Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Animals, Diets, and Design
2.3. Measurements of Growth and Reproductive Outcomes
2.4. Nitrogen Balance Trial
2.5. Chemical Analysis
2.6. Serum Amino Acids Level in Sows
2.7. Maternal and Pregnancy-Associated Protein Deposition
2.8. Statistical Analysis
3. Results
3.1. Removal of Sows
3.2. Gilt Growth Traits during Gestation
3.3. Nitrogen Balance
3.4. Serum Amino Acids
3.5. Whole-Body Pd, Maternal Pd, and Pregnancy-Associated Pd
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Kidd, M.T.; Maynard, C.W.; Mullenix, G.J. Progress of amino acid nutrition for diet protein reduction in poultry. J. Anim. Sci. Biotechnol. 2021, 12, 45. [Google Scholar] [CrossRef]
- Jarrett, S.; Ashworth, C.J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 2018, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Mao, Z.; Jiang, X.; Cozannet, P.; Che, L.; Xu, S.; Lin, Y.; Fang, Z.; Feng, B.; Wang, J.; et al. Dietary fiber in a low-protein diet during gestation affects nitrogen excretion in primiparous gilts, with possible influences from the gut microbiota. J. Anim. Sci. 2021, 99, skab121. [Google Scholar] [CrossRef]
- Patras, P.; Nitrayova, S.; Brestensky, M.; Heger, J. Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs. J. Anim. Sci. 2012, 90 (Suppl. S4), 158–160. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Zhuo, Y.; Gong, L.; Tang, L.; Li, Z.; Li, Y.; Yang, M.; Xu, S.; Li, J.; Che, L.; et al. Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts. Animals 2019, 9, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Cao, M.; Gong, Y.; Tang, L.; Jiang, X.; Li, Y.; Yang, M.; Xu, S.; Li, J.; Che, L.; et al. Gut microbial metabolism of dietary fibre protects against high energy feeding induced ovarian follicular atresia in a pig model. Br. J. Nutr. 2021, 125, 38–49. [Google Scholar] [CrossRef]
- Zhuo, Y.; Feng, B.; Xuan, Y.; Che, L.; Fang, Z.; Lin, Y.; Xu, S.; Li, J.; Feng, B.; Wu, D. Inclusion of purified dietary fiber during gestation improved the reproductive performance of sows. J. Anim. Sci. Biotechnol. 2020, 11, 47. [Google Scholar] [CrossRef]
- Miller, E.G.; Huber, L.; Cant, J.P.; Levesque, C.L.; de Lange, C.F.M. The effect of pregnancy on nitrogen retention, maternal insulin sensitivity, and mRNA abundance of genes involved in energy and amino acid metabolism in gilts. J. Anim. Sci. 2019, 97, 4912–4921. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, H.; Yang, Y.; He, J.; Cao, M.; Yang, M.; Zhong, W.; Lin, Y.; Zhuo, Y.; et al. Effects of the Ratio of Insoluble Fiber to Soluble Fiber in Gestation Diets on Sow Performance and Offspring Intestinal Development. Animals 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Swine, 11th rev. ed.; The National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Hua, L.; Zhao, L.; Mao, Z.; Li, W.; Li, J.; Jiang, X.; Che, L.; Xu, S.; Lin, Y.; Fang, Z.; et al. Beneficial effects of a decreased meal frequency on nutrient utilization, secretion of luteinizing hormones and ovarian follicular development in gilts. J. Anim. Sci. Biotechnol. 2021, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, A.K.; Nyachoti, C.M. Nutritional and Metabolic Consequences of Feeding High-Fiber Diets to Swine: A Review. Engineering 2017, 3, 716–725. [Google Scholar] [CrossRef]
- Feyera, T.; Hu, L.; Eskildsen, M.; Bruun, T.S.; Theil, P.K. Impact of four fiber-rich supplements on nutrient digestibility, colostrum production, and farrowing performance in sows. J. Anim. Sci. 2021, 99, skab247. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.P.; Johnston, L.J.; Baidoo, S.K.; Shurson, G.C. Effects of a high-fiber diet and frequent feeding on behavior, reproductive performance, and nutrient digestibility in gestating sows. J. Anim. Sci. 2006, 84, 946–955. [Google Scholar] [CrossRef]
- Sun, H.Q.; Zhou, Y.F.; Tan, C.Q.; Zheng, L.F.; Peng, J.; Jiang, S.W. Effects of konjac flour inclusion in gestation diets on the nutrient digestibility, lactation feed intake and reproductive performance of sows. Animal 2014, 8, 1089–1094. [Google Scholar] [CrossRef]
- Tetens, I.; Livesey, G.; Eggum, B.O. Effects of the type and level of dietary fibre supplements on nitrogen retention and excretion patterns. Br. J. Nutr. 1996, 75, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Schneeman, B.O.; Gallaher, D. Changes in small intestinal digestive enzyme activity and bile acids with dietary cellulose in rats. J. Nutr. 1980, 110, 584–590. [Google Scholar] [CrossRef]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Chen, J.; Liu, J.; Chen, F.; Guan, W.; Zhang, S. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 2020, 6, 397–403. [Google Scholar] [CrossRef]
- Shriver, J.A.; Carter, S.D.; Sutton, A.L.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.W.; Pan, P.; Chen, K.W.; Fan, J.X.; Li, C.X.; Cheng, H.; Zhang, X.Z. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure. Nat. Biomed. Eng. 2020, 4, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Torrallardona, D.; Harris, C.I.; Fuller, M.F. Pigs’ gastrointestinal microflora provide them with essential amino acids. J. Nutr. 2003, 133, 1127–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet, J.L.; Mcneel, A.K.; Miles, J.R.; Freking, B.A. Placental accommodations for transport and metabolism during intra-uterine crowding in pigs. J. Anim. Sci. Biotechnol. 2014, 5, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, A.W.; Hay, W.J.; Ehrhardt, R.A. Placental transport of nutrients and its implications for fetal growth. J. Reprod. Fertil. Suppl. 1999, 54, 401–410. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Treatments 1 | |||
---|---|---|---|---|
NPLF | NPHF | LPLF | LPHF | |
Corn | 735.0 | 700.0 | 735.0 | 700.0 |
Wheat bran | 100.0 | 90.0 | 100.0 | 90.0 |
Soybean meal (CP 44%) | 69.8 | 69.8 | 40.8 | 40.8 |
Soybean protein isolate | 32.0 | 37.0 | 0.0 | 5.0 |
Corn starch | 20.0 | 0.0 | 71.5 | 53.8 |
Fish meal (CP65%) | 9.0 | 9.0 | 9.0 | 9.0 |
Soybean oil | 0.0 | 23.5 | 3.5 | 25.0 |
Calcium carbonate | 11.0 | 11.0 | 11.0 | 11.0 |
CaHPO4 | 12.5 | 12.5 | 12.5 | 12.5 |
Sodium chloride | 4.0 | 4.0 | 4.0 | 4.0 |
Inulin (>95%) | 0.0 | 18.0 | 0.0 | 18.0 |
Cellulose (>95%) | 0.0 | 18.9 | 0.0 | 18.9 |
L-Lysine HCl (98.5%) | 0.8 | 0.6 | 4.0 | 3.7 |
DL-Methionine (99%) | 0.2 | 0.2 | 1.1 | 1.1 |
L-Threonine (98.5%) | 0.1 | 0.0 | 1.5 | 1.2 |
L-Tryptophan (98.5%) | 0.1 | 0.0 | 0.6 | 0.5 |
Choline chloride (50%) | 1.5 | 1.5 | 1.5 | 1.5 |
Vitamin-mineral premix 2 | 4.0 | 4.0 | 4.0 | 4.0 |
Analyzed nutrient compositions | ||||
Calculated DE, Mcal/kg | 3.20 | 3.20 | 3.20 | 3.20 |
CP, % | 13.32 | 13.28 | 10.13 | 10.22 |
SF, % | 0.62 | 2.43 | 0.60 | 2.41 |
ISF, % | 12.21 | 13.43 | 12.11 | 13.34 |
DF, % | 12.83 | 15.86 | 12.71 | 15.75 |
Calcium, % | 0.88 | 0.89 | 0.88 | 0.87 |
Total P, % | 0.69 | 0.68 | 0.67 | 0.67 |
Lysine, % | 0.67 | 0.69 | 0.66 | 0.66 |
Met+Cys, % | 0.45 | 0.46 | 0.45 | 0.47 |
Threonine, % | 0.53 | 0.52 | 0.51 | 0.53 |
Tryptophan, % | 0.16 | 0.15 | 0.17 | 0.16 |
Normal CP | Low CP | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Low DF | High DF | Low DF | High DF | CP | DF | CP × DF | ||
BW, kg | ||||||||
Initial (Day 0) | 164.1 | 164.2 | 163.7 | 164.7 | 3.4 | 0.987 | 0.872 | 0.880 |
Day 30 | 180.1 | 182.9 | 183.2 | 182.1 | 3.7 | 0.768 | 0.818 | 0.616 |
Day 90 | 210.8 | 212.6 | 214.3 | 213.9 | 4.2 | 0.572 | 0.874 | 0.789 |
Day 110 | 230.1 | 231.5 | 232.5 | 233.3 | 4.3 | 0.627 | 0.800 | 0.941 |
ADG, g/d | ||||||||
Day 0–30 | 533.3 | 624.4 | 649.4 | 578.9 | 79.1 | 0.660 | 0.898 | 0.319 |
Day 31–90 | 777.2 | 806.9 | 844.4 | 818.6 | 53.7 | 0.471 | 0.971 | 0.610 |
Day 91–110 | 967.0 b | 922.6 ab | 910.3 a | 972.3 b | 21.4 | 0.869 | 0.685 | 0.022 |
Day 0–110 | 599.8 | 612.4 | 626.1 | 623.3 | 29.6 | 0.536 | 0.871 | 0.797 |
BF, mm | ||||||||
Initial (Day 0) | 18.8 | 18.8 | 20.3 | 19.9 | 1.0 | 0.209 | 0.809 | 0.840 |
Day 30 | 19.4 | 19.4 | 21.5 | 19.9 | 0.9 | 0.175 | 0.401 | 0.409 |
Day 90 | 20.6 | 20.6 | 22.9 | 20.7 | 1.0 | 0.265 | 0.303 | 0.294 |
Day 110 | 20.8 | 20.8 | 22.3 | 21.4 | 1.1 | 0.366 | 0.703 | 0.688 |
BF gain, mm | ||||||||
Day 0–30 | 0.58 | 0.61 | 1.16 | 0.03 | 0.282 | 0.994 | 0.066 | 0.055 |
Day 31–90 | 1.20 | 1.24 | 1.40 | 0.79 | 0.337 | 0.709 | 0.401 | 0.349 |
Day 91–110 | 0.20 | 0.20 | −0.62 | 0.70 | 0.390 | 0.686 | 0.106 | 0.108 |
Day 0–110 | 1.98 | 2.05 | 1.94 | 1.52 | 0.458 | 0.540 | 0.700 | 0.603 |
DF Level | CP Level | Stage | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | High | LP | NP | D30 | D90 | DF | CP | S | DF × CP | DF × S | CP × S | DF × CP × S | ||
N intake, g/d | 36.3 | 35.7 | 30.2 | 41.9 | 36.2 | 35.9 | 1.3 | 0.301 | <0.001 | 0.460 | 0.784 | 0.271 | 0.635 | 0.555 |
N in feces, g/d | 6.3 | 6.7 | 6.1 | 6.9 | 6.4 | 6.6 | 0.2 | 0.094 | 0.003 | 0.459 | 0.743 | 0.270 | 0.634 | 0.556 |
N in urine, g/d | 15.9 | 13.1 | 12.3 | 16.7 | 16.5 | 12.6 | 0.9 | 0.002 | <0.001 | <0.001 | 0.602 | 0.643 | 0.286 | 0.293 |
N retention, g/d | 20.4 | 22.6 | 17.9 | 25.2 | 19.7 | 23.4 | 1.1 | 0.026 | <0.001 | <0.001 | 0.581 | 0.459 | 0.404 | 0.432 |
N digestibility, % | 85.2 | 83.9 | 83.3 | 85.8 | 84.8 | 84.3 | 0.6 | 0.071 | <0.001 | 0.508 | 0.559 | 0.241 | 0.717 | 0.455 |
N retention, % | 56.2 | 63.1 | 59.2 | 60.1 | 54.5 | 64.8 | 2.2 | 0.008 | 0.719 | <0.001 | 0.932 | 0.607 | 0.778 | 0.405 |
N net utilization, % | 47.8 | 53.1 | 49.3 | 51.6 | 46.2 | 54.7 | 1.9 | 0.027 | 0.315 | <0.001 | 0.832 | 0.528 | 0.789 | 0.497 |
Total N output, g/d | 22.2 | 19.9 | 18.4 | 23.6 | 22.8 | 19.2 | 0.9 | 0.018 | <0.001 | <0.001 | 0.570 | 0.459 | 0.404 | 0.432 |
Urine N output,% | 71 | 65 | 66 | 70 | 71 | 65 | 0.02 | 0.001 | 0.022 | <0.001 | 1.000 | 0.961 | 0.768 | 0.110 |
Fecal N output, % | 29 | 35 | 34 | 30 | 29 | 35 | 0.02 | 0.001 | 0.022 | <0.001 | 1.000 | 0.961 | 0.768 | 0.110 |
DF Level | CP Level | Stage | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | High | LP | NP | D30 | D90 | DF | CP | S | DF × CP | DF × S | CP × S | DF × CP × S | ||
Essential AA | ||||||||||||||
Lys | 0.49 | 0.48 | 0.51 | 0.46 | 0.63 | 0.35 | 0.02 | 0.779 | 0.038 | 0.001 | 0.568 | 0.357 | 0.828 | 0.672 |
Met | 0.15 | 0.15 | 0.16 | 0.14 | 0.17 | 0.14 | 0.01 | 0.985 | 0.092 | 0.111 | 0.028 | 0.125 | 0.109 | 0.930 |
Try | 0.07 | 0.08 | 0.07 | 0.08 | 0.11 | 0.05 | 0.01 | 0.761 | 0.648 | 0.001 | 0.807 | 0.981 | 0.605 | 0.436 |
Thr | 0.66 | 0.56 | 0.63 | 0.59 | 0.70 | 0.52 | 0.02 | 0.044 | 0.094 | 0.022 | 0.123 | 0.563 | 0.525 | 0.333 |
Ile | 0.29 | 0.30 | 0.26 | 0.33 | 0.34 | 0.25 | 0.02 | 0.999 | 0.031 | 0.004 | 0.036 | 0.655 | 0.253 | 0.527 |
Leu | 0.97 | 1.03 | 0.97 | 1.02 | 1.14 | 0.86 | 0.03 | 0.345 | 0.414 | 0.001 | 0.306 | 0.847 | 0.476 | 0.759 |
Phe | 0.34 | 0.37 | 0.35 | 0.36 | 0.36 | 0.35 | 0.02 | 0.251 | 0.542 | 0.637 | 0.666 | 0.646 | 0.858 | 0.880 |
Val | 0.84 | 0.87 | 0.73 | 0.98 | 0.97 | 0.74 | 0.03 | 0.643 | <0.001 | 0.005 | 0.117 | 0.944 | 0.062 | 0.758 |
His | 0.37 | 0.38 | 0.36 | 0.39 | 0.41 | 0.34 | 0.02 | 0.810 | 0.377 | 0.106 | 0.648 | 0.057 | 0.729 | 0.529 |
TEAA | 4.11 | 4.22 | 4.04 | 4.30 | 4.78 | 3.56 | 0.13 | 0.737 | 0.086 | 0.004 | 0.131 | 0.520 | 0.428 | 0.757 |
Non-essential AA | ||||||||||||||
Asp | 0.10 | 0.09 | 0.10 | 0.09 | 0.09 | 0.10 | 0.01 | 0.815 | 0.558 | 0.549 | 0.054 | 0.854 | 0.450 | 0.102 |
Ser | 0.55 | 0.56 | 0.57 | 0.54 | 0.66 | 0.46 | 0.03 | 0.892 | 0.556 | 0.004 | 0.026 | 0.665 | 0.941 | 0.792 |
Glu | 0.69 | 0.79 | 0.78 | 0.71 | 0.68 | 0.81 | 0.04 | 0.221 | 0.246 | 0.111 | 0.951 | 0.625 | 0.922 | 0.109 |
GluNH2 | 2.37 | 2.44 | 2.43 | 2.38 | 3.04 | 1.77 | 0.12 | 0.655 | 0.754 | 0.001 | 0.092 | 0.264 | 0.933 | 0.732 |
Gly | 5.42 | 5.65 | 5.55 | 5.53 | 6.67 | 4.40 | 0.22 | 0.694 | 0.957 | 0.001 | 0.100 | 0.407 | 0.822 | 0.677 |
Ala | 2.25 | 2.39 | 2.37 | 2.27 | 2.45 | 2.16 | 0.08 | 0.092 | 0.368 | 0.155 | 0.240 | 0.129 | 0.403 | 0.692 |
Tyr | 0.31 | 0.30 | 0.30 | 0.31 | 0.31 | 0.30 | 0.01 | 0.937 | 0.689 | 0.718 | 0.056 | 0.773 | 0.874 | 0.494 |
Orn | 0.27 | 0.31 | 0.28 | 0.30 | 0.36 | 0.22 | 0.02 | 0.187 | 0.570 | 0.010 | 0.349 | 0.236 | 0.979 | 0.963 |
Pro | 0.94 | 1.13 | 1.01 | 1.06 | 1.21 | 0.86 | 0.04 | 0.113 | 0.490 | 0.037 | 0.934 | 0.506 | 0.418 | 0.758 |
TNEAA | 13.47 | 13.21 | 13.48 | 13.20 | 15.88 | 10.81 | 0.41 | 0.781 | 0.697 | <0.001 | 0.205 | 0.416 | 0.857 | 0.753 |
DF Level | CP Level | Stage | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low | High | LP | NP | D30 | D90 | DF | CP | S | DF × CP | DF × S | CP × S | DF × CP × S | ||
Whole-body Pd | 127.5 | 141.3 | 111.8 | 157.5 | 123.1 | 146.2 | 6.9 | 0.026 | <0.001 | <0.001 | 0.581 | 0.459 | 0.404 | 0.432 |
Pregnancy-associated Pd | 28.8 | 28.7 | 28.9 | 28.6 | 6.4 | 51.1 | 0.14 | 0.630 | 0.273 | <0.001 | 0.296 | 0.637 | 0.276 | 0.297 |
Maternal Pd | 102.0 | 112.5 | 84.3 | 130.3 | 117.1 | 97.5 | 4.5 | 0.063 | 0.001 | 0.033 | 0.720 | 0.950 | 0.051 | 0.739 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Hua, L.; Mao, Z.; Lin, Y.; Xu, S.; Li, J.; Jiang, X.; Wu, D.; Zhuo, Y.; Huang, J. Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows. Animals 2022, 12, 1543. https://doi.org/10.3390/ani12121543
Yang M, Hua L, Mao Z, Lin Y, Xu S, Li J, Jiang X, Wu D, Zhuo Y, Huang J. Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows. Animals. 2022; 12(12):1543. https://doi.org/10.3390/ani12121543
Chicago/Turabian StyleYang, Min, Lun Hua, Zhengyu Mao, Yan Lin, Shengyu Xu, Jian Li, Xuemei Jiang, De Wu, Yong Zhuo, and Jiankui Huang. 2022. "Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows" Animals 12, no. 12: 1543. https://doi.org/10.3390/ani12121543
APA StyleYang, M., Hua, L., Mao, Z., Lin, Y., Xu, S., Li, J., Jiang, X., Wu, D., Zhuo, Y., & Huang, J. (2022). Effects of Dietary Fiber, Crude Protein Level, and Gestation Stage on the Nitrogen Utilization of Multiparous Gestating Sows. Animals, 12(12), 1543. https://doi.org/10.3390/ani12121543