) [Google Scholar]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Barthram, G.T. Experimental techniques: The HFRO sward stick. In The Hill Farming Research Organization Biennial Report 1984/1985; HFRO Publishing: Midlothian, UK, 1985; pp. 29–30. [Google Scholar]
- Mott, G.O.; Lucas, H.L. The design, conduct, and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the International Grassland Congress, State College, PA, USA, 17–23 August 1952; pp. 1380–1385. [Google Scholar]
- Molento, M.B.; Fortes, F.S.; Buzatti, A.; Kloster, F.S.; Sprenger, L.K.; Coimbra, E.; Soares, L.D. Partial selective treatment of Rhipicephalus microplus and breed resistance variation in beef cows in Rio Grande do Sul, Brazil. Vet. Parasitol. 2013, 192, 234–239. [Google Scholar] [CrossRef]
- Dias de Castro, L.L.; Abrahão, C.L.H.; Buzatti, A.; Molento, M.B.; Bastianetto, E.; Rodrigues, D.S.; Lopes, L.B.; Silva, M.X.; De Freitas, M.; Conde, M.H.; et al. Comparison of McMaster and Mini-FLOTAC fecal egg counting techniques in cattle and horses. Vet. Parasitol. Reg. Stud. Rep. 2017, 10, 132–135. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. Linear Mixed-Effects Models Using ‘Eigen’ and S4. R Package Version 1.1-27.1. Available online: https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 29 June 2021).
- Lenth, R.V.; Buerkner, P.; Herve, M.; Love, J.; Riebl, H.; Singmann, H. Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.6.1. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 10 October 2021).
- Romera, A.J.; Doole, G.J. Optimising the interrelationship between intake per cow and intake per hectare. Anim. Prod. Sci. 2015, 55, 384–396. [Google Scholar] [CrossRef]
- Savian, J.V.; Schons, R.M.T.; de Souza Filho, W.; Zubieta, A.S.; Kindlein, L.; Bindelle, J.; Bayer, C.; Bremm, C.; de Carvalho, P.C.F. ‘Rotatinuous’ stocking as a climate-smart grazing management strategy for sheep production. Sci. Total Environ. 2021, 753, 141790. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G. Defoliation, shoot plasticity, sward structure and herbage utilization in pasture: Review of the underlying ecophysiological processes. Agriculture 2015, 5, 1146–1171. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.; Pausch, J.; Kuzyakov, Y. Effect of clipping and shading on C allocation and fluxes in soil under ryegrass and alfalfa estimated by 14C labelling. Appl. Soil Ecol. 2013, 64, 228–236. [Google Scholar] [CrossRef]
- Höglind, M.; Hanslin, H.M.; Van Oijen, M. Timothy regrowth, tillering and leaf area dynamics following spring harvest at two growth stages. Field Crop. Res. 2005, 93, 51–63. [Google Scholar] [CrossRef]
- Barker, J.D.; Ferraro, F.P.; Nave, R.L.A.G.; Sulc, R.M.; Lopes, F.; Albrecht, K.A. Analysis of herbage mass and herbage accumulation rate using gompertz equations. Agron. J. 2010, 102, 849–857. [Google Scholar] [CrossRef]
- Szymczak, L.S. Pastoral Management Strategies Based on Ecological Processes for Sustainable Intensification. Ph.D. Thesis, Universidade Federal do Paraná, Paraná, Brazil, 2018. [Google Scholar]
- Gomide, C.A.M.; Gomide, J.A.; Huaman, C.A.M.; Paciullo, D.S.C. Fotossíntese, reservas orgânicas e rebrota do capim-mombaça (Panicum maximim Jacq.) sob diferentes intensidades de desfolha do perfilho principal. Rev. Bras. Zootec. 2002, 31, 2165–2175. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Sbrissia, A.F.; Duchini, P.G.; Zanini, G.D.; Santos, G.T.; Padilha, D.A.; Schmitt, D. Defoliation strategies in pastures submitted to intermittent stocking method: Underlying mechanisms buffering forage accumulation over a range of grazing heights. Crop. Sci. 2018, 58, 945–954. [Google Scholar] [CrossRef]
- Sousa, B.M.D.L.; Júnior, D.D.N.; Monteiro, H.C.D.F.; Da Silva, S.C.; Vilela, H.H.; Da Silveira, M.C.T.; Rodrigues, C.S.; Sbrissia, A.F. Dynamics of forage accumulation in Elephant grass subjected to rotational grazing intensities. Rev. Bras. Zootec. 2013, 42, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Difante, G.D.S.; Euclides, V.P.B.; Nascimento Júnior, D.D.; Da Silva, S.C.; Barbosa, R.A.; Torres Júnior, R.D.A. Desempenho e conversão alimentar de novilhos de corte em capim tanzânia submetido a duas intensidades de pastejo sob lotação rotativa. Rev. Bras. Zootec. 2010, 39, 33–41. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- White, J.; Hodgson, J.G. New Zealand Pasture and Crop Science; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Bircham, J.S.; Hodgson, J. The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass Forage Sci. 1983, 38, 323–331. [Google Scholar] [CrossRef]
- Matthew, C.; Assuero, S.G.; Black, C.K.; Sackville Hamilton, N.R.S. Tiller Dynamics of Grazed Swards. In Grassland Ecophysiology and Grazing Ecology; Lemaire, G., Hodgson, J., Moraes, A., Nabinger, C., Carvalho, P.C.F., Eds.; CAB Int.: Wallingford, UK, 2000; pp. 265–287. [Google Scholar]
- Nelson, C.J. Shoot morphological plasticity of grasses: Leaf growth vs. tillering. Grassland ecophysiology and grazing ecology. In Grassland Ecophysiology and Grazing Ecology; Lemaire, G., Hodgson, J., Moraes, A., Nabinger, C., Carvalho, P.C.F., Eds.; CAB Int.: Wallingford, UK, 2000; pp. 101–126. [Google Scholar]
- Da Silva, S.C.; Nascimento Júnior, D.D. Avanços na pesquisa com plantas forrageiras tropicais em pastagens: Características morfofisiológicas e manejo do pastejo. Rev. Bras. De Zootec. 2007, 36, 121–138. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Evers, J.B.; Van Der Krol, A.R.; Vos, J.; Strui, P.C. Understanding shoot branching by modelling form and function. Trends Plant Sci. 2011, 16, 464–467. [Google Scholar] [CrossRef]
- Gommers, C.M.M.; Visser, E.J.W.; Onge, K.R.S.T.; Voesenek, L.A.C.J.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef]
- Reddy, S.K.; Holalu, S.V.; Casal, J.J.; Finlayson, S.A. Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol. 2013, 163, 1047–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kebrom, T.H.; Mullet, J.E. Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant Cell Environ. 2015, 38, 1471–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, W.; Guo, H.; Goff, V.H.; Lee, T.; Kim, C.; Paterson, A.H. Genetic analysis of vegetative branching in sorghum. Theor. Appl. Genet. 2014, 127, 2387–2403. [Google Scholar] [CrossRef]
- Alam, M.M.; Graeme, L.; Hammer, G.L.; van Oosterom, E.J.; Cruickshank, A.W.; Hunt, C.H.; Jordan, D.R. A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytol. 2014, 203, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Tamele, O.H. Manejo de Híbridos de Sorgo e Cultivares de Milheto em Sistema de Pastejo Rotativo. Master’s Dissertation, Universidade Estadual Paulista, São Paulo, Brazil, 2009. (In Portuguese). [Google Scholar]
- Savian, J.V.; Schons, R.M.T.; Mezzalira, J.C.; Neto, A.B.; Neto, G.D.S.; Benvenutti, M.A.; Carvalho, P.C.F. A comparison of two rotational stocking strategies on the foraging behaviour and herbage intake by grazing sheep. Animal 2020, 14, 2503–2510. [Google Scholar] [CrossRef]
- Zubieta, Á.S.; Savian, J.V.; Filho, W.D.S.; Wallau, M.O.; Gómez, A.M.; Bindelle, J.; Bonnet, O.J.F.; Carvalho, P.C.F. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Sci. Total Environ. 2021, 754, 142029. [Google Scholar] [CrossRef]
- Delagarde, R.; Peyraud, J.L.; Parga, J.; Ribeiro Filho, H.M.N. Caractéristiques de la prairie avant et après un pâturage: Quels indicateurs de l’ingestion chez la vache laitière? Renc. Rech. Rumin. 2001, 8, 209–212. (In French) [Google Scholar]
- Assmann, J.M.; Anghinoni, I.; Martins, A.P.; de Andrade Costa, S.E.V.G.; Cecagno, D.; Carlos, F.S.; Carvalho, P.C.F. Soil carbon and nitrogen stocks and fractions in a long-term integrated crop-livestock system under no-tillage in southern Brazil. Agric. Ecosyst. Environ. 2014, 190, 52–59. [Google Scholar] [CrossRef]
- Hodgson, J. Grazing Management: Science into Practice; Longman Scientific and Technical: Harlow, UK, 1990; 203p. [Google Scholar]
- Savian, J.V.; Schons, R.M.T.; Marchi, D.E.; Freitas, T.S.; Silva Neto, G.F.; Mezzalira, J.C.; Berndt, A.; Bayer, C.; Carvalho, P.C.F. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean. Prod. 2018, 186, 602–608. [Google Scholar] [CrossRef]
- Zubieta, A.S.; Marín, A.; Savian, J.V.; Bolzan, A.M.S.; Rossetto, J.; Barreto, M.T.; Bindelle, J.; Bremm, C.; Quishpe, L.V.; Valle, S.D.F.; et al. Low-intensity, high-frequency grazing positively affects defoliating behavior, nutrient intake and blood indicators of nutrition and stress in sheep. Front. Vet. Sci. 2021, 8, 631820. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.J.; Provenza, F.D. Learning and dietary choice in herbivores. Rangel. Ecol. Manag. 2009, 62, 399–406. [Google Scholar] [CrossRef]
- Carvalho, P.C.F.; Oliveira, J.O.R.; Pontes, L.D.S.; Silveira, E.O.D.; Poli, C.H.E.C.; Rübensam, J.M.; Santos, R.J.D. Características de carcaça de cordeiros em pastagem de azevém manejada em diferentes alturas. Pesqui. Agropecuária Bras. 2006, 41, 1193–1198. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Filho, K.E. Supply chain approach to sustainable beef production from a Brazilian perspective. Livest. Prod. Sci. 2004, 90, 53–61. [Google Scholar] [CrossRef]
- Du, Y.; Ge, Y.; Ren, Y.; Fan, X.; Pan, K.; Lin, L.; Wu, X.; Min, Y.; Meyerson, L.A.; Heino, M.; et al. A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nat. Commun. 2018, 9, 4133. [Google Scholar] [CrossRef] [Green Version]
- Filho, W.S.; Nunes, P.A.D.A.; Barro, R.S.; Kunrath, T.R.; De Almeida, G.M.; Genro, T.C.M.; Bayer, C.; Carvalho, P.C.F. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts. J. Clean. Prod. 2019, 213, 968–975. [Google Scholar] [CrossRef]
- Bogaerts, M.; Cirhigiri, L.; Robinson, I.; Rodkin, M.; Hajjar, R.; Junior, C.C.; Newton, P. Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon. J. Clean. Prod. 2017, 162, 1539–1550. [Google Scholar] [CrossRef]
- Dick, M.; Da Silva, M.A.; Dewes, H. Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. J. Clean. Prod. 2015, 96, 426–434. [Google Scholar] [CrossRef] [Green Version]
Variables | LIHF | HILF | SEM | PS | PT | PS × T |
---|---|---|---|---|---|---|
Sward height (cm) | ||||||
Pre-grazing | 47.5 Ab | 83.6 Aa | 1.75 | <0.001 | <0.001 | <0.001 |
Post-grazing | 33.7 Ba | 28.3 Bb | 0.38 | |||
Herbage mass (kg DM/ha) | ||||||
Pre-grazing | 1565 Ab | 2390 Aa | 81.9 | 0.003 | <0.001 | <0.001 |
Post-grazing | 1144 Ba | 1000 Ba | 44.8 | |||
Leaf lamina mass (kg DM/ha) | ||||||
Pre-grazing | 492 Ab | 878 Aa | 41.7 | 0.002 | <0.001 | <0.001 |
Post-grazing | 274 Ba | 29 Bb | 21.4 | |||
Stem mass (kg DM/ha) | ||||||
Pre-grazing | 971 Ab | 1324 Aa | 50.4 | 0.001 | <0.001 | 0.006 |
Post-grazing | 786 Ba | 846 Ba | 36.4 | |||
Leaf:stem ratio | ||||||
Pre-grazing | 0.52 Ab | 0.74 Aa | 0.04 | <0.001 | <0.001 | <0.001 |
Post-grazing | 0.37 Ba | 0.04 Bb | 0.03 | |||
Light interception (%) | ||||||
Pre-grazing | 35.4 Ab | 59.4 Aa | 2.2 | 0.019 | <0.001 | <0.001 |
Post-grazing | 22.5 Ba | 8.5 Bb | 1.5 | |||
Tiller density (tillers/m2) | 46.1 | 40.9 | 1.7 | 0.155 | - | - |
Variables | LIHF | HILF | p-Value | SEM |
---|---|---|---|---|
Number of stocking cycles | 15 | 3 | <0.001 | 0.4 |
Rest period (days) | 5 | 31 | <0.001 | 0.2 |
Daily herbage accumulation rate (kg DM/ha) | 138 | 88 | 0.010 | 11.5 |
Total herbage production (kg DM/ha) | 11,636 | 5911 | 0.004 | 1167 |
Herbage harvested per stocking cycle (kg DM/ha) | 426 | 1351 | <0.001 | 78.4 |
Total herbage harvested (kg DM/ha) | 7581 | 4154 | 0.001 | 712 |
Variables | LIHF | HILF | p-Value | SEM |
---|---|---|---|---|
Stocking rate (kg LW/ha) | 1370 | 1756 | <0.001 | 74.9 |
Average daily gain (kg/animal) | 0.950 | 0.702 | 0.017 | 0.06 |
Daily LW gain (kg/ha) | 4.0 | 4.0 | 0.950 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portugal, T.B.; Szymczak, L.S.; de Moraes, A.; Fonseca, L.; Mezzalira, J.C.; Savian, J.V.; Zubieta, A.S.; Bremm, C.; de Faccio Carvalho, P.C.; Monteiro, A.L.G. Low-Intensity, High-Frequency Grazing Strategy Increases Herbage Production and Beef Cattle Performance on Sorghum Pastures. Animals 2022, 12, 13. https://doi.org/10.3390/ani12010013
Portugal TB, Szymczak LS, de Moraes A, Fonseca L, Mezzalira JC, Savian JV, Zubieta AS, Bremm C, de Faccio Carvalho PC, Monteiro ALG. Low-Intensity, High-Frequency Grazing Strategy Increases Herbage Production and Beef Cattle Performance on Sorghum Pastures. Animals. 2022; 12(1):13. https://doi.org/10.3390/ani12010013
Chicago/Turabian StylePortugal, Thales Baggio, Leonardo Silvestri Szymczak, Anibal de Moraes, Lidiane Fonseca, Jean Carlos Mezzalira, Jean Víctor Savian, Angel Sánchez Zubieta, Carolina Bremm, Paulo César de Faccio Carvalho, and Alda Lúcia Gomes Monteiro. 2022. "Low-Intensity, High-Frequency Grazing Strategy Increases Herbage Production and Beef Cattle Performance on Sorghum Pastures" Animals 12, no. 1: 13. https://doi.org/10.3390/ani12010013
APA StylePortugal, T. B., Szymczak, L. S., de Moraes, A., Fonseca, L., Mezzalira, J. C., Savian, J. V., Zubieta, A. S., Bremm, C., de Faccio Carvalho, P. C., & Monteiro, A. L. G. (2022). Low-Intensity, High-Frequency Grazing Strategy Increases Herbage Production and Beef Cattle Performance on Sorghum Pastures. Animals, 12(1), 13. https://doi.org/10.3390/ani12010013