Dystocia in the Standardbred Mare: A Retrospective Study from 2004 to 2020
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population and Data Collection
- ✓
- “mild” when a limited intervention with AVD was sufficient for resolution, such as in the case of slight traction performed by one or two people, the administration of oxytocin, the opening of the chorioallantois, or episiotomy; oxytocin was administered (10/20 UI IV) only in case of normal fetal disposition when the uterine contractions were not effective [13,23];
- ✓
- “moderate” when obstetrical procedures were prolonged in terms of degree of traction that required the use of obstetrical instruments, as in the case of severe fetal maldisposition or malformation (AVD);
- ✓
- “severe” when procedures other than AVD were used, such as CVD, cesarean section or fetotomy.
2.2. Statistical Analysis
3. Results
3.1. Clinical Parameters in the Eutocia and Dystocia Groups
3.2. Foal Clinical and Blood Parameters in the Control and Dystocia Groups
3.3. Descriptive Analysis of the Dystocia Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rasbech, N.O. Distocie causate dagli annessi fetali e dal cordone. In Ostetricia Veterinaria, 3rd ed.; Richter, J., Götze, R., Rosenberger, G., Tillmann, H., Eds.; Casa Editrice Ambrosiana: Milano, Italy, 1994; pp. 256–259. [Google Scholar]
- Frazer, G.S.; Embertson, R.; Perkins, N.R. Complications of late gestation in the mare. Equine Vet. Educ. 1997, 9, 306–311. [Google Scholar] [CrossRef]
- Frazer, G.S.; Perkins, N.R.; Embertson, R.M. Normal parturition and evaluation of the mare in dystocia. Equine Vet. Educ. 1999, 11, 41–46. [Google Scholar] [CrossRef]
- Christensen, B.W. Parturition. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Backwell: Oxford, UK, 2011; pp. 2268–2276. [Google Scholar]
- Vandeplassche, M. Dystocia. In Equine Reproduction; McKinnon, A.O., Voss, J., Eds.; Lea & Febiger: Philadelphia, PA, USA, 1992; pp. 578–587. [Google Scholar]
- Ginther, O.J.; Williams, D. On-the-farm incidence and nature of equine dystocias. J. Equine Vet. Sci. 1996, 16, 159–164. [Google Scholar] [CrossRef]
- McCue, P.M.; Ferris, R.A. Parturition, dystocia and foal survival: A retrospective study of 1047 births. Equine Vet. J. 2012, 44, 22–25. [Google Scholar] [CrossRef]
- Norton, J.L.; Dallap, B.L.; Johnston, J.K.; Palmer, J.E.; Sertich, P.L.; Boston, R.; Wilkins, P.A. Retrospective study of dystocia in mares at a referral hospital. Equine Vet. J. 2007, 39, 37–41. [Google Scholar] [CrossRef]
- Marmorini, P.; Gargaro, A.; Panzani, D.; Rota, A.; Camillo, F. Retrospective Analysis of the Incidence and Outcome of Dystocia in 601 Standardbred Mares Foalings. In Proceedings of the Conference of Italian Society of Veterinary Sciences, Italian Society of Veterinary Sciences, Palermo, Italy, 13–16 June 2016; pp. 292–293. [Google Scholar]
- Vandeplassche, M. The normal and abnormal presentation, position and posture of the foal-fetus during gestation and at parturition. Vlaams. Diergeneeskd. Tijdschr. 1957, 26, 68. [Google Scholar]
- Ginther, O.J. Equine Pregnancy: Physical Interactions Between the Uterus and Conceptus. Proc. Am. Assoc. Equine Pract. 1998, 44, 73–104. [Google Scholar]
- Frazer, G.S. Dystocia management. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Backwell: Oxford, UK, 2011; p. 2479. [Google Scholar]
- Lu, K.G.; Barr, B.S.; Embertson, R.; Schaer, B.D. Dystocia-a true equine emergency. Clin. Tech. Equine. Prac. 2006, 5, 145–153. [Google Scholar] [CrossRef]
- Kimura, Y.; Aoki, T.; Chiba, A.; Nambo, Y. Effects of dystocia on blood gas parameters, acid-base balance and serum lactate concentration in heavy draft newborn foals. J. Equine Sci. 2017, 28, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Chiba, A.; Aoki, T.; Itoh, M.; Yamagishi, N.; Shibano, K. Hematological and blood biochemical characteristics of newborn heavy draft foals after dystocia. J. Equine Vet. Sci. 2017, 50, 69–75. [Google Scholar] [CrossRef]
- Renaudin, C.D.; Troedsson, M.H.; Gillis, C.L.; King, V.L.; Bodena, A. Ultrasonographic evaluation of the equine placenta by transrectal and transabdominal approach in the normal pregnant mare. Theriogenology 1997, 47, 559–573. [Google Scholar] [CrossRef]
- Bucca, S.; Fogarty, U.; Collins, A.; Small, V. Assessment of feto-placental well-being in the mare from mid-gestation to term: Transrectal and transabdominal ultrasonographic features. Theriogenology 2005, 64, 542–557. [Google Scholar] [CrossRef] [PubMed]
- Santschi, E.M.; Vaala, W.E. Identification of the high-risk pregnancy. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 5–15. [Google Scholar]
- Ellero, N.; Lanci, A.; Ferlizza, E.; Andreani, G.; Mariella, J.; Isani, G.; Castagnetti, C. Activities of matrix metalloproteinase-2 and-9 in amniotic fluid at parturition in mares with normal and high-risk pregnancy. Theriogenology 2021, 172, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, A.; Mariella, J.; Gentilini, F.; Castagnetti, C. Amniotic fluid and blood lactate concentrations in mares and foals in the early postpartum period. Theriogenology 2012, 78, 1182–1189. [Google Scholar] [CrossRef]
- Lanci, A.; Ingrà, L.; Dondi, F.; Tomasello, F.; Teti, G.; Mariella, J.; Falconi, M.; Castagnetti, C. Morphological study of equine amniotic compartment. Theriogenology 2022, 177, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Embertson, R.M. Referral dystocias. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Backwell: Oxford, UK, 2011; pp. 2511–2516. [Google Scholar]
- Threlfall, W. Retained fetal Membranes. In Current Therapy in Large Animal Theriogenology, 2nd ed.; Youngquist, R., Threlfall, W., Eds.; Saunders Elsevier: St. Louis, MO, USA, 2007; pp. 107–113. [Google Scholar]
- Palmer, J.E.; Wilkins, P.A. How to use EXIT (ex-utero intra-partum treatment) to rescue foals during dystocia. Proc. Am. Ass. Equine Pr. 2005, 51, 281–283. [Google Scholar]
- Pozor, M. Equine placenta–A clinician’s perspective. Part 1: Normal placenta–Physiology and evaluation. Equine Vet. Educ. 2016, 28, 327–334. [Google Scholar] [CrossRef]
- Mariella, J.; Iacono, E.; Lanci, A.; Merlo, B.; Palermo, C.; Morris, L.; Castagnetti, C. Macroscopic characteristics of the umbilical cord in Standardbred, Thoroughbred and Warmblood horses. Theriogenology 2018, 113, 166–170. [Google Scholar] [CrossRef]
- Frazer, G.S. Postpartum complications in the mare. Part 2: Fetal membrane retention and conditions of the gastrointestinal tract, bladder and vagina. Equine Vet. Educ. 2003, 15, 91–110. [Google Scholar] [CrossRef]
- Canisso, I.F.; Rodriguez, J.S.; Sanz, M.G.; da Silva, M.A.C. A clinical approach to the diagnosis and treatment of retained fetal membranes with an emphasis placed on the critically ill mare. Equine Vet. Sci. 2013, 33, 570–579. [Google Scholar] [CrossRef]
- Vaala, W.E. Perinatology. In The Equine Manual, 2nd ed.; Higgins, A.J., Snyder, J.R., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2006; pp. 803–804. [Google Scholar]
- Cash, R.S.G. Colostral quality determined by refractometry. Equine Vet. Educ. 1999, 11, 36–38. [Google Scholar] [CrossRef]
- Rampacci, E.; Mazzola, K.; Beccati, F.; Passamonti, F. Diagnostic characteristics of refractometry cut-off points for the estimation of immunoglobulin G concentration in mare colostrum. Equine Vet. Educ. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Madigan, J.E. Normal equine labor, delivery and newborn vital signs. In Manual of Equine Neonatal Medicine, 4th ed.; Madigan, H.E., Ed.; Live Oak Publishing: Woodland, CA, USA, 2013; p. 19. [Google Scholar]
- Castagnetti, C.; Pirrone, A.; Mariella, J.; Mari, G. Venous blood lactate evaluation in equine neonatal intensive care. Theriogenology 2010, 73, 343–357. [Google Scholar] [CrossRef]
- Koterba, A.M. Management of the intensive care unit: Levels of care, quality control, and care after discharge. In Equine Clinical Neonatology; Koterba, A.M., Drummond, W.H., Kosch, P.C., Eds.; Lea and Febiger: Philadelphia, PA, USA, 1990; pp. 769–778. [Google Scholar]
- Parkinson, T.J.; Vermunt, J.J.; Noakes, D. E Approach to an Obstetrical Case. In Veterinary Reproduction and Obstetrics, 10th ed.; Noakes, D.E., Parkinson, T.J., England, G.C.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–213. [Google Scholar]
- Parkinson, T.J.; Vermunt, J.J.; Noakes, D.E. Prevalence, causes and consequences of dystocia. In Veterinary Reproduction and Obstetrics, 10th ed.; Noakes, D.E., Parkinson, T.J., England, G.C.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 214–235. [Google Scholar]
- Hayes, K.E.N. The Complete Book of Foaling: An Illustrated GUIDE for the foaling Attendant; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993; p. 272. [Google Scholar]
- Bucca, S. Ultrasonographic Monitoring of the Fetus. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Backwell: Oxford, UK, 2011; pp. 39–54. [Google Scholar]
- Sabbagh, M.; Danvy, S.; Ricard, A. Genetic and environmental analysis of dystocia and stillbirths in draft horses. Animal 2014, 8, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozor, M. Equine placenta–A clinician’s perspective. Part 2: Abnormalities. Equine Vet. Educ. 2016, 28, 396–404. [Google Scholar] [CrossRef]
- Calderwood Mays, M.B.; LeBlanc, M.; Paccamonti, D. Route of fetal infection in a model of ascending placentitis. Theriogenology 2002, 58, 791–792. [Google Scholar]
- Macpherson, M.L. Treatment strategies for mares with placentitis. Theriogenology 2005, 64, 528–534. [Google Scholar] [CrossRef]
- Morresey, P.R. How to perform a field assessment of the equine placenta. Proc. Am. Ass. Equine Pract. 2004, 50, 409–414. [Google Scholar]
- Schlafer, D.H. Postmortem examination of the equine placenta, fetus and neonate, methods and interpretation offindings. Proc. Am. Ass. Equine Pract. 2004, 50, 144–161. [Google Scholar]
- Rossdale, P.D.; Ricketts, S.W. Evaluation of the fetal membranes at foaling. Equine Vet. Educ. 2002, 5, 78–82. [Google Scholar] [CrossRef]
- Rosales, C.; Krekeler, N.; Tennent-Brown, B.; Stevenson, M.A.; Hanlon, D. Periparturient characteristics of mares and their foals on a New Zealand Thoroughbred stud farm. N. Z. Vet. J. 2017, 65, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Zaborski, D.; Grzesiak, W.; Szatkowska, I.; Dybus, A.; Muszynska, M.; Jedrzejczak, M. Factors affecting dystocia in cattle. Reprod. Domest. Anim. 2009, 44, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Bellows, R.A.; Lammoglia, M.A. Effects of severity of dystocia on cold tolerance and serum concentrations of glucose and cortisol in neonatal beef calves. Theriogenology 2000, 53, 803–813. [Google Scholar] [CrossRef]
- Ettema, J.F.; Santos, J.E.P. Impact of age at calving on lactation, reproduction, health, and income in first-parity Holsteins on commercial farms. J. Dairy Sci. 2004, 87, 2730–2742. [Google Scholar] [CrossRef]
- Hansen, M.; Lund, M.S.; Pedersen, J.; Christensen, L.G. Gestation length in Danish Holsteins has week genetic associations with stillbirths, calving difficulty, and calf size. Livest. Prod. Sci. 2004, 91, 23–33. [Google Scholar] [CrossRef]
- Phocas, F.; Laloë, D. Genetic parameters for birth and weaning traits in French specialized beef cattle breeds. Livest. Prod. Sci. 2004, 89, 121–128. [Google Scholar] [CrossRef]
- Barrier, A.C.; Haskell, M.J. Calving difficulty in dairy cows has a longer effect on saleable milk yield than on estimated milk production. Int. J. Dairy Sci. 2011, 94, 1804–1812. [Google Scholar] [CrossRef]
- Freeman, D.E.; Hungerford, L.L.; Schaeffer, D.; Lock, T.F.; Sertich, P.L.; Baker, G.J.; Vaala, W.E.; Johnston, J.K. Caesarean section and other methods for assisted delivery: Comparison of effects on mare mortality and complications. Equine Vet. J. 1999, 31, 203–207. [Google Scholar] [CrossRef]
- Abernathy-Young, K.K.; LeBlanc, M.M.; Embertson, R.M.; Pierce, S.W.; Stromberg, A.J. Survival rates of mares and foals and postoperative complications and fertility of mares after cesarean section: 95 cases (1986–2000). J. Am. Vet. Med. Assoc. 2012, 241, 927–934. [Google Scholar] [CrossRef]
- McGladdery, A. Dystocia and postpartum complications in the mare. Practice 2001, 23, 74–80. [Google Scholar] [CrossRef]
- Dolente, B.A.; Sullivan, E.K.; Boston, R.; Johnston, J.K. Mares admitted to a referral hospital for postpartum emergencies: 163 Cases (1992–2002). J. Vet. Emerg. Crit. Care 2005, 15, 193–200. [Google Scholar] [CrossRef]
- Hurtgen, J.P. Pathogenesis and treatment of endometritis in the mare: A review. Theriogenology 2006, 66, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Frazer, G.S. Dystocia and Fetotomy. In Current Therapy in Equine Reproduction; Samper, J.C., Pycock, J.F., Mc Kinnon, A.O., Eds.; Saunders Elsevier: St. Louis, MO, USA, 2007; pp. 417–434. [Google Scholar]
- Vaala, W.E. Peripartum asphyxia. Vet. Clin. N. Am. Equine 1994, 10, 187–218. [Google Scholar] [CrossRef]
- Wilkins, P.A. Hypoxic ischemic encephalopathy: Neonatal encephalopathy. In Recent Advances in Equine Neonatal Care; Wilkins, P.A., Palmer, J.E., Eds.; International Veterinary Information Service: Ithaca, NY, USA, 2003; pp. 1–9, A0408.0303. [Google Scholar]
- Vaala, W.E. Perinatal asphyxia syndrome in foals. Curr. Ther. Equine Med. 2002, 5, 644–649. [Google Scholar]
- Knottenbelt, D.C.; Holdstock, N.; Madigan, J.E. Perinatal review. In Equine Neonatal Medicine and Surgery; Saunders: Philadelphia, PA, USA, 2004; pp. 1–27. [Google Scholar]
- Sun, Y.; Li, L.; Song, J.; Mao, W.; Xiao, K.; Jiang, C. Intrauterine hypoxia changed the colonization of the gut microbiota in newborn rats. Front. Pediatr. 2021, 9, 675022. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Chiba, A.; Itoh, M.; Nambo, Y.; Yamagishi, N.; Shibano, K.I.; Cheong, S.H. Colostral and foal serum immunoglobulin G levels and associations with perinatal abnormalities in heavy draft horses in Japan. J. Equine Sci. 2020, 31, 29–34. [Google Scholar] [CrossRef]
- Sgorbini, M.; Freccero, F.; Castagnetti, C.; Mariella, J.; Lanci, A.; Marmorini, P.; Camillo, F. Peripartum findings and blood gas analysis in newborn foals born after spontaneous or induced parturition. Theriogenology 2020, 158, 18–23. [Google Scholar] [CrossRef]
- Harvey, J.W. Normal hematologic values. In Equine Clinical Neonatology; Koterba, A.M., Drummond, W.H., Kosch, P.C., Eds.; Lea & Febiger: Philadelphia, PA, USA, 1990; pp. 561–570. [Google Scholar]
- Jeffcott, L.B.; Rossdale, P.D.; Leadon, D.P. Haematological changes in the neonatal period of normal and induced premature foals. J. Reprod. Fertil. Suppl. 1982, 32, 537–544. [Google Scholar]
- Brinsko, S.P.; Blanchard, T.L.; Varner, D.D.; Schumacher, J.; Love, C.C.; Hinrichs, K.; Hartman, D.L. Management of the Pregnant Mare. In Manual of Equine Reproduction; Mosby Elsevier: Maryland Heights, MO, USA, 2010; p. 126. [Google Scholar]
- Ritchie, R.F.; Palomaki, G.E.; Neveux, L.M.; Navolotskaia, O. Reference distributions for the negative acute-phase proteins, albumin, transferrin, and transthyretin: A comparison of a large cohort to the world’s literature. J. Clin. Lab. Anal. 1999, 13, 280–286. [Google Scholar] [CrossRef]
- Kiang, J.G.; Tsen, K.T. Biology of hypoxia. Chin. J. Physiol. 2006, 49, 223. [Google Scholar]
- Axon, J.E.; Palmer, J.E. Clinical pathology of the foal. Vet. Clin. N. Am. Equine 2008, 24, 357–385. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.E. Normal blood chemistry. In Equine Clinical Neonatology; Koterba, A.M., Drummond, W.H., Kosch, P.C., Eds.; Lea & Febiger: Philadelphia, PA, USA, 1990; pp. 603–614. [Google Scholar]
- Ji, L. Oxidative stress during exercise: Implication of antioxidant nutrients. Free Radic. Biol. Med. 1995, 18, 1079–1086. [Google Scholar] [CrossRef]
- McIntosh, L.J.; Sapolsky, R.M. Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induced toxicity in neuronal culture. Exp. Neurol. 1996, 141, 201–206. [Google Scholar] [CrossRef]
- Axon, J.E. Critical Care-Assessment. In Equine Reproduction, 2nd ed.; McKinnon, A.O., Squires, E.L., Vaala, W.E., Varner, D.D., Eds.; Wiley-Backwell: Oxford, UK, 2011; pp. 167–176. [Google Scholar]
- Burd, L.I.; Jones, M.D.; Simmons, M.A.; Makowski, E.L.; Meschia, G.; Battaglia, F.C. Placental production and foetal utilisation of lactate and pyruvate. Nature 1975, 254, 710–711. [Google Scholar] [CrossRef] [PubMed]
- Quenby, S.; Pierce, S.J.; Brigham, S.; Wray, S. Dysfunctional labor and myometrial lactic acidosis. Obstet. Gynecol. 2004, 103, 718–723. [Google Scholar] [CrossRef]
- Wiber-itzel, E.; Cnattingius, S.; Nordström, L. Lactate determination in vaginal fluids: A new method in the diagnosis of prelabour rupture of membranes. BJOG 2005, 112, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Wiberg-Itzel, E.; Pettersson, H.; Cnattingius, S.; Nordström, L. Association between lactate in vaginal fluid and time to spontaneous onset of labour for women with suspected prelabour rupture of the membranes. BJOG 2006, 113, 1426–1430. [Google Scholar] [CrossRef]
- Sparks, J.W.; Hay, W.W.; Bonds, D.; Meschia, G.; Battaglia, F.C. Simultaneous measurements of lactate turnover rate and umbilical lactate uptake in the fetal lamb. J. Clin. Investig. 1982, 70, 179–192. [Google Scholar] [CrossRef] [Green Version]
Eutocia Group (N = 165) | N | Dystocia Group (N = 57) | N | p | |
---|---|---|---|---|---|
Mare age (y) | 9 (7–12) | 165 | 9 (7–12) | 57 | |
Mare parity (n) | 3 (1–5) | 165 | 3 (1–5) | 57 | |
High-risk pregnancy (n) | 17 (10%) | 165 | 15 (26% ) # | 57 | 0.002 |
Gestation length (days) | 340 (335–345) | 158 | 340 (334–348) | 54 | |
Duration, stage II (min) | 12 (9–15) | 155 | 20 (13–27) * | 50 | <0.0001 |
Duration, stage III (min) | 45 (30–90) | 150 | 60 (30–120) | 42 | |
Fetal membrane alterations (n) | 28 (18%) | 155 | 21 (44%) # | 48 | 0.0003 |
Umbilical cord alterations (n) | 12 (9%) | 139 | 10 (23%) | 44 | |
Umbilical cord length (cm) | 54 (47–60) | 115 | 57 (48–69) | 36 | |
Total umbilical coils (n) | 5 (4–6) | 102 | 5 (4–6) | 33 | |
Umbilical coiling index | 0.09 (0.08–0.11) | 102 | 0.09 (0.08–0.10) | 33 | |
Postpartum complications (n) | 30 (18%) | 165 | 25 (44%) # | 57 | 0.002 |
Foal sex | 74 M; 91 F | 165 | 29 M; 20 F | 49 | |
Foal weight (Kg) | 47 (43–51) | 165 | 48 (42–54) | 57 | |
Stillborn foals (n) | 0 | 165 | 8 (14%) | 57 | |
Sick foals (n) | 20 (12%) | 165 | 25 (51%) # | 49 | <0.00001 |
Level 1 of care | 4/20 (20%) | 3/25 (12%) | |||
Level 2 of care | 11/20 (55%) | 15/25 (60%) | |||
Level 3 of care | 5/20 (25%) | 7/25 (28%) | |||
FPT (n) | 7 (5%) | 145 | 8 (23%) # | 35 | 0.0023 |
Control Group (N = 134) | Dystocia Group (N = 49) | ||||
---|---|---|---|---|---|
APGAR score | 10 (9–10) | 134 | 8 (6–9) * | 49 | <0.0001 |
Body temperature (°C) | 37.7 (37.5–37.9) | 134 | 37.6 (37.3–37.9) | 46 | |
Time to sternal recumbency (min) | 2 (1–5) | 134 | 4 (1–8) | 39 | |
Time to suckling reflex (min) | 20 (12–31) | 134 | 33 (15–56) * | 38 | 0.0044 |
Time to standing position (min) | 68 (57–90) | 129 | 70 (60–92) | 36 | |
Time to first intake of colostrum (min) | 116 (95–136) | 134 | 95 (64–130) *,a | 42 | 0.0087 |
Amniotic fluid lactate (mmol/L) | 16.3 (14.2–18.4) | 102 | 14.9 (12.8–17.3) * | 40 | 0.0357 |
Mare jugular lactate (mmol/L) | 1.9 (1.3–2.5) | 64 | 2.1 (1.6–2.9) | 21 | |
Foal jugular lactate (mmol/L) | 3.1 (2.6–4.2) | 128 | 3.9 (2.8–6.5) * | 41 | 0.0037 |
Foal jugular glucose (mmol/L) | 4.61 (3.77–5.66) | 130 | 4.83 (3.27–5.88) | 46 |
Control Group (N = 14) | Dystocia Group (N = 9) | |
---|---|---|
pH | 7.33 (7.30–7.37) | 7.31 (7.26–7.37) |
pO2 (mmHg) | 39 (33–42) | 35 (32–40) |
SO2 (%) | 72 (63–75) | 65 (60–78) |
pCO2 (mmHg) | 58 (56–60) | 59 (53–61) |
HCO3 (mmol/L) | 28.8 (28.3–30.2) | 27.2 (25.5–28.1) |
Anion gap (mmol/L) | 18.4 (17.5–19.5) | 17.8 (16.3–19.3) |
tCO2 (mmol/L) | 30.5 (30.2–32.1) | 29.3 (27.4–31.3) |
Base excess (mmol/L) | 2.0 (0.86–3.0) | −0.70 (−2.77–1.77) |
Na+ (mmol/L) | 151 (146–152) | 150 (146–152) |
K+ (mmol/L) | 3.7 (3.4–4.2) | 4.1 (3.6–4.4) |
Cl− (mmol/L) | 107 (105–107) | 106 (106–109) |
Control Group | N | Dystocia Group | N | p | |
---|---|---|---|---|---|
Hb (g/dL) | 15.5 (14.8–16.1) 13–17.8 | 134 | 14.6 (13.7–15.8) * 8.6–16.8 | 47 | 0.005 |
Hct (%) | 46.2 (44–49) 39–56 | 134 | 44.8 (41.2–47.9) * 24.2–52.1 | 47 | 0.0247 |
RBCs × 103/mm3 | 10,920 (10,423–11,500) 8050–99,500 | 134 | 10,370 (9790–10,868) * 6380–12,370 | 47 | 0.0002 |
Platelets × 103/mm3 | 207 (174–241) 64–724 | 134 | 194 (163–232) 89–305 | 47 | |
WBCs/mm3 | 7910 (6972–9032) 4610–13,310 | 134 | 7290 (6175–8167) * 3600–12,340 | 47 | 0.0050 |
Neutrophils/mm3 | 6205 (5135–7013) 2800–11530 | 126 | 5430 (4622–6291) * 1080–10740 | 47 | 0.0029 |
Lymphocytes/mm3 | 1350 (1150–1601) 590–3256 | 126 | 1390 (1098–1915) 330–3390 | 47 | |
CK (U/L) | 187 (142–243) 52–525 | 114 | 262 (183–377) * 84–1218 | 40 | 0.0007 |
Total Bilirubin (µmol/L) | 35.91 (29.07–44.46) 0.7–4.7 | 114 | 35.91 (29.07–41.04) 1.1–3.8 | 40 | |
Triglycerides (mmol/L) | 0.11 (0.08–0.12) 2–24 | 26 | 0.1 (0.09–0.15) 5–21 | 46 | |
Total Protein (g/L) | 42 (40–44) 1.8–7.8 | 116 | 40 (38–43) 1.4–5.2 | 18 | |
Albumin (g/L) | 33 (32–35) 2.7–4.3 | 116 | 32 (29–34) * 2.5–3.8 | 46 | 0.0126 |
Albumin/Globulin | 4.1 (3.6–4.7) 0.8–7.96 | 116 | 3.7 (3.3–4.3) 1.22–6.63 | 46 | |
Urea (mmol/L) | 13 (11.39–14.64) 19.9–40.7 | 118 | 12.78 (10.78–14.21) 24–54.5 | 46 | |
Creatinine (µmol/L) | 221.05 (194.52–256.42) 1.3–4.0 | 118 | 238.73 (194.52–318.31) 1.6–14.4 | 46 | |
Phosphorus (mmol/L) | 1.74 (1.58–1.87) 3.9–6.9 | 27 | 1.8 (1.55–1.93) 4.0–6.3 | 18 | |
Calcium (mmol/L) | 3.22 (3.15–3.32) 10.9–17.0 | 114 | 3.35 (3.2–3.57) * 11.2–17.2 | 40 | 0.0032 |
Magnesium (mmol/L) | 0.73 (0.69–0.78) 1.1–2.8 | 114 | 0.73 (0.69–0.82) 1.5–3.5 | 45 | |
Fibrinogen (g/L) | 3.2 (1.7–4.1) 0.43–5.1 | 108 | 2.0 (1.7–3.2) 1.0–4.9 | 43 | |
IgG within 24 h (mg/dL) | 1659 (1144–2315) 752–3500 | 116 | 900 (827–1440) * 307–2315 | 38 | 0.0001 |
Category of Dystocia Severity % N | Cause of Dystocia | Foal Condition | Postpartum Complications in Mares | Mortality Rate |
---|---|---|---|---|
Mild 61.4% (N = 35) | Maternal (9/35) | Healthy 20/35 Sick 15/35 Stillborn 0/35 | 15/35 | Mares 6% (2/35) Foals 6% (2/35) |
Fetal (17/35) | ||||
Fetal membranes (6/35) | ||||
More than one (3/35) | ||||
Moderate 17.5% (N = 10) | Maternal (1/10) | Healthy 3/10 Sick 5/10 Stillborn 2/10 | 3/10 | Mares 0% Foals 20% (2/10) |
Fetal (3/10) | ||||
Fetal membranes (1/10) | ||||
More than one (5/10) | ||||
Severe 21.1% (N = 12) | Maternal (1/12) | Healthy 1/12 Sick 5/12 Stillborn 6/12 | 3/12 | Mares 25% (3/12) Foals 67% (8/12) |
Fetal (9/12) | ||||
Fetal membranes (0/12) | ||||
More than one (2/12) |
Causes of Dystocia % (n) | Specific Causes % (n) | Stillbirth % (n) | Foal Mortality % (n) | Mare Mortality % (n) |
---|---|---|---|---|
Maternal causes 19.3% (11/57) | Primary uterine inertia 45.5% (5/11) [13,23] | 0% | 0% | 0% |
Weak abdominal straining 36.4% (4/11) [35] | ||||
Incomplete cervical dilation 18.2% (2/11) [35] | ||||
Fetal causes 51% (29/57) | Abnormal fetal posture 72.4% (21/29) | 21% (6/29) | 6.9% (2/29) | 6.9% (2/29) |
Abnormal fetal position 17.2% (5/29) | ||||
Abnormal fetal presentation 7% (2/29) | ||||
Congenital deformities 3.4% (1/29) | ||||
Fetal membrane causes 12.3% (7/57) | Premature placental separation 86% (6/7) | 0% | 14.3% (1/7) | 14.3% (1/7) |
Umbilical cord twisting 14% (1/7) | ||||
More than one cause 17.5% (10/57) | Abnormal fetal position and secondary uterine inertia 30% (3/10) | 20% (2/10) | 10% (1/10) | 20% (2/10) |
Premature placental separation and abnormal fetal presentation 20% (2/10) | ||||
Incomplete cervical dilation and abnormal fetal position 10% (1/10) | ||||
Weak abdominal straining and abnormal fetal posture 10% (1/10) | ||||
Premature placental separation, secondary uterine inertia, and abnormal fetal position 10% (1/10) | ||||
Abnormal fetal posture and secondary uterine inertia 10% (1/10) | ||||
Premature placental separation and secondary uterine inertia 10% (1/10) |
Maternal Causes (n = 11) | Fetal Causes (n = 29) | Fetal Membrane Causes (n = 7) | More Than One Cause (n = 10) | p | |
---|---|---|---|---|---|
Duration of stage II (min) | 21 (18–25) a 8–75 N = 11 | 22 (14–34) a 5–360 N = 24 | 7 (4–11) b 3–14 N = 4 | 26 (14–50) a 10–65 N = 10 | 0.0386 |
APGAR score | 9 (8–10) a 8–10 N = 11 | 8 (7–9) b 3–10 N = 27 | 8 (5–9) bc 5–9 N = 7 | 6 (2–7) c 0–9 N = 9 | 0.0011 |
Foal CK (U/L) | 339 (223–449) a 109–827 N = 11 | 207 (144–271) b 84–395 N = 18 | 397 (320–447) a 303–486 N = 5 | 323 (237–454) a 158–1218 N = 6 | 0.0185 |
Foal urea (mg/dL) | 40 (36–48) a 34–55 N = 11 | 34 (29–38) b 24–48 N = 21 | 34 (30–39) b 29–48 N = 7 | 31 (29–37) b 25–44 N = 7 | 0.0193 |
Mild Dystocia (n = 35) | Moderate Dystocia (n = 10) | Severe Dystocia (n = 12) | p | |
---|---|---|---|---|
Duration of stage II (min) | 16 (11–24) a 3–41 N= 35 | 25 (22–30) b 12–50 N= 9 | 75 (62–112) c 55–165 N= 5 | 0.0001 |
APGAR score | 9 (8–9) a 6–10 N= 35 | 5 (3–8) b 0–9 N= 10 | 3 (0–5) b 0–8 N= 6 | <0.0001 |
Foal Hb (g/dL) | 14.5 (13.7–15.4) a 8.6–16.8 N= 35 | 16 (14.9–16.2) a 14.5–16.4 N= 8 | 13.4 (11.3–14.2) b 11.1–14.5 N= 5 | 0.0033 |
Foal Hct (%) | 44.9 (41.3–47.4) a 24.2–52.1 N= 35 | 44.8 (43.4–51.1) a 40.8–51.9 N= 8 | 39.9 (36.3–41.5) b 33.6–42.5 N= 5 | 0.0048 |
Foal RBCs × 103/mm3 | 10375 (9898–10861) a 6380–12370 N= 35 | 11095 (10286–11807) a 8500–11980 N= 8 | 8700 (8283–9390) b 8130–9790 N= 5 | 0.0044 |
Foal total proteins (g/dL) | 4.1 (3.9–4.3) a 1.4–5.2 N= 35 | 4.2 (3.7–4.3) ab 3.4–4.4 N= 8 | 3.5 (3.2–3.9) b 3.2–3.9 N= 4 | 0.0417 |
Foal calcium (mg/dL) | 13.1 (12.6–13.6) a 11.2–17.2 N= 30 | 13.8 (13.3–14.3) ab 12.9–14.6 N= 7 | 14.7 (14.4–15.1) b 14.3–15.2 N= 3 | 0.0141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanci, A.; Perina, F.; Donadoni, A.; Castagnetti, C.; Mariella, J. Dystocia in the Standardbred Mare: A Retrospective Study from 2004 to 2020. Animals 2022, 12, 1486. https://doi.org/10.3390/ani12121486
Lanci A, Perina F, Donadoni A, Castagnetti C, Mariella J. Dystocia in the Standardbred Mare: A Retrospective Study from 2004 to 2020. Animals. 2022; 12(12):1486. https://doi.org/10.3390/ani12121486
Chicago/Turabian StyleLanci, Aliai, Francesca Perina, André Donadoni, Carolina Castagnetti, and Jole Mariella. 2022. "Dystocia in the Standardbred Mare: A Retrospective Study from 2004 to 2020" Animals 12, no. 12: 1486. https://doi.org/10.3390/ani12121486
APA StyleLanci, A., Perina, F., Donadoni, A., Castagnetti, C., & Mariella, J. (2022). Dystocia in the Standardbred Mare: A Retrospective Study from 2004 to 2020. Animals, 12(12), 1486. https://doi.org/10.3390/ani12121486