Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Why Do Ganders Have Poor Reproductive Performance?
2.1. Seasonality
- Long day breeders: inhabitants of the higher latitude (40–45° N) temperate zone. They breed during the longer days in spring and early summer.
- Inhabitants of the mid-latitude (30–40° N) temperate regions. Their breeding season starts in autumn and ends in the following spring–early summer.
- Short day breeders: inhabitants of subtropical areas (22–25° N). Their breeding season starts from late summer to following spring.
2.2. Poor Semen Quality
2.3. Age of Maturity
3. Methods to Improve Reproductive Efficiency of Ganders
3.1. Artificial Photoperiod and Monochromatic Light Sources
3.2. Nutritional Supplementation
3.3. Inhibin Immunization
3.4. Leptin Immunization
3.5. Artificial Insemination and Semen Cryopreservation
3.6. Anti-Müllerian Hormone
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buckland, R.B.; Gérard, G. (Eds.) Goose Production; FAO Animal Production and Health Paper 154; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- FAOSTAT. Data: Crops and Livestock Products; Statistics Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 9 November 2021).
- Worldometer. Current World Population. Worldometers.info. Available online: https://www.worldometers.info/world-population/ (accessed on 9 November 2021).
- Ramachandran, R. Current and future reproductive technologies for avian species. Adv. Exp. Med. Biol. 2014, 752, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.F.; Ahmad, E.; Mustafa, S.; Chen, Z.; Shi, Z.; Shi, F. Spermiogenesis, stages of seminiferous epithelium and variations in seminiferous tubules during active states of spermatogenesis in Yangzhou goose ganders. Animals 2020, 10, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanov, M.N. Goose production efficiency as influenced by genotype, nutrition and production systems. World’s Poult. Sci. J. 1999, 55, 281–294. [Google Scholar] [CrossRef]
- Tereshchenko, A.V.; Mikityuk, D.N.; Ryabokon, Y.A.; Ivko, I.I.; Melnik, V.A.; Ryabinina, E.V.; Khvostik, V.P.; Gorbanev, A.P. Geese on the Farm and in the Courtyard, 2nd ed.; Tereshchenko, A.V., Ed.; UAAS, Poultry Research Institute: Borky, Ukraine, 2008. [Google Scholar]
- Shi, Z.; Sun, A.; Shao, X.; Chen, Z.; Zhu, H. Boosting the Economic Returns of Goose Breeding and Developing the Industry by Controlled Photoperiod for Out-of-season Reproduction. In Animal Environment and Welfare, Proceedings of the International Symposium on Health Environment and Animal Welfare, Rongchang, Chongqing, China, 23–26 October 2015; Ni, J.-Q., Lim, T.-T., Wang, C., Eds.; China Agriculture Press: Beijing, China, 2015; pp. 357–364. [Google Scholar]
- Romanov, M.N. Geese. In Encyclopedia of Animal Science, 2nd ed.; eBook; Baer, C.K., Ullrey, D.E., Pond, W.G., Eds.; Taylor & Francis Inc.: London, UK; CRC Press Inc.: Boca Raton, FL, USA, 2018; Volume 1, pp. 487–489. [Google Scholar] [CrossRef]
- Kozák, J. Goose production and goose products. World’s Poult. Sci. J. 2021, 77, 403–414. [Google Scholar] [CrossRef]
- Goluch-Koniuszy, Z.; Haraf, G. Geese for slaughter and wild geese as a source of selected mineral elements in a diet. J. Elem. 2018, 23, 1343–1360. [Google Scholar] [CrossRef]
- Tóth-Baranyi, I. Baromfiipari Is Meretek; Müszaki Könyvkiadó: Budapest, Hungary, 1957; pp. 372–384. [Google Scholar]
- Silversides, F.G.; Crawford, R.D.; Wang, H.C. The cytogenetics of domestic geese. J. Hered. 1988, 79, 6–8. [Google Scholar] [CrossRef]
- Huang, J.; Pingel, H.; Guy, G.; Łukaszewicz, E.; Baéza, E.; Wang, S. A century of progress in waterfowl production, and a history of the WPSA Waterfowl Working Group. World’s Poult. Sci. J. 2012, 68, 551–563. [Google Scholar] [CrossRef]
- Romanov, M.N. Evolution of domestic geese. Centres of domestication and dispersion. In New Investigations on Palearctic Geese; Gudina, A.N., Ed.; Zaporizhya Branch of the Ukrainian Ornithological Society, Zaporizhya State University: Zaporizhya, Ukraine, 1995; pp. 120–126. [Google Scholar]
- Salamon, A. Fertility and hatchability in goose eggs: A review. Int. J. Poult. Sci. 2020, 19, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Procter, T.; Smith, D. Managing Breeding Stock for Optimal Performance. 6 August 2013. Poultry World. Available online: https://www.poultryworld.net/Breeders/General/2013/8/Managing-breeding-stock-for-optimal-performance-1327700W/ (accessed on 9 November 2021).
- Jamieson, B.G. (Ed.) Reproductive Biology and Phylogeny of Birds, Part A: Phylogeny, Morphology, Hormones and Fertilization; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Shi, Z.D.; Tian, Y.B.; Wu, W.; Wang, Z.Y. Controlling reproductive seasonality in the geese: A review. World’s Poult. Sci. J. 2008, 64, 343–355. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Z.; Shao, X.; Yu, J.; Wei, C.; Dai, Z.; Shi, Z. Reproductive axis gene regulation during photostimulation and photorefractoriness in Yangzhou goose ganders. Front. Zool. 2017, 14, 11. [Google Scholar] [CrossRef] [Green Version]
- Gumułka, M.; Rozenboim, I. Mating activity of domestic geese ganders (Anser anser f. domesticus) during breeding period in relation to age, testosterone and thyroid hormones. Anim. Reprod. Sci. 2013, 142, 183–190. [Google Scholar] [CrossRef]
- Gumułka, M.; Rozenboim, I. Breeding period-associated changes in semen quality, concentrations of LH, PRL, gonadal steroid and thyroid hormones in domestic goose ganders (Anser anser f. domesticus). Anim. Reprod. Sci. 2015, 154, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Leska, A.; Kiezun, J.; Kaminska, B.; Dusza, L. Seasonal changes in the expression of the androgen receptor in the testes of the domestic goose (Anser anser f. domestica). Gen. Comp. Endocrinol. 2012, 179, 63–70. [Google Scholar] [CrossRef] [PubMed]
- El Halawani, M.; Rozenboim, I. The ontogeny and control of incubation behavior in turkeys. Poult. Sci. 1993, 72, 906–911. [Google Scholar] [CrossRef]
- Romanov, M.N. Genetics of broodiness in poultry—A review. Asian-Australas. J. Anim. Sci. 2001, 14, 1647–1654. [Google Scholar] [CrossRef]
- Gumułka, M.; Rozenboim, I. Effect of breeding stage and photoperiod on gonadal and serotonergic axes in domestic ganders. Theriogenology 2015, 84, 1332–1341. [Google Scholar] [CrossRef]
- Islam, M.S.; Howlider, M.A.R.; Kabir, F.; Alam, J. Comparative assessment of fertility and hatchability of Barred Plymouth Rock, White Leghorn, Rhode Island Red and White Rock hen. Int. J. Poult. Sci. 2002, 1, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Salamon, A.; Kent, J.P. Manual egg turning is necessary for optimal hatching in geese. Int. J. Poult. Sci. 2016, 15, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Lukaszewicz, E.; Kruszynski, W.; Fujihara, N. Effect of age on quality of fresh and frozen-thawed semen in White Italian ganders. Asian J. Androl. 2003, 5, 89–93. [Google Scholar]
- Boz, M.A.; Baş, H.; Sarica, M.; Erensoy, K. The effects of natural mating and artificial insemination on reproductive traits of 1-and 2-year-old domestic Turkish geese. Vet. Res. Commun. 2021, 45, 211–221. [Google Scholar] [CrossRef]
- Lukaszewiczl, E.; Furuta, H.; Xi, Y.-M.; Fujihara, N. Comparative study on semen quality of one-and two-year-old ganders during the entire reproductive season. Asian J. Androl. 2000, 2, 139–142. [Google Scholar]
- El-Hanoun, A.M.; Attia, Y.A.; Gad, H.A.M.; Abdella, M.M. Effect of different managerial systems on productive and reproductive traits, blood plasma hormones and serum biochemical constituents of geese. Animal 2012, 6, 1795–1802. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, A.; Łukaszewicz, E. The possibility of obtaining intergeneric hybrids via White Kołuda (Anser anser L.) goose insemination with fresh and frozen-thawed Canada goose (Branta canadensis L.) gander semen. Theriogenology 2012, 77, 507–513. [Google Scholar] [CrossRef]
- Zeman, M.; Košutzký, J.; Miček, Ľ.; Lengyel, A. Changes in plasma testosterone, thyroxine and triiodothyronine in relation to sperm production and remex moult in domestic ganders. Reprod. Nutr. Dev. 1990, 30, 549–557. [Google Scholar] [CrossRef]
- Shi, Z.D.; Huang, Y.M.; Liu, Z.; Liu, Y.; Li, X.W.; Proudman, J.A.; Yu, R.C. Seasonal and photoperiodic regulation of secretion of hormones associated with reproduction in Magang goose ganders. Domest. Anim. Endocrinol. 2007, 32, 190–200. [Google Scholar] [CrossRef]
- Péczely, P.; El Halawani, M.; Hargitai, C.; Mézes, M.; Forgó, V.; Janosi, S. The photorefractoriness in domestic goose: Effect of gonads and thyroid on the development of postbreeding prolactinemia. Acta Biol. Hung. 1993, 44, 329–352. [Google Scholar]
- Liu, S.J.; Zheng, J.X.; Yang, N. Semen quality factor as an indicator of fertilizing ability for geese. Poult. Sci. 2008, 87, 155–159. [Google Scholar] [CrossRef]
- Łukaszewicz, E. Artificial insemination in geese. World’s Poult. Sci. J. 2010, 66, 647–658. [Google Scholar] [CrossRef]
- Thiele, H.-H. Duck meat production: Breeding Pekin ducks for the world market. Int. Hatch. Pract. 2016, 30, 23–25. [Google Scholar]
- Srinivas, G. Economic Traits of Broilers and Layers. 19 December 2015. SlideShare from Scribd. Available online: https://www.slideshare.net/gurramsrinivas39/economic-traits-of-broilers-and-layers (accessed on 9 November 2021).
- Bondarenko, Y.V.; Ryabokon, N.G.; Romanov, M.N. Genetic Principles of the Synthesis of Dimorphically Coloured Geese. In Proceedings of the 12th International Symposium on Current Problems in Avian Genetics, Průhonice, Czech Republic, 1–3 September 1997; World’s Poultry Science Association, Průhonice near Prague: Czech Branch, Czech Republic, 1997; pp. 126–128. [Google Scholar]
- Dunn, I.C.; Miao, Y.-W.; Morris, A.; Romanov, M.N.; Wilson, P.W.; Waddington, D.; Sharp, P.J. Candidate genes and reproductive traits in a commercial broiler breeder population, an association study. J. Anim. Sci. 2001, 79 (Suppl. S1), 43. [Google Scholar]
- Gadyuchko, O.T.; Sakhatsky, N.I.; Tereshchenko, A.V.; Anisimov, V.I.; Kislaya, E.D.; Svinarev, V.F. Genetic potential of breeds and populations of geese in Ukraine. Ptakhivnistvo 2003, 53, 54–62. [Google Scholar]
- Ruban, S.Y.; Prijma, S.V.; Fedota, O.M.; Lysenko, N.G. Animal genetic resources of Ukraine: Current status and perspectives. J. Vet. Med. Biotechnol. Biosaf. 2015, 1, 23–31. [Google Scholar]
- Sun, A.D.; Shi, Z.D.; Huang, Y.M.; Liang, S.D. Development of out-of-season laying in geese and its impact on the goose industry in Guangdong Province, China. World’s Poult. Sci. J. 2007, 63, 481–490. [Google Scholar] [CrossRef]
- Thurston, R.J.; Korn, N. Spermiogenesis in commercial poultry species: Anatomy and control. Poult. Sci. 2000, 79, 1650–1668. [Google Scholar] [CrossRef]
- Ubuka, T.; Son, Y.L.; Tobari, Y.; Narihiro, M.; Bentley, G.E.; Kriegsfeld, L.J.; Tsutsui, K. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor. Front. Endocrinol. 2014, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, A.R.; Nicholls, T.J.; Plowman, G. Thyroxine treatment facilitates prolactin secretion and induces a state of photorefractoriness in thyroidectomized starlings. J. Endocrinol. 1985, 104, 99–103. [Google Scholar] [CrossRef]
- Dawson, A.; Sharp, P.J. The role of prolactin in the development of reproductive photorefractoriness and postnuptial molt in the European starling (Sturnus vulgaris). Endocrinology 1998, 139, 485–490. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Thaxton, J.P.; Dozier, W.A., III; Purswell, J.; Roush, W.B.; Branton, S.L. A review of lighting programs for broiler production. Int. J. Poult. Sci. 2006, 5, 301–308. [Google Scholar] [CrossRef]
- Cao, J.; Liu, W.; Wang, Z.; Xie, D.; Jia, L.; Chen, Y. Green and blue monochromatic lights promote growth and development of broilers via stimulating testosterone secretion and myofiber growth. J. Appl. Poult. Res. 2008, 17, 211–218. [Google Scholar] [CrossRef]
- Woodard, A.E.; Moore, J.A.; Wilson, W.O. Effect of wave length of light on growth and reproduction in Japanese quail (Coturnix coturnix japonica). Poult. Sci. 1969, 48, 118–123. [Google Scholar] [CrossRef]
- Pyrzak, R.; Siopes, T.D. The effect of light color on egg quality of turkey hens in cages. Poult. Sci. 1986, 65, 1262–1267. [Google Scholar] [CrossRef]
- Lewis, P.D.; Morris, T.R. Poultry and coloured light. World’s Poult. Sci. J. 2000, 56, 189–207. [Google Scholar] [CrossRef]
- Chang, S.-C.; Zhuang, Z.-X.; Lin, M.-J.; Cheng, C.-Y.; Lin, T.-Y.; Jea, Y.-S.; Huang, S.-Y. Effects of monochromatic light sources on sex hormone levels in serum and on semen quality of ganders. Anim. Reprod. Sci. 2016, 167, 96–102. [Google Scholar] [CrossRef]
- Zhu, H.X.; Hu, M.D.; Guo, B.B.; Qu, X.L.; Lei, M.M.; Chen, R.; Chen, Z.; Shi, Z.D. Effect and molecular regulatory mechanism of monochromatic light colors on the egg-laying performance of Yangzhou geese. Anim. Reprod. Sci. 2019, 204, 131–139. [Google Scholar] [CrossRef]
- Baxter, M.; Joseph, N.; Osborne, V.R.; Bédécarrats, G.Y. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye. Poult. Sci. 2014, 93, 1289–1297. [Google Scholar] [CrossRef]
- Rozenboim, I.; Biran, I.; Chaiseha, Y.; Yahav, S.; Rosenstrauch, A.; Sklan, D.; Halevy, O. The effect of a green and blue monochromatic light combination on broiler growth and development. Poult. Sci. 2004, 83, 842–845. [Google Scholar] [CrossRef]
- Parvin, R.; Mushtaq, M.M.H.; Kim, M.J.; Choi, H.C. Light emitting diode (LED) as a source of monochromatic light: A novel lighting approach for behaviour, physiology and welfare of poultry. World’s Poult. Sci. J. 2014, 70, 543–556. [Google Scholar] [CrossRef]
- Hassan, M.R.; Sultana, S.; Choe, H.S.; Ryu, K.S. Effect of monochromatic and combined light colour on performance, blood parameters, ovarian morphology and reproductive hormones in laying hens. Ital. J. Anim. Sci. 2013, 12, e56. [Google Scholar] [CrossRef] [Green Version]
- Tong, Q.; McGonnell, I.M.; Demmers, T.G.M.; Roulston, N.; Bergoug, H.; Romanini, C.E.; Verhelst, R.; Guinebretière, M.; Eterradossi, N.; Berckmans, D.; et al. Effect of a photoperiodic green light programme during incubation on embryo development and hatch process. Animal 2018, 12, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Sun, Y.; Fan, J.; Zong, Y.; Li, Y.; Shi, L.; Isa, A.M.; Wang, Y.; Ni, A.; Ge, P.; et al. Effects of monochromatic green light stimulation during embryogenesis on hatching and posthatch performance of four strains of layer breeder. Poult. Sci. 2020, 99, 5501–5508. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, J.T.; Yang, H.M.; Cao, W.; Li, Y.B. The effect of new monochromatic light regimes on egg production and expression of the circadian gene BMAL1 in pigeons. Poult. Sci. 2015, 94, 836–840. [Google Scholar] [CrossRef]
- Liu, L.; Li, D.; Gilbert, E.R.; Xiao, Q.; Zhao, X.; Wang, Y.; Yin, H.; Zhu, Q. Effect of monochromatic light on expression of estrogen receptor (ER) and progesterone receptor (PR) in ovarian follicles of chicken. PLoS ONE 2015, 10, e0144102. [Google Scholar] [CrossRef]
- Wabeck, C.J.; Skoglund, W.C. Influence of radiatn energy from fluorescent light sources on growth, mortality, and feed conversion of broliers. Poult. Sci. 1974, 53, 2055–2059. [Google Scholar] [CrossRef] [PubMed]
- Cave, N.A. Effects of feeding level during pullet-layer transition and of pretransition lighting on performance of broiler breeders. Poult. Sci. 1990, 69, 1141–1146. [Google Scholar] [CrossRef]
- Er, D.; Wang, Z.; Cao, J.; Chen, Y. Effect of monochromatic light on the egg quality of laying hens. J. Appl. Poult. Res. 2007, 16, 605–612. [Google Scholar] [CrossRef]
- Jerysz, A.; Lukaszewicz, E. Effect of dietary selenium and vitamin E on ganders’ response to semen collection and ejaculate characteristics. Biol. Trace Elem. Res. 2013, 153, 196–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janan, J.; Tóth, P.; Hutás, I.; Treuer, Á.; Pali, J.; Csépányi, B. Effects of dietary micronutrient supplementation on the reproductive traits of laying geese. Acta Fytotech. Zootech. 2015, 18, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Al-Daraji, H.J.; Al-Jnabi, Y.A. Effect of dietary supplementation with lycopene on some semen biochemical traits of local ganders. Iraqi J. Biotechnol. 2015, 14, 282–295. [Google Scholar]
- Mangiagalli, M.G.; Martino, P.A.; Smajlovic, T.; Guidobono Cavalchini, L.; Marelli, S.P. Effect of lycopene on semen quality, fertility and native immunity of broiler breeder. Br. Poult. Sci. 2010, 51, 152–157. [Google Scholar] [CrossRef]
- Rosato, M.P.; Centoducati, G.; Santacroce, M.P.; Iaffaldano, N. Effects of lycopene on in vitro quality and lipid peroxidation in refrigerated and cryopreserved turkey spermatozoa. Br. Poult. Sci. 2012, 53, 545–552. [Google Scholar] [CrossRef]
- Elokil, A.A.; Bhuiyan, A.A.; Liu, H.Z.; Hussein, M.N.; Ahmed, H.I.; Azmal, S.A.; Yang, L.; Li, S. The capability of L-carnitine-mediated antioxidant on cock during aging: Evidence for the improved semen quality and enhanced testicular expressions of GnRH1, GnRHR, and melatonin receptors MT 1/2. Poult. Sci. 2019, 98, 4172–4181. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Neuman, S.L.; Latour, M.A.; Hester, P.Y. The effect of dietary L-carnitine on semen traits of White Leghorns. Poult. Sci. 2007, 86, 2228–2235. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, Y.J.; Parizadian, B.; Akhlaghi, A.; Sardarzadeh, A. Effect of dietary l-carnitine supplementation on semen characteristics of male Japanese quail. Comp. Clin. Path. 2014, 23, 47–51. [Google Scholar] [CrossRef]
- Al-Daraji, H.J.; Tahir, A.O. Effect of L-carnitine supplementation on drake semen quality. S. Afr. J. Anim. Sci. 2014, 44, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Sarica, S.; Corduk, M.; Suicmez, M.; Cedden, F.; Yildirim, M.; Kilinc, K. The effects of dietary L-carnitine supplementation on semen traits, reproductive parameters, and testicular histology of Japanese quail breeders. J. Appl. Poult. Res. 2007, 16, 178–186. [Google Scholar] [CrossRef]
- Fattah, A.; Sharafi, M.; Masoudi, R.; Shahverdi, A.; Esmaeili, V. L-carnitine is a survival factor for chilled storage of rooster semen for a long time. Cryobiology 2017, 74, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Fattah, A.; Sharafi, M.; Masoudi, R.; Shahverdi, A.; Esmaeili, V.; Najafi, A. L-Carnitine in rooster semen cryopreservation: Flow cytometric, biochemical and motion findings for frozen-thawed sperm. Cryobiology 2017, 74, 148–153. [Google Scholar] [CrossRef]
- Oso, A.O.; Lala, O.A.; Oke, E.O.; Williams, G.A.; Taiwo, A.G.; Ogunsola, Z.O. Effects of dietary supplementation with vitamin E, selenium yeast or both on egg incubation response, embryonic development, keet quality, and posthatch growth of helmeted guinea fowl breeders. Trop. Anim. Health Prod. 2020, 52, 2667–2675. [Google Scholar] [CrossRef]
- Attia, Y.A.; Qota, E.M.; Bovera, F.; Tag El-Din, A.E.; Mansour, S.A. Effect of amount and source of manganese and/or phytase supplementation on productive and reproductive performance and some physiological traits of dual purpose cross-bred hens in the tropics. Br. Poult. Sci. 2010, 51, 235–245. [Google Scholar] [CrossRef]
- Di Fiore, M.M.; Lamanna, C.; Assisi, L.; Botte, V. Opposing effects of D-aspartic acid and nitric oxide on tuning of testosterone production in mallard testis during the reproductive cycle. Reprod. Biol. Endocrinol. 2008, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Giacone, F.; Condorelli, R.A.; Mongioì, L.M.; Bullara, V.; La Vignera, S.; Calogero, A.E. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function. Endocrine 2017, 56, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A.E.; Rodrigueiro, R.J.B.; Santos, T.C.; Ospina-Rojas, I.C.; Rademacher, M. Effects of dietary supplementation of meat-type quail breeders with guanidinoacetic acid on their reproductive parameters and progeny performance. Poult. Sci. 2014, 93, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Nasirikhah, A.; Zhandi, M.; Shakeri, M.; Sadeghi, M.; Ansari, M.; Deldar, H.; Yousefi, A.R. Dietary Guanidinoacetic acid modulates testicular histology and expression of c-Kit and STRA8 genes in roosters. Theriogenology 2019, 130, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.F.; Yang, Z.B.; Wang, Y.; Yang, W.R.; Jiang, S.Z.; Gai, G.S. Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poult. Sci. 2009, 88, 2159–2166. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.B.; Yang, W.R.; Wang, Y.; Jiang, S.Z.; Zhang, G.G. Effects of ginger root (Zingiber officinale) on laying performance and antioxidant status of laying hens and on dietary oxidation stability. Poult. Sci. 2011, 90, 1720–1727. [Google Scholar] [CrossRef] [PubMed]
- Altawash, A.S.A.; Shahneh, A.Z.; Moravej, H.; Ansari, M. Chrysin-induced sperm parameters and fatty acid profile changes improve reproductive performance of roosters. Theriogenology 2017, 104, 72–79. [Google Scholar] [CrossRef]
- Zhandi, M.; Ansari, M.; Roknabadi, P.; Zare Shahneh, A.; Sharafi, M. Orally administered Chrysin improves post-thawed sperm quality and fertility of rooster. Reprod. Domest. Anim. 2017, 52, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Knight, P.G. Roles of inhibins, activins, and follistatin in the female reproductive system. Front. Neuroendocrinol. 1996, 17, 476–509. [Google Scholar] [CrossRef] [PubMed]
- Bristol, S.K.; Woodruff, T.K. Follicle-restricted compartmentalization of transforming growth factor beta superfamily ligands in the feline ovary. Biol. Reprod. 2004, 70, 846–859. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.Y. Inhibins and activins: Chemical properties and biological activity. Proc. Soc. Exp. Biol. Med. 1987, 186, 253–264. [Google Scholar] [CrossRef]
- Meachem, S.J.; Nieschlag, E.; Simoni, M. Inhibin B in male reproduction: Pathophysiology and clinical relevance. Eur. J. Endocrinol. 2001, 145, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.Y. Inhibins, activins, and follistatins: Gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr. Rev. 1988, 9, 267–293. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.F.; Wei, Q.; Zhu, H.; Chen, Z.; Ahmad, E.; Zhendan, S.; Shi, F. The role of active immunization against inhibin α-subunit on testicular development, testosterone concentration and relevant genes expressions in testis, hypothalamus and pituitary glands in Yangzhou goose ganders. Theriogenology 2019, 128, 122–132. [Google Scholar] [CrossRef]
- Moreau, J.D.; Satterlee, D.G.; Rejman, J.J.; Cadd, G.G.; Kousoulas, K.G.; Fioretti, W.C. Active immunization of Japanese quail hens with a recombinant chicken inhibin fusion protein enhances production performance. Poult. Sci. 1998, 77, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Lovell, T.M.; Knight, P.G.; Groome, N.P.; Gladwell, R.T. Changes in plasma inhibin A levels during sexual maturation in the female chicken and the effects of active immunization against inhibin alpha-subunit on reproductive hormone profiles and ovarian function. Biol. Reprod. 2001, 64, 188–196. [Google Scholar] [CrossRef]
- Lovell, T.M.; Knight, P.G.; Groome, N.P.; Gladwell, R.T. Measurement of dimeric inhibins and effects of active immunization against inhibin alpha-subunit on plasma hormones and testis morphology in the developing cockerel. Biol. Reprod. 2000, 63, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.; You, S.; Kim, H.; Chaiseha, Y.; El Halawani, M. Effects of active immunization with inhibin alpha subunit on reproductive characteristics of turkey hens. Biol. Reprod. 2001, 65, 1594–1600. [Google Scholar] [CrossRef] [Green Version]
- Voge, J.L.; Parker, J.B.; Wheaton, J.E. Effects of immunization against alpha-inhibin using two adjuvants on daily sperm production and hormone concentrations in ram lambs. Domest. Anim. Endocrinol. 2009, 37, 206–213. [Google Scholar] [CrossRef]
- Hopkins, M.; Blundell, J.E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. 2016, 130, 1615–1628. [Google Scholar] [CrossRef]
- Landry, D.; Cloutier, F.; Martin, L.J. Implications of leptin in neuroendocrine regulation of male reproduction. Reprod. Biol. 2013, 13, 1–14. [Google Scholar] [CrossRef]
- Childs, G.V.; Odle, A.K.; MacNicol, M.C.; MacNicol, A.M. The importance of leptin to reproduction. Endocrinology 2021, 162, bqaa204. [Google Scholar] [CrossRef]
- Guzmán, A.; Hernández-Coronado, C.G.; Rosales-Torres, A.M.; Hernández-Medrano, J.H. Leptin regulates neuropeptides associated with food intake and GnRH secretion. Ann. Endocrinol. 2019, 80, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gong, M. Review of the role of leptin in the regulation of male reproductive function. Andrologia 2018, 50, e12965. [Google Scholar] [CrossRef]
- Lei, M.M.; Dai, Z.C.; Zhu, H.X.; Chen, R.; Chen, Z.; Shao, C.R.; Shi, Z.D. Impairment of testes development in Yangzhou ganders by augmentation of leptin receptor signaling. Theriogenology 2021, 171, 94–103. [Google Scholar] [CrossRef]
- Lei, M.M.; Wu, S.Q.; Li, X.W.; Wang, C.L.; Chen, Z.; Shi, Z.D. Leptin receptor signaling inhibits ovarian follicle development and egg laying in chicken hens. Reprod. Biol. Endocrinol. 2014, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.M.; Wu, S.Q.; Shao, X.B.; Li, X.W.; Chen, Z.; Ying, S.J.; Shi, Z.D. Creating leptin-like biofunctions by active immunization against chicken leptin receptor in growing chickens. Domest. Anim. Endocrinol. 2015, 50, 55–64. [Google Scholar] [CrossRef]
- Martins, A.D.; Moreira, A.C.; Sá, R.; Monteiro, M.P.; Sousa, M.; Carvalho, R.A.; Silva, B.M.; Oliveira, P.F.; Alves, M.G. Leptin modulates human Sertoli cells acetate production and glycolytic profile: A novel mechanism of obesity-induced male infertility? Biochim. Biophys. Acta 2015, 1852, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amjad, S.; Baig, M.; Zahid, N.; Tariq, S.; Rehman, R. Association between leptin, obesity, hormonal interplay and male infertility. Andrologia 2019, 51, e13147. [Google Scholar] [CrossRef] [Green Version]
- Malik, I.A.; Durairajanayagam, D.; Singh, H.J. Leptin and its actions on reproduction in males. Asian J. Androl. 2019, 21, 296–299. [Google Scholar] [CrossRef]
- Haron, M.N.; D’Souza, U.J.; Jaafar, H.; Zakaria, R.; Singh, H.J. Exogenous leptin administration decreases sperm count and increases the fraction of abnormal sperm in adult rats. Fertil. Steril. 2010, 93, 322–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, X.; Hu, L.; Li, H. Exogenous leptin affects sperm parameters and impairs blood testis barrier integrity in adult male mice. Reprod. Biol. Endocrinol. 2018, 16, 55. [Google Scholar] [CrossRef] [Green Version]
- Bakst, M.R.; Dymond, J.S. Artificial insemination in poultry. In Success in Artificial Insemination–Quality of Semen and Diagnostics Employed; Lemma, A., Ed.; IntechOpen: London, UK, 2013; pp. 722–723. [Google Scholar] [CrossRef] [Green Version]
- Hudson, G.H.; Omprakash, A.V.; Premavalli, K.; Dhinakar Raj, G. Quantifying sperm egg interaction to assess the breeding efficiency through artificial insemination in guinea fowls. Br. Poult. Sci. 2017, 58, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Van Krey, H.P.; Siegel, P.B. A revised artificial insemination schedule for broiler breeder hens. Poult. Sci. 1976, 55, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Thélie, A.; Grasseau, I.; Grimaud-Jottreau, I.; Seigneurin, F.; Blesbois, E. Semen biotechnology optimization for successful fertilization in Japanese quail (Coturnix japonica). Theriogenology 2019, 139, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Lierz, M.; Reinschmidt, M.; Müller, H.; Wink, M.; Neumann, D. A novel method for semen collection and artificial insemination in large parrots (Psittaciformes). Sci. Rep. 2013, 3, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonato, M.; Malecki, I.A.; Brand, Z.; Cloete, S.W.P. Developing a female-only flock for artificial insemination purposes in ostriches: Progress and future directions. Anim. Reprod. Sci. 2017, 180, 85–91. [Google Scholar] [CrossRef]
- Weigend, S.; Romanov, M.N.; Rath, D. Methodologies to Identify, Evaluate and Conserve Poultry Genetic Resources. In Proceedings of the XXII World’s Poultry Congress & Exhibition: Participant List & Full Text CD + Book of Abstracts, Istanbul, Turkey, 8–13 June 2004; WPSA—Turkish Branch: Istanbul, Turkey, 2004; p. 84. [Google Scholar]
- Blesbois, E. Freezing avian semen. Avian Biol. Res. 2011, 4, 52–58. [Google Scholar] [CrossRef]
- Hammerstedt, R.H.; Graham, J.K. Cryopreservation of poultry sperm: The enigma of glycerol. Cryobiology 1992, 29, 26–38. [Google Scholar] [CrossRef]
- Fujihara, N. Simple and rapid cryopreservation of rooster spermatozoa. J. Low Temp. Med. 1991, 17, 128–131. [Google Scholar]
- Sakhatskij, N.I.; Tereshchenko, A.V.; Artemenko, A.B.; Tagirov, M.T. Influence of Nine-year Storage in Liquid Nitrogen on Reproductive Properties of Freeze-thawed Chicken Semen. In Proceedings of the 7th Baltic Poultry Conference, Riga, Latvia, 9 September 1999; Ministry of Agriculture: Riga, Latvia, 1999; pp. 86–88. [Google Scholar]
- Pawluczuk, B.; Grunder, A.A. Research note: Comparison of three methods of collecting semen from ganders. Poult. Sci. 1989, 68, 1714–1717. [Google Scholar] [CrossRef]
- Blanco, J.M.; Gee, G.; Wildt, D.E.; Donoghue, A.M. Species variation in osmotic, cryoprotectant, and cooling rate tolerance in poultry, eagle, and peregrine falcon spermatozoa. Biol. Reprod. 2000, 63, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Łukaszewicz, E.; Chrzanowska, M.; Jerysz, A.; Chełmońska, B. Attempts on freezing the Greylag (Anser anser L.) gander semen. Anim. Reprod. Sci. 2004, 80, 163–173. [Google Scholar] [CrossRef]
- Bychko, S.V.; Artemenko, O.B.; Tereshchenko, O.V.; Linnik, T.P. Gander sperm cryopreservation in plastic straws. Probl. Cryobiol. Cryomedicine 2004, 4, 61–66. [Google Scholar]
- Tai, J.-J.L.; Chen, J.C.; Wu, K.C.; Wang, S.D.; Tai, C. Cryopreservation of gander semen. Br. Poult. Sci. 2001, 42, 384–388. [Google Scholar] [CrossRef]
- Lake, P. Artificial insemination in poultry and the storage of semen—A re-appraisal. World’s Poult. Sci. J. 1967, 23, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Gumułka, M.; Rozenboim, I. Mating activity and sperm penetration assay in prediction of the reproduction potential of domestic goose ganders in a harem system. Anim. Reprod. Sci. 2015, 161, 138–145. [Google Scholar] [CrossRef]
- Gumułka, M.; Rozenboim, I. Effect of the age of ganders on reproductive behavior and fertility in a competitive mating structure. Ann. Anim. Sci. 2017, 17, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Łukaszewicz, E.; Jerysz, A.; Kowalczyk, A. Reproductive season and male effect on quantitative and qualitative traits of individually collected Muscovy duck (Cairina moschata) semen. Reprod. Domest. Anim. 2020, 55, 1735–1746. [Google Scholar] [CrossRef]
- Mishina, Y.; Whitworth, D.J.; Racine, C.; Behringer, R.R. High specificity of Müllerian-inhibiting substance signaling in vivo. Endocrinology 1999, 140, 2084–2088. [Google Scholar] [CrossRef]
- Rey, R.; Lukas-Croisier, C.; Lasala, C.; Bedecarrás, P. AMH/MIS: What we know already about the gene, the protein and its regulation. Mol. Cell. Endocrinol. 2003, 211, 21–31. [Google Scholar] [CrossRef]
- Fujisawa, M.; Yamasaki, T.; Okada, H.; Kamidono, S. The significance of anti-Müllerian hormone concentration in seminal plasma for spermatogenesis. Hum. Reprod. 2002, 17, 968–970. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Hua, G.; Ahmad, S.; Liang, A.; Han, L.; Wu, C.; Yang, F.; Yang, L. Action mechanism of inhibin α-subunit on the development of Sertoli cells and first wave of spermatogenesis in mice. PLoS ONE 2011, 6, e25585. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.; Picard, J.; Campargue, J.; Josso, N. Immunocytochemical detection of anti-Müllerian hormone in Sertoli cells of various mammalian species including human. J. Histochem. Cytochem. 1987, 35, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Jost, A.; Vigier, B.; Prépin, J.; Perchellet, J.P. Studies on sex differentiation in mammals. Recent Prog. Horm. Res. 1973, 29, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Weenen, C.; Laven, J.S.E.; Von Bergh, A.R.M.; Cranfield, M.; Groome, N.P.; Visser, J.A.; Kramer, P.; Fauser, B.C.J.M.; Themmen, A.P.N. Anti-Müllerian hormone expression pattern in the human ovary: Potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 2004, 10, 77–83. [Google Scholar] [CrossRef]
- Johnson, P.A.; Kent, T.R.; Urick, M.E.; Giles, J.R. Expression and regulation of anti-mullerian hormone in an oviparous species, the hen. Biol. Reprod. 2008, 78, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.A.; Kent, T.R.; Urick, M.E.; Trevino, L.S.; Giles, J.R. Expression of anti-Mullerian hormone in hens selected for different ovulation rates. Reproduction 2009, 137, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Wojtusik, J.; Johnson, P.A. Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol. Reprod. 2012, 86, 91. [Google Scholar] [CrossRef]
- Chen, R.; Dai, Z.C.; Zhu, H.X.; Lei, M.M.; Li, Y.; Shi, Z.D. Active immunization against AMH reveals its inhibitory role in the development of pre-ovulatory follicles in Zhedong White geese. Theriogenology 2020, 144, 185–193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, M.F.; Shafiq, M.; Ali, I. Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production. Animals 2022, 12, 44. https://doi.org/10.3390/ani12010044
Akhtar MF, Shafiq M, Ali I. Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production. Animals. 2022; 12(1):44. https://doi.org/10.3390/ani12010044
Chicago/Turabian StyleAkhtar, Muhammad Faheem, Muhammad Shafiq, and Ilyas Ali. 2022. "Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production" Animals 12, no. 1: 44. https://doi.org/10.3390/ani12010044
APA StyleAkhtar, M. F., Shafiq, M., & Ali, I. (2022). Improving Gander Reproductive Efficacy in the Context of Globally Sustainable Goose Production. Animals, 12(1), 44. https://doi.org/10.3390/ani12010044