Effects of Commercially Available Antioxidant-Enriched Fish- and Chicken-Based Diets on Biochemical Parameters and Blood Fatty Acid Profile of Old Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Dogs, and Diets
2.2. Sample Collection and Analysis
2.3. Pet Food Sample Analysis
2.4. Biochemical Analysis
2.5. Blood Fatty Acid Profile
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biochemical Parameters
3.2. Blood Fatty Acid Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanders, T.A. Fat and fatty acid intake and metabolic effects in the human body. Ann. Nutr. Metab. 2009, 55, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Ander, B.P.; Dupasquier, C.M.; Prociuk, M.A.; Pierce, G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar] [PubMed]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef]
- Mazzeranghi, F.; Zanotti, C.; Di Cerbo, A.; Verstegen, J.P.; Cocco, R.; Guidetti, G.; Canello, S. Clinical efficacy of nutraceutical diet for cats with clinical signs of cutaneus adverse food reaction (CAFR). Pol. J. Vet. Sci. 2017, 20, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Di Cerbo, A.; Centenaro, S.; Beribe, F.; Laus, F.; Cerquetella, M.; Spaterna, A.; Guidetti, G.; Canello, S.; Terrazzano, G. Clinical evaluation of an antiinflammatory and antioxidant diet effect in 30 dogs affected by chronic otitis externa: Preliminary results. Vet. Res. Commun. 2016, 40, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Canello, S.; Guidetti, G.; Di Cerbo, A.; Cocco, R. A case of canine dermal melanoma: A nutraceutical approach. Int. J. Appl. Res. Vet. Med. 2018, 16, 117–121. [Google Scholar]
- Canello, S.; Guidetti, G.; Di Cerbo, A.; Cocco, R. A successful nutraceutical approach to manage an elderly dog presenting a focal granulomatous dermatitis with a concomitant chronic otitis. Int. J. Appl. Res. Vet. Med. 2019, 17, 53–56. [Google Scholar]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Weill, P.; Schmitt, B.; Chesneau, G.; Daniel, N.; Safraou, F.; Legrand, P. Effects of introducing linseed in livestock diet on blood fatty acid composition of consumers of animal products. Ann. Nutr. Metab. 2002, 46, 182–191. [Google Scholar] [CrossRef]
- Brossillon, V.; Reis, S.F.; Moura, D.C.; Galvao, J.G.B., Jr.; Oliveira, A.S.; Cortes, C.; Brito, A.F. Production, milk and plasma fatty acid profile, and nutrient utilization in Jersey cows fed flaxseed oil and corn grain with different particle size. J. Dairy Sci. 2018, 101, 2127–2143. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Brown, C.A.; Crowell, W.A.; Barsanti, J.A.; Kang, C.W.; Allen, T.; Cowell, C.; Finco, D.R. Effects of dietary polyunsaturated fatty acid supplementation in early renal insufficiency in dogs. J. Lab. Clin. Med. 2000, 135, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadeen, A.; Laurent, G.; dos Santos, C.C.; Hu, X.; Connelly, K.A.; Holub, B.J.; Mangat, I.; Dorian, P. n-3 Polyunsaturated fatty acids alter expression of fibrotic and hypertrophic genes in a dog model of atrial cardiomyopathy. Heart Rhythm. 2010, 7, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Stoeckel, K.; Nielsen, L.H.; Fuhrmann, H.; Bachmann, L. Fatty acid patterns of dog erythrocyte membranes after feeding of a fish-oil based DHA-rich supplement with a base diet low in n-3 fatty acids versus a diet containing added n-3 fatty acids. Acta Vet. Scand. 2011, 53, 57. [Google Scholar] [CrossRef] [Green Version]
- Di Cerbo, A.; Canello, S.; Guidetti, G.; Fiore, F.; Corsi, L.; Rubattu, N.; Testa, C.; Cocco, R. Adverse food reactions in dogs due to antibiotic residues in pet food: A preliminary study. Vet. Ital. 2018, 54, 137–146. [Google Scholar] [CrossRef]
- Sechi, S.; Chiavolelli, F.; Spissu, N.; Di Cerbo, A.; Canello, S.; Guidetti, G.; Fiore, F.; Cocco, R. An Antioxidant Dietary Supplement Improves Brain-Derived Neurotrophic Factor Levels in Serum of Aged Dogs: Preliminary Results. J. Vet. Med. 2015, 2015, 412501. [Google Scholar] [CrossRef]
- Sechi, S.; Di Cerbo, A.; Canello, S.; Guidetti, G.; Chiavolelli, F.; Fiore, F.; Cocco, R. Effects in dogs with behavioural disorders of a commercial nutraceutical diet on stress and neuroendocrine parameters. Vet. Rec. 2017, 180, 18. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Pezzuto, F.; Canello, S.; Guidetti, G.; Palmieri, B. Therapeutic Effectiveness of a Dietary Supplement for Management of Halitosis in Dogs. J. Vis. Exp. 2015, e52717. [Google Scholar] [CrossRef] [Green Version]
- Di Cerbo, A.; Sechi, S.; Canello, S.; Guidetti, G.; Fiore, F.; Cocco, R. Behavioral Disturbances: An Innovative Approach to Monitor the Modulatory Effects of a Nutraceutical Diet. J. Vis. Exp. 2017, 54878. [Google Scholar] [CrossRef] [Green Version]
- Destefanis, S.; Giretto, D.; Muscolo, M.C.; Di Cerbo, A.; Guidetti, G.; Canello, S.; Giovazzino, A.; Centenaro, S.; Terrazzano, G. Clinical evaluation of a nutraceutical diet as an adjuvant to pharmacological treatment in dogs affected by Keratoconjunctivitis sicca. BMC Vet. Res. 2016, 12, 214. [Google Scholar] [CrossRef] [Green Version]
- Ciribe, F.; Panzarella, R.; Pisu, M.C.; Di Cerbo, A.; Guidetti, G.; Canello, S. Hypospermia Improvement in Dogs Fed on a Nutraceutical Diet. Sci. World J. 2018, 2018, 9520204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sottero, B.; Leonarduzzi, G.; Testa, G.; Gargiulo, S.; Poli, G.; Biasi, F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. Eur J. Lipid Sci. Tech. 2019, 121, 1700047. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- AOAC. Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Robertson, J.B.; Van Soest, P.J. The Analysis of Dietary Fiber in Food; James, W.P.T., Thean-der, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; Volume 9, pp. 123–158. [Google Scholar]
- Correddu, F.; Gaspa, G.; Pulina, G.; Nudda, A. Grape seed and linseed, alone and in combination, enhance unsaturated fatty acids in the milk of Sarda dairy sheep. J. Dairy Sci. 2016, 99, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs; The European Pet Food Industry: Bruxelles, Belgium, 2020. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Kramer, J.K.; Fellner, V.; Dugan, M.E.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Atzori, A.S.; Dimauro, C.; Rassu, S.P.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effect of extruded linseed supplementation on blood metabolic profile and milk performance of Saanen goats. Animal 2013, 7, 1464–1471. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Zern, T.L.; West, K.L.; Fernandez, M.L. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J. Nutr. 2003, 133, 2268–2272. [Google Scholar] [CrossRef]
- Pounis, G.; Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; de Curtis, A.; Persichillo, M.; Sieri, S.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; et al. Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani study. Thromb. Haemost. 2016, 115, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Khosravinia, H.; Azarfar, A.; Sokhtehzary, A. Effects of substituting fish meal with poultry by-product meal in broiler diets on blood urea and uric acid concentrations and nitrogen content of litter. J. Appl. Anim. Res. 2015, 43, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, X.; Chen, D.; Yu, B.; Yin, J.; Huang, Z. Effects of dietary apple polyphenol supplementation on carcass traits, meat quality, muscle amino acid and fatty acid composition in finishing pigs. Food Funct. 2019, 10, 7426–7434. [Google Scholar] [CrossRef] [PubMed]
- Correddu, F.; Nudda, A.; Manca, M.G.; Pulina, G.; Dalsgaard, T.K. Light-Induced Lipid Oxidation in Sheep Milk: Effects of Dietary Grape Seed and Linseed, Alone or in Combination, on Milk Oxidative Stability. J. Agric. Food Chem. 2015, 63, 3980–3986. [Google Scholar] [CrossRef] [PubMed]
- Ogino, Y.; Osada, K.; Nakamura, S.; Ohta, Y.; Kanda, T.; Sugano, M. Absorption of dietary cholesterol oxidation products and their downstream metabolic effects are reduced by dietary apple polyphenols. Lipids 2007, 42, 151–161. [Google Scholar] [CrossRef]
- Ajmo, J.M.; Liang, X.; Rogers, C.Q.; Pennock, B.; You, M. Resveratrol alleviates alcoholic fatty liver in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G833–G842. [Google Scholar] [CrossRef] [Green Version]
- Kojadinovic, M.I.; Arsic, A.C.; Debeljak-Martacic, J.D.; Konic-Ristic, A.I.; Kardum, N.D.; Popovic, T.B.; Glibetic, M.D. Consumption of pomegranate juice decreases blood lipid peroxidation and levels of arachidonic acid in women with metabolic syndrome. J. Sci. Food Agric. 2017, 97, 1798–1804. [Google Scholar] [CrossRef]
- Pazos, M.; Gallardo, J.M.; Torres, J.L.; Medina, I. Activity of grape polyphenols as inhibitors of the oxidation of fish lipids and frozen fish muscle. Food Chem. 2005, 92, 547–557. [Google Scholar] [CrossRef]
- Maestre, R.; Douglass, J.D.; Kodukula, S.; Medina, I.; Storch, J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J. Nutr. 2013, 143, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Toufektsian, M.C.; Salen, P.; Laporte, F.; Tonelli, C.; de Lorgeril, M. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats. J. Nutr. 2011, 141, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Davinelli, S.; Corbi, G.; Zarrelli, A.; Arisi, M.; Calzavara-Pinton, P.; Grassi, D.; De Vivo, I.; Scapagnini, G. Short-term supplementation with flavanol-rich cocoa improves lipid profile, antioxidant status and positively influences the AA/EPA ratio in healthy subjects. J. Nutr. Biochem. 2018, 61, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Soto, M.; Mutch, D.M. Diet Regulation of Long-Chain PUFA Synthesis: Role of Macronutrients, Micronutrients, and Polyphenols on Delta-5/Delta-6 Desaturases and Elongases 2/5. Adv. Nutr. 2021, 12, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, Y.; Shimada, K.; Daida, H. The balance of omega-3 polyunsaturated fatty acids for -reducing residual risks in patients with coronary artery disease. Acta Cardiol. 2017, 72, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.E. The essential nature of dietary omega-3 fatty acids in dogs. J. Am. Vet. Med. Assoc. 2016, 249, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
Antioxidant Substances | Amount Per kg of Complete Food |
---|---|
Grifola frondosa | 270 mg/kg |
Curcuma longa | 102 mg/kg |
Carica papaya | 135 mg/kg |
Punica granatum | 70 mg/kg |
Aloe vera | 135 mg/kg |
Polygonum cuspidatum | 7 mg/kg |
Solanum lycopersicum | 250 mg/kg |
Vitis vinifera | 24 mg/kg |
Rosmarinus officinalis | 15.6 mg/kg |
Diet 1 | AOX | ||
---|---|---|---|
Item 2 | FH | CH | |
Chemical composition (% of DM unless otherwise noted) | |||
DM (%) | 91.64 | 92.11 | 91.00 |
NDF | 16.17 | 14.54 | 7.01 |
ADF | 7.24 | 5.49 | - |
ADL | 2.92 | 1.85 | - |
CP | 23.92 | 24.23 | 10 |
Ash | 8.23 | 8.69 | 6.03 |
Crude fat | 11.00 | 12.00 | 0.50 |
Major FA (g/100 g of total FA) | |||
C14:0 | 1.00 | 0.86 | - |
C16:0 | 18.33 | 19.91 | 22.56 |
C16:1c9 | 2.89 | 2.91 | - |
C18:0 | 4.78 | 6.38 | 4.26 |
C18:1c9 | 35.87 | 36.33 | 11.18 |
C18:1c11 | 2.35 | 2.10 | 0.00 |
C18:2n6 | 29.10 | 28.73 | 55.57 |
C18:3n3 | 2.76 | 1.86 | 6.43 |
C20:4n6 | 0.57 | 0.56 | Nd |
C22:5 n-3 (EPA) | 0.67 | 0.08 | Nd |
C22:5 n-3 (DPA) | 0.26 | 0.08 | Nd |
C22:6 n-3 (DHA) | 1.41 | 0.19 | Nd |
Metabolizable energy | 14.3 | 14.5 | Nd |
Item 1 | Reference Values | Diet 2 | Supplement | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
FH | CH | AOX | N-AOX | Diet | Supplement | D*S | |||
ALB, g/dL | 2–3.3 | 2.76 | 2.83 | 2.87 | 2.71 | 0.04 | 0.348 | 0.071 | 0.183 |
ALP, U/L | 1.5–90 | 83.64 | 95.94 | 111.00 | 61.73 | 15.21 | 0.500 | 0.124 | 0.834 |
BT, mg/dL | 0.05–0.5 | 0.08 | 0.07 | 0.08 | 0.07 | 0.01 | 0.672 | 0.401 | 0.832 |
CAL, mg/dL | 8–10 | 10.70 | 10.71 | 10.73 | 10.68 | 0.07 | 0.956 | 0.912 | 0.477 |
COL, mg/dL | 80–250 | 254.91 | 230.19 | 234.19 | 249.09 | 11.78 | 0.177 | 0.289 | 0.399 |
CPK, U/L | 100–250 | 125.73 | 175.88 | 147.81 | 166.55 | 14.21 | 0.145 | 0.765 | 0.857 |
CRE, mg/dL | 0.5–1.5 | 1.36 | 1.29 | 1.34 | 1.29 | 0.03 | 0.273 | 0.580 | 0.890 |
GGT, U/L | 6–16 | 8.73 | 8.50 | 8.88 | 8.18 | 0.57 | 1.000 | 0.574 | 0.851 |
GLU, mg/dL | 50–100 | 65.73 | 56.56 | 69.13 | 47.45 | 2.82 | 0.299 | <0.0001 | 0.943 |
GOT, U/L | 25–72 | 41.55 | 43.50 | 41.69 | 44.18 | 1.42 | 0.788 | 0.401 | 0.540 |
GPT, U/L | 30–85 | 75.55 | 63.38 | 80.69 | 50.36 | 15.84 | 0.984 | 0.357 | 0.654 |
P, mg/dL | 3.5–6.5 | 3.45 | 3.51 | 3.68 | 3.19 | 0.11 | 0.416 | 0.022 | 0.970 |
PRO, g/dL | 5.3–8.3 | 7.28 | 7.02 | 7.28 | 6.91 | 0.09 | 0.179 | 0.153 | 0.280 |
TRI, mg/dL | 23–100 | 81.00 | 68.81 | 66.00 | 85.09 | 9.44 | 0.124 | 0.072 | 0.030 |
UR, mg/dL | 20–50 | 38.09 | 32.94 | 31.75 | 39.82 | 1.71 | 0.003 | 0.000 | 0.022 |
FAME (g/100 g of Total FA) 1 | Diet 2 | Supplement | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
FH | CH | AOX | N-AOX | Diet | Supplement | D*S | ||
C14:0 | 0.387 | 0.391 | 0.377 | 0.408 | 0.015 | 0.980 | 0.411 | 0.868 |
C15:0 | 0.156 | 0.145 | 0.143 | 0.159 | 0.006 | 0.285 | 0.169 | 0.998 |
C16:0 | 18.285 | 18.474 | 18.083 | 18.855 | 0.370 | 0.976 | 0.378 | 0.964 |
C16:1 trans-6-7 | 0.085 | 0.041 | 0.071 | 0.041 | 0.005 | <0.0001 | 0.001 | 0.355 |
isoC17:0 | 0.120 | 0.113 | 0.110 | 0.123 | 0.011 | 0.962 | 0.791 | 0.220 |
C16:1c7 | 0.386 | 0.402 | 0.378 | 0.421 | 0.022 | 0.687 | 0.592 | 0.348 |
anteisoC17:0 | 0.048 | 0.053 | 0.039 | 0.069 | 0.004 | 0.906 | <0.0001 | 0.114 |
C16:1c9 | 0.665 | 0.783 | 0.664 | 0.838 | 0.035 | 0.483 | 0.005 | 0.056 |
C17:0 | 0.618 | 0.590 | 0.597 | 0.607 | 0.015 | 0.522 | 0.853 | 0.290 |
isoC18:0 | 0.102 | 0.113 | 0.103 | 0.118 | 0.014 | 0.615 | 0.883 | 0.404 |
C17:1 c6-7 | 0.027 | 0.028 | 0.026 | 0.030 | 0.002 | 0.555 | 0.791 | 0.051 |
C17:1c8 | 0.228 | 0.221 | 0.232 | 0.213 | 0.007 | 0.941 | 0.161 | 0.406 |
C17:1c9 | 0.051 | 0.061 | 0.049 | 0.070 | 0.008 | 0.423 | 0.469 | 0.125 |
C18:0 | 25.569 | 26.684 | 26.784 | 25.423 | 0.314 | 0.012 | 0.005 | 0.677 |
C18:1t9 | 0.184 | 0.189 | 0.155 | 0.233 | 0.011 | 0.420 | <0.0001 | 0.788 |
C18:1c9 | 11.246 | 11.708 | 10.960 | 12.334 | 0.292 | 0.786 | 0.008 | 0.072 |
C18:1c11 | 2.953 | 3.108 | 3.016 | 3.088 | 0.065 | 0.196 | 0.970 | 0.304 |
C18:2n6 (LA) | 22.098 | 20.448 | 22.636 | 18.915 | 0.522 | 0.186 | 0.001 | 0.248 |
C18:2t11c15 | 0.254 | 0.223 | 0.232 | 0.240 | 0.006 | 0.009 | 0.180 | 0.673 |
C20:0 | 0.152 | 0.132 | 0.153 | 0.121 | 0.008 | 0.226 | 0.180 | 0.178 |
C18:3n6 | 0.068 | 0.072 | 0.063 | 0.081 | 0.005 | 0.664 | 0.259 | 0.100 |
C20:1c11 | 0.598 | 0.433 | 0.555 | 0.420 | 0.027 | 0.009 | 0.014 | 0.259 |
C18:3n3 (LNA) | 0.138 | 0.093 | 0.109 | 0.116 | 0.008 | 0.000 | 0.069 | 0.065 |
C20:2n6 | 0.483 | 0.377 | 0.474 | 0.342 | 0.020 | 0.025 | 0.001 | 0.368 |
C20:3n9 | 0.023 | 0.073 | 0.028 | 0.088 | 0.013 | 0.080 | 0.120 | 0.250 |
C22:0 | 0.116 | 0.104 | 0.111 | 0.107 | 0.006 | 0.398 | 0.918 | 0.955 |
C20:3n6 | 0.999 | 0.991 | 1.062 | 0.896 | 0.054 | 0.498 | 0.066 | 0.170 |
C22:1n9 | 0.079 | 0.065 | 0.073 | 0.068 | 0.003 | 0.033 | 0.798 | 0.834 |
C20:4n6 (ARA) | 10.368 | 11.261 | 9.540 | 12.871 | 0.500 | 0.639 | 0.002 | 0.303 |
C22:5 n-3 (EPA) | 1.020 | 0.375 | 0.907 | 0.245 | 0.095 | 0.000 | <0.0001 | 0.076 |
C24:0 | 0.204 | 0.169 | 0.190 | 0.174 | 0.010 | 0.043 | 0.915 | 0.085 |
C22:3n6 | 0.144 | 0.134 | 0.147 | 0.126 | 0.007 | 0.473 | 0.297 | 0.229 |
C25:0 | 0.327 | 0.534 | 0.274 | 0.704 | 0.051 | 0.011 | <0.0001 | 0.020 |
C22:5 n-3 (DPA) | 0.665 | 0.555 | 0.568 | 0.645 | 0.037 | 0.138 | 0.250 | 0.497 |
C22:6 n-3 (DHA) | 1.076 | 0.794 | 1.016 | 0.752 | 0.057 | 0.046 | 0.048 | 0.732 |
MCFA | 21.160 | 21.417 | 20.872 | 21.951 | 0.409 | 0.959 | 0.269 | 0.896 |
LCFA | 78.840 | 78.583 | 79.128 | 78.049 | 0.409 | 0.959 | 0.269 | 0.896 |
SFA | 46.084 | 47.504 | 46.965 | 46.868 | 0.497 | 0.146 | 0.603 | 0.673 |
MUFA | 16.504 | 17.040 | 16.179 | 17.757 | 0.329 | 0.909 | 0.011 | 0.185 |
PUFA | 37.412 | 35.457 | 36.857 | 35.375 | 0.649 | 0.277 | 0.401 | 0.771 |
UFA | 53.916 | 52.496 | 53.035 | 53.132 | 0.497 | 0.146 | 0.603 | 0.673 |
OCFA | 1.101 | 1.269 | 1.015 | 1.470 | 0.054 | 0.062 | <0.0001 | 0.009 |
BCFA | 0.270 | 0.280 | 0.252 | 0.310 | 0.027 | 0.790 | 0.518 | 0.271 |
OBCFA | 1.371 | 1.548 | 1.267 | 1.780 | 0.069 | 0.177 | 0.000 | 0.021 |
PUFA6 | 34.161 | 33.283 | 33.923 | 33.231 | 0.562 | 0.578 | 0.671 | 0.928 |
PUFA3 | 2.898 | 1.817 | 2.600 | 1.758 | 0.160 | 0.002 | 0.008 | 0.286 |
n6_n3 | 12.470 | 19.417 | 14.196 | 20.064 | 1.006 | 0.000 | 0.004 | 0.961 |
n3_n6 | 0.084 | 0.054 | 0.076 | 0.052 | 0.004 | 0.001 | 0.003 | 0.300 |
CLA | 0.076 | 0.061 | 0.073 | 0.059 | 0.004 | 0.212 | 0.036 | 0.070 |
AI | 0.372 | 0.385 | 0.373 | 0.389 | 0.011 | 0.625 | 0.671 | 0.730 |
TI | 0.555 | 0.620 | 0.566 | 0.634 | 0.021 | 0.253 | 0.253 | 0.893 |
h:H | 2.767 | 2.647 | 2.746 | 2.624 | 0.076 | 0.599 | 0.547 | 0.913 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sechi, S.; Carta, S.; Correddu, F.; Di Cerbo, A.; Nudda, A.; Cocco, R. Effects of Commercially Available Antioxidant-Enriched Fish- and Chicken-Based Diets on Biochemical Parameters and Blood Fatty Acid Profile of Old Dogs. Animals 2022, 12, 1326. https://doi.org/10.3390/ani12101326
Sechi S, Carta S, Correddu F, Di Cerbo A, Nudda A, Cocco R. Effects of Commercially Available Antioxidant-Enriched Fish- and Chicken-Based Diets on Biochemical Parameters and Blood Fatty Acid Profile of Old Dogs. Animals. 2022; 12(10):1326. https://doi.org/10.3390/ani12101326
Chicago/Turabian StyleSechi, Sara, Silvia Carta, Fabio Correddu, Alessandro Di Cerbo, Anna Nudda, and Raffaella Cocco. 2022. "Effects of Commercially Available Antioxidant-Enriched Fish- and Chicken-Based Diets on Biochemical Parameters and Blood Fatty Acid Profile of Old Dogs" Animals 12, no. 10: 1326. https://doi.org/10.3390/ani12101326
APA StyleSechi, S., Carta, S., Correddu, F., Di Cerbo, A., Nudda, A., & Cocco, R. (2022). Effects of Commercially Available Antioxidant-Enriched Fish- and Chicken-Based Diets on Biochemical Parameters and Blood Fatty Acid Profile of Old Dogs. Animals, 12(10), 1326. https://doi.org/10.3390/ani12101326