Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Strain Identification
2.3. Antimicrobial Susceptibility Testing Using VITEK®2 AST GN67 and GP69 Cards
2.4. Interpretation of Results
2.5. The Statistical Analysis
3. Results
3.1. Main Pathology Analysis of the Reptiles
3.2. Frequency of Bacterial Resistance to Antibiotics
- Most common in Pseudomonas aeruginosa, followed by Citrobacter brakii, Enterococcus faecalis, and Stenotrophomas (Xanthomonas) maltophilia.
- Relatively common in Citrobacter freundi, Acinetobacter lwoffii, and Salmonella spp.
- Less common in Clostridium fallax, Staphylococcus aureus (resistance was absent), Proteus mirabilis, Delftia acidovorans, and Morganella morganii spp., morganii.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Redrobe, S. Redefining and developing exotic animal medicine. J. Small Anim. Pract. 2008, 49, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Woodward, D.L.; Khakhria, R.; Johnson, W.M. Human salmonellosis associated with exotic pets. J. Clin. Microbiol. 1997, 35, 2786–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hydeskov, H.B.; Guardabassi, L.; Aalbæk, A.; Olsen, K.E.P.; Nielsen, S.S.; Bertelsen, M.F. Salmonella prevalence among reptiles in a zoo education setting. Zoo Public Health 2013, 60, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Di Ianni, F.; Dodi, P.L.; Cabassi, C.S.; Pelizzone, I.; Sala, A.; Cavirani, S.; Parmigiani, E.; Quintavalla, F.; Taddei, S. Conjunctival flora of clinically normal and diseased chelonians and tortoises. BMC Vet. Res. 2015, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Bohuski, E.; Lorch, J.M.; Griffin, K.M.; Blehert, D.S. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 2015, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Marschang, R.E. Viruses infecting reptiles. Viruses 2011, 3, 2087–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prpic, J.; Keros, T.; Balija, M.L.; Forcic, D.; Jemersic, L. First recorded case of paramyxovirus infection introduced into a healthy snake collection in Croatia. BMC Vet. Res. 2017, 13, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajac, M.; Wasyl, D.; Rózycki, M.; Bilska-Zając, E.; Fafiński, Z.; Iwaniak, W.; Krajewska, M.; Hoszowski, A.; Konieczna, O.; Fafińska, P.; et al. Free-living snakes as a source and possible vector of Salmonella spp. and parasites. Eur. J. Wildlife Res. 2016, 62, 161–166. [Google Scholar] [CrossRef]
- Dipineto, L.; Raia, P.; Varriale, L.; Borrelli, L.; Botta, V.; Serio, C.; Capasso, M.; Rinaldi, L. Bacteria and parasites in Podarcis sicula and P. sicula klemmerii. BMC Vet. Res. 2018, 14, 392. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.S. Anaerobic bacterial infections in reptiles. J. Zoo Wild Med. 1990, 21, 180–184. [Google Scholar]
- Wheeler, E.; Hong, P.Y.; Bedon, L.C.; Mackie, R.I. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles. J. Wildlife Dis. 2012, 48, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, K. The use of antibiotics in reptiles: A review. J. Small Anim. Pract. 1983, 24, 741–752. [Google Scholar] [CrossRef]
- Philips, I.R. Reptiles encountered in practice: A survey of two hundred and forty cases. J. Small Anim. Pract. 1986, 27, 807–824. [Google Scholar] [CrossRef]
- Meredith, A.; Delaney-Johnson, C. BSAVA Manual of Exotic Pets, 5th ed.; BSAVA British Small Animal Veterinary Association: London, UK, 2010. [Google Scholar]
- Beck, K.; Loomis, M.; Lewbart, G.; Spelman, L.; Papich, M. Preliminary comparison of plasma concentrations of gentamicin injected into the cranial and caudal limb musculature of the eastern box turtle (Terrapene Carolina Carolina). J. Zoo Wild Med. 1995, 26, 265–268. [Google Scholar]
- Hilf, M.; Swanson, D.; Wagner, R.; Yu, V.L. Pharmacokinetics of piperacillin in blood pythons (Python curtus) and in vitro evaluation of efficacy against aerobic gram-negative bacteria. J. Zoo Wild Med. 1991, 22, 199–203. [Google Scholar]
- Holz, P.H.; Burger, J.P.; Pasloske, K.; Baker, R.; Young, S. Effect of injection site on carbenicillin pharmacokinetics in the carpet python. Morelia Spilota. J. Herpetol. Med. Surg. 2002, 12, 12–16. [Google Scholar] [CrossRef]
- Lawrence, K.; Muggleton, P.W.; Needham, J.R. Preliminary study on the use of ceftazidime, a broad spectrum cephalosporin antibiotic in snakes. Res. Vet. Sci. 1984, 36, 16–20. [Google Scholar] [CrossRef]
- Prezant, R.M.; Isaza, R.; Jacobson, E.R. Plasma concentrations and disposition kinetics of enrofloxacin in gopher tortoises (Gopherus polyphemus). J. Zoo Wild Med. 1994, 25, 82–87. [Google Scholar]
- Raphael, B.L.; Papich, M.; Cook, R.A. Pharmacokinetics of enrofloxacin after a single intramuscular injection in Indian star tortoises (Geochelone elegans). J. Zoo Wild Med. 1994, 25, 88–94. [Google Scholar]
- Chung, T.H.; Yi, S.W.; Kim, B.S. Identification and antibiotic resistance profiling of bacterial isolates from septicaemic soft-shelled chelonians (Pelodiscus sinensis). Vet. Med. 2017, 62, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Ogunleye, A.O.; Carlson, S. Characterization of a multidrug resistant Salmonella enterica give isolated from a lizard captured in a poultry house in Nigeria. Afr. J. Biomed. Res. 2017, 20, 53–58. Available online: https://www.ajol.info/index.php/ajbr/article/view/155644 (accessed on 12 December 2021).
- Sting, R.; Ackermann, D.; Blazey, B.; Rabsch, W.; Szabo, I. Salmonella infections in reptiles—Prevalence, serovar spectrum and impact on animal health. Berl. Und Münchener Tieraerztliche Wochenschr. 2013, 126, 202–208. [Google Scholar] [CrossRef]
- Lukac, M.; Pedersen, K.; Prukner-Radovcic, E. Prevalence of Salmonella in captive reptiles from Croatia. J. Zoo Wild Med. 2015, 46, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Whitten, T.; Bender, J.; Smith, K.; Leano, F.; Scheftelet, J. Reptile-associated salmonellosis in Minnesota, 1996–2011. Zoo Public Health 2015, 62, 199–208. [Google Scholar] [CrossRef]
- Whiley, H.; Gardner, M.G.; Ross, K.A. Review of Salmonella and Squamates (Lizards, Snakes and Amphibians): Implications for Public Health. Pathogens 2017, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Bertelsen, M.F.; Weese, J.S. Fatal clostridial enterotoxemia (Clostridium glycolicum) in an ornate nile monitor (Varanus ornatus). J. Zoo Wild Med. 2006, 37, 53–54. [Google Scholar] [CrossRef]
- Higgins, J.; Camp, P.; Farrell, D.; Bravo, D.; Pate, M.; Robbe-Austerman, S. Identification of Mycobacterium spp. of veterinary importance using rpoB gene sequencing. BMC Vet. Res. 2011, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Hensgensa, M.P.M.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.J. Clostridium difficile infection in the community: A zoonotic disease? Clin. Microbiol. Inf. 2012, 18, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Andrés-Lasheras, S.; Martín-Burriel, I.; Mainar-Jaime, R.C.; Morales, M.; Kuijper, E.; Blanco, J.L.; Chirino-Trejo, M.; Bolea, R. Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Vet. Res. 2018, 14, 77. [Google Scholar] [CrossRef]
- CLSI VET08 ED4: 2018; Performance Standards for Antimicrobial Disk and Dilution Susceptibility. 4th Edition, Tests for Bacteria Isolated Animals. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. Available online: http://vet01s.edaptivedocs.info/GetDoc.aspx?doc=CLSI%20VET08%20ED4:2018&scope=user (accessed on 23 October 2021).
- Engler, M.; Parry-Jones, R. Opportunity or Threat: The Role of the European Union in Global Wildlife Trade. Traffic Europe, Brussels Belgium. 2007. Available online: https://www.traffic.org/site/assets/files/3604/opportunity_or_threat_eu_imports.pdf (accessed on 12 December 2021).
- Pedersen, K.; Lassen-Nielsen, A.M.; Nordentoft, S.; Hammer, A.S. Serovars of Salmonella from captive reptiles. Zoo Public Health 2009, 56, 238–242. [Google Scholar] [CrossRef]
- Ebani, V.V. Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pac. J. Trop. Med. 2017, 10, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Szirovicza, L.; López, P.; Kopena, R.; Benkő, M.; Martín, J.; Pénzes, J.J. Random Sampling of Squamate Reptiles in Spanish Natural Reserves Reveals the Presence of Novel Adenoviruses in Lacertids (Family Lacertidae) and Worm Lizards (Amphisbaenia). PLoS ONE 2016, 11, e0159016. [Google Scholar] [CrossRef]
- Quirino, T.F.; Ferreira, A.J.; Silva, M.C.; Silva, R.J.; Morais, D.H.; Ávila, R.W. New records of helminths in reptiles from five states of Brazil. Braz. J. Biol. 2018, 78, 750–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, V. Fungal infections in reptiles—An emerging problem. J. Exot. Pet Med. 2015, 24, 267–275. [Google Scholar] [CrossRef]
- Van Zanten, T.C.; Simpson, S.C. Managing the health of captive groups of reptiles and amphibians. Vet. Clin. N. Am. Exot. Anim. Pract. 2021, 24, 609–645. [Google Scholar] [CrossRef]
- Lee, A. Managing disease outbreaks in captive herds of exotic companion mammals. Vet. Clin. N. Am. Exot. Anim. Pract. 2021, 24, 567–608. [Google Scholar] [CrossRef]
No. | Bacterial Strain Identified | Isolates | From Total% | Sampled From | Reptile Species |
---|---|---|---|---|---|
1 | Achromobacter spanius | 1 | 2.32 | oral cavity | Trachemys scripta scripta |
2 | Acinetobacter lwoffii | 1 | 2.32 | respiratory tract | Testudo hermanni |
3 | Bacillus pumilus | 1 | 2.32 | s.c. abscess | Iguana iguana |
4 | Citrobacter amalonaticus | 1 | 2.32 | oral cavity | Varanus cumingi |
5 | Citrobacter brakii | 1 | 2.32 | oral cavity | Python regius |
6 | Citrobacter freundii | 2 | 4.65 | trachea | Morelia spilota |
feces | Cordylus cataphractus | ||||
7 | Citrobacter koseri | 1 | 2.32 | dermal wound | Iguana iguana |
8 | Clostridium fallax | 1 | 2.32 | trachea | Boa constrictor |
9 | Delftia acidovorans | 1 | 2.32 | oral cavity | Python regius |
10 | Enterobacter cloacae | 1 | 2.32 | trachea | Pogona vitticeps |
11 | Enterococcus casseliflavus | 2 | 4.65 | respiratory tract | Testudo hermanni |
oral cavity | Bitis arietans | ||||
12 | Enterococcus faecalis | 6 | 13.95% | oral cavity | Pseudocerastes persicus |
oral cavity | Python regius | ||||
trachea | Vipera latastei | ||||
trachea | Vipera orlovi | ||||
s.c. abscess | Iguana iguana | ||||
dermal abscess | Pogona vitticeps | ||||
13 | Escherichia coli | 3 | 6.97 | oral cavity | Morelia spilota |
trachea | Varanus cumingi | ||||
trachea | Pseudocerastes persicus | ||||
14 | Klebsiella oxytoca | 3 | 6.97 | trachea | Morelia spilota |
oral cavity | Pogona vitticeps | ||||
dermal abscess | Pogona vitticeps | ||||
15 | Morganella morganii spp. morganii | 1 | 2.32 | trachea | Morelia spilota |
16 | Proteus mirabilis | 2 | 4.65 | dermal abscess | Pogona vitticeps |
feces | Cordylus cataphractus | ||||
17 | Proteus vulgaris | 2 | 4.65 | trachea | Trachemys scripta scripta |
kidney | Bitis schneideri | ||||
18 | Pseudomonas aeruginosa | 5 | 11.62 | trachea | Morelia spilota |
oral cavity | Vipera orlovi | ||||
oral cavity | Python regius | ||||
dermal abscess | Pogona vitticeps | ||||
dermal wound | Iguana iguana | ||||
19 | Salmonella spp. | 2 | 4.65 | oral cavity | Bitis schneideri |
feces | Cordylus cataphractus | ||||
20 | Staphylococcus aureus | 1 | 2.32 | oral cavity | Pogona vitticeps |
21 | Stenotrophomas maltophilia | 4 | 9.30 | trachea | Pantherophis guttatus |
trachea | Python regius | ||||
oral cavity | Vipera latastei | ||||
oral cavity | Python regius | ||||
22 | Streptococi beta haemolitici | 1 | 2.32 | s.c. formation at the tail’s base | Pogona vitticeps |
Isolated Bacterial Strains/No. | Strains | Antibiotic/Group/Generation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Pseudomonas aeruginosa | 5 | PEN | CEF1 | CEF2 | CEF3 | CEF4 | MAC | LINC | TETR | S + T | CLO | FLO | AMGL | QUIN | |||
2. Citrobacter koseri | 1 | PEN | CEF1 | CEF2 | CEF3 | CEF4 | MAC | LINC | TETR | CLO | FLO | AMGL | QUIN | S + T | |||
3. Citrobacter brakii | 1 | PEN | S + T | CLO | CEF3 | CEF4 | MAC | LINC | FLO | QUIN | AMGL | TETR | CEF1 | CEF2 | |||
4. Enterococcus casseliflavus | 2 | CEF1 | CEF2 | CEF3 | CEF4 | MAC | LINC | AMGL | TETR | S + T | PEN | QUIN | CLO | FLO | |||
5. Enterococcus faecalis | 6 | CEF1 | CEF2 | CEF3 | CEF4 | MAC | LINC | AMGL | TETR | S + T | PEN | QUIN | CLO | FLO | |||
6. Klebsiella oxytoca | 3 | PEN | CEF1 | CEF2 | CEF3 | CEF4 | MAC | LINC | TETR | FLO | S + T | CLO | AMGL | QUIN | |||
7. Stenotrophomas(Xanthomonas)maltophilia | 4 | PEN | CEF1 | CEF2 | CEF3 | CEF4 | MAC | LINC | AMGL | FLO | QUIN | TETR | S + T | CLO | |||
8. Proteus vulgaris | 2 | PEN | CEF1 | CEF2 | CLO | TETR | MAC | LINC | AMGL | QUIN | S + T | CEF3 | CEF4 | FLO | |||
9. Citrobacter freundii | 2 | PEN | CEF1 | TETR | FLO | MAC | LINC | AMGL | QUIN | S + T | CLO | CEF2 | CEF3 | CEF4 | |||
10. Enterobacter cloacae | 1 | PEN | CEF1 | CEF2 | MAC | LINC | TETR | AMGL | QUIN | CEF3 | CEF4 | S + T | CLO | FLO | |||
11. Acinetobacter lwoffii | 1 | PEN | CEF1 | CEF2 | MAC | LINC | FLO | AMGL | QUIN | TETR | S + T | CLO | CEF3 | CEF4 | |||
12. Achromobacter spanius | 1 | PEN | S + T | CLO | FLO | MAC | LINC | AMGL | QUIN | TETR | CEF1 | CEF2 | CEF3 | CEF4 | |||
13. Salmonella spp. | 2 | FLO | CEF1 | CEF2 | MAC | LINC | AMGL | QUIN | TETR | S + T | CLO | CEF3 | CEF4 | PEN | |||
14. Escherichia coli | 3 | PEN | CEF1 | FLO | MAC | LINC | CEF2 | QUIN | TETR | S + T | CLO | CEF3 | CEF4 | AMGL | |||
15. Morganella morganii spp. morganii | 1 | PEN | MAC | LINC | FLO | TETR | CEF3 | CEF4 | AMGL | QUIN | S + T | CLO | CEF1 | CEF2 | |||
16. Citrobacter amalonaticus | 1 | PEN | MAC | LINC | TETR | FLO | CEF3 | CEF4 | AMGL | QUIN | S + T | CLO | CEF1 | CEF2 | |||
17. Delftia acidovorans | 1 | PEN | MAC | LINC | QUIN | TETR | S + T | CLO | AMGL | FLO | CEF1 | CEF2 | CEF3 | CEF4 | |||
18. Streptococi beta hemolitici | 1 | MAC | LINC | AMGL | QUIN | TETR | S + T | CLO | FLO | PEN | CEF4 | CEF1 | CEF2 | CEF3 | |||
19. Proteus mirabilis | 2 | MAC | LINC | TETR | PEN | CEF1 | CEF2 | CEF3 | CEF4 | AMGL | QUIN | S + T | CLO | FLO | |||
20. Bacillus pumilus | 1 | TETR | MAC | LINC | PEN | CEF1 | S + T | CLO | AMGL | QUIN | CEF2 | CEF3 | CEF4 | FLO | |||
21. Staphylococcus aureus | 1 | PEN | CEF1 | TETR | S + T | CLO | MAC | LINC | AMGL | QUIN | CEF2 | CEF3 | CEF4 | FLO | |||
22. Clostridium fallax | 1 | PEN | MAC | TETR | CLO | LINC | AMGL | QUIN | S + T | FLO | CEF1 | CEF2 | CEF3 | CEF4 | |||
R | S | I | Total | 43 Isolated bacterial strains |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cristina, R.T.; Kocsis, R.; Dégi, J.; Muselin, F.; Dumitrescu, E.; Tirziu, E.; Herman, V.; Darău, A.P.; Oprescu, I. Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles. Animals 2022, 12, 1279. https://doi.org/10.3390/ani12101279
Cristina RT, Kocsis R, Dégi J, Muselin F, Dumitrescu E, Tirziu E, Herman V, Darău AP, Oprescu I. Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles. Animals. 2022; 12(10):1279. https://doi.org/10.3390/ani12101279
Chicago/Turabian StyleCristina, Romeo T., Rudolf Kocsis, János Dégi, Florin Muselin, Eugenia Dumitrescu, Emil Tirziu, Viorel Herman, Aurel P. Darău, and Ion Oprescu. 2022. "Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles" Animals 12, no. 10: 1279. https://doi.org/10.3390/ani12101279