Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparing of Dried Kratom Leaves (DKTL) for Animals
2.2. Preparation of the Extract and Chemical Composition
2.3. Animals, Experimental Design, Diets, and Feeding
2.4. Animal Performance, Slaughter, and Sample Collection
2.5. Meat Chemical Analyses
2.6. Meat pH, Temperature, Color, and Physical Properties
2.7. Fatty Acids Profile Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Feeds
3.2. Feed Intake, Performance, Carcass, and Meat Traits
3.3. Fatty Acid (FA) Profiles in Longissimus dorsi Muscle of Fattening Goats
3.4. Blood Metabolite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abou-Elkhair, R.; Ahmed, H.A.; Selim, S. Effects of black pepper (Piper nigrum), turmeric powder (Curcuma longa) and coriander seeds (Coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian-Australas. J. Anim. Sci. 2014, 27, 847–854. [Google Scholar] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Ishlak, A.; Gunal, M.; AbuGhazaleh, A.A. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Anim. Feed Sci. Technol. 2015, 207, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation and rumen bacteria in vitro. Anim. Feed Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.I.; Mohamed, A.A.; Sameeh, M.Y.; Darwesh, O.M.; Abd El-Razik, T.M. Gamma-irradiation affects volatile oil constituents, fatty acid composition and antimicrobial activity of Fennel (Foeniculum vulgare) seeds extract. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 524–532. [Google Scholar]
- Borges, G.; Mullen, W.; Crozier, A. Comparison of the polyphenolic composition and 394 antioxidant activity of European commercial fruit juices. Food Funct. 2010, 1, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 1998, 75, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Salles, M.S.V.; Zanetti, M.A.; Salles, F.A.; Titto, E.A.L.; Conti, R.M.C. Changes in ruminal fermentation and mineral serum level in animals kept in high temperature environments. Rev. Bras. Zootec. 2010, 39, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef]
- Cunha, L.C.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.; Muchenje, V.; De Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Int. Food Res. J. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Hobson, P.N.; Stewart, C.S. The Rumen Microbial Ecosystem, 2nd ed.; Blackie: London, UK, 1997. [Google Scholar]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, C.; Powell, J.M.; Aguerre, M.J.; Crump, P.M.; Wattiaux, M.A. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens. J. Dairy Sci. 2015, 98, 3938–3950. [Google Scholar] [CrossRef]
- Li, Z.J.; Ren, H.; Liu, S.M.; Cai, C.J.; Han, J.T.; Li, F.; Yao, J.H. Dynamics of methanogenesis, ruminal fermentation, and alfalfa degradation during adaptation to monensin supplementation in goats. J. Dairy Sci. 2018, 101, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Soltan, Y.A.; Natel, A.S.; Araujo, R.C.; Morsy, A.S.; Abdalla, A.L. 2018; Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Technol. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- El-Zaiat, H.M.; Abdalla, A.L. Potentials of patchouli (Pogostemon cablin) essential oil on ruminal methanogenesis, feed degradability, and enzyme activities in vitro. Environ. Sci. Pollut. Res. 2019, 26, 30220–30228. [Google Scholar] [CrossRef]
- Cheeke, P.R.; Piacente, S.; Oleszek, W. Anti-inflammatory and anti-arthritic effects of yucca schidigera: A review. J. Inflamm. 2006, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Suwanlert, S. A study of kratom eaters in Thailand. Bull Narc. 1975, 27, 21–27. [Google Scholar]
- Purintrapiban, J.; Keawpradub, N.; Kansenalak, S.; Chittrakarn, S.; Janchawee, B.; Sawangjaroen, K. Study on glucose transport in muscle cells by extracts from Mitragyna speciosa (Korth) and mitragynine. Nat. Prod. Res. 2011, 25, 1379–1387. [Google Scholar] [CrossRef]
- Goh, Y.S.; Karunakaran, T.; Murugaiyah, V.; Santhanam, R.; Abu-Bakar, M.H.; Ramanathan, S. Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) Leaves: Evaluation of its cytotoxicity and antinociceptive activity. Molecules 2021, 26, 3704. [Google Scholar] [CrossRef]
- Chanjula, P.; Wungsintaweekul, J.; Chiarawipa, R.; Rungkong, A.; Khonkhaeng, B.; Suntara, C.; Cherdthong, A. Effect of feed supplement containing dried kratom leaves on apparent digestibility, rumen fermentation, serum antioxidants, hematology, and nitrogen balance in goats. Fermentation 2022, 8, 131. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Tian, X.; Xin, H.; Paengkoum, P.; Paengkoum, S.; Ban, C.; Sorasak, T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Review: Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M.; Foiklang, S.; Chanjula, P. Effects of supplementation with royal poinciana seed meal (Delonix regia) on ruminal fermentation pattern, microbial protein synthesis, blood metabolites and mitigation of methane emissions in native Thai beef cattle. Animals 2019, 9, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, A.Z.; Kholif, A.E.; Elghandour, M.M.; Buendía, G.; Mariezcurrena, M.D.; Hernandez, S.R.; Camacho, L.M. Influence of oral administration of Salix babylonica extract on milk production and composition in dairy cows. Ital. J. Anim. Sci. 2014, 13, 2978. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. Choosing appropriate methods and standards for assaying tannin. J. Chem. Ecol. 1989, 15, 1795–1810. [Google Scholar] [CrossRef]
- Jamil, M.F.A.; Subki, M.F.M.; Lan, T.M.; Majid, M.I.A.; Adenan, M.I. The effect of mitragynine on cAMP formation and mRNA expression of mu-opioid receptors mediated by chronic morphine treatment in SK–N–SH neuroblastoma cell. J. Ethnopharmacol. 2013, 148, 135–143. [Google Scholar] [CrossRef]
- Wanapat, M.; Poungchompu, O. Method for Estimation of Tannin by Vanillin-HCL Method; A Modified Method of Burns, 1971; Department of Animal Science, Khon Kaen University: Khon Kaen, Thailand, 2001. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Goats: Angora; Dairy and Meat Goats in Temperate and Tropical Countries. National Academy Press: Washington, DC, USA, 1981. [Google Scholar]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Meneghini, R.; Benesi, F.J.; Henriques, L.C.S.; Rizzo, H.; Meira-Junior, E.B.S.; Gregory, L. Hemogram of healthy sheep (Ovisaries) of the Santa Ines breed raised in the region of Piedade, São Paulo State: Influence of age and sex. Braz. J. Vet. Res. Anim. Sci. 2016, 53, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thai Agricultural Standard (TAS) 6006. Goat Meat-Guidelines; National Bureau of Agricultural Commodity and Food Standards: Ladyao, Bangkok, 2008; Volume 125. [Google Scholar]
- Shackelford, S.D.; Wheeler, T.L.; Meade, M.K.; Reagan, J.O.; Byrnes, B.L.; Koohmaraie, M. Consumer impressions of tender select beef. J. Amim. Sci. 2001, 79, 2605–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Katoh, K. Influence of thawing method on several properties of rabbit meat. Bull. Ishikawa Prefect. Coll. Agric. 1981, 11, 45–49. [Google Scholar]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Statistical Analysis Systems. SAS/STAT. User’s Guide: Version 8.1; SAS Inc.: Cary, NC, USA, 2000. [Google Scholar]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Mitragyna speciosa korth leaves supplementation on feed utilization, rumen fermentation efficiency, microbial population, and methane production in vitro. Fermentation 2022, 8, 8. [Google Scholar] [CrossRef]
- Kikura-Hanajiri, R.; Kawamura, M.; Maruyama, T.; Kitajima, M.; Takayama, H.; Goda, Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant “kratom” (Mitragyna speciosa) by LC-ESI-MS. Forensic Toxicol. 2009, 27, 67–74. [Google Scholar] [CrossRef]
- Matra, M.; Totakul, P.; Wanapat, M. Utilization of dragon fruit waste by-products and non-protein nitrogen source: Effects on in vitro rumen fermentation, nutrients degradability and methane production. Livest. Sci. 2021, 243, 104386. [Google Scholar] [CrossRef]
- Phesatcha, B.; Phesatcha, K.; Viennaxay, B.; Thao, T.; Wanapat, M. Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and composition of lactating dairy cows supplemented by Flemingia macrophylla pellet. Trop. Anim. Sci. J. 2021, 44, 288–296. [Google Scholar] [CrossRef]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M. In vitro evaluations of pellets containing Delonix regia seed meal for ruminants. Trop. Anim. Health Prod. 2019, 51, 2003–2010. [Google Scholar] [CrossRef]
- Johnson, C.R.; Doyle, S.P.; Long, R.S. Effect of feeding system on meat goat growth performance and carcass traits. Sheep Goat Res. J. 2010, 25, 78–82. [Google Scholar]
- Srinivasan, K. Spices as influencers of body metabolism: An overview of three decades of research. Food Res. Int. 2005, 38, 77–86. [Google Scholar] [CrossRef]
- Chandrasekaran, C.V.; Thiyagarajan, P.; Deepak, H.B.; Agarwal, A. In vitro modulation of LPS/calcimycin induced inflammatory and allergic mediators by pure compounds of Andrographis paniculata (Kin King of bitters) extract. Int. Immunopharmacol. 2011, 11, 79–84. [Google Scholar] [CrossRef]
- Vicknasingam, B.; Narayanan, S.; Beng, G.T.; Mansor, S.M. The informal use of ketum (Mitragyna speciosa) for opioid withdrawal in the northern states of peninsular Malaysia and implications for drug substitution therapy. Int. J. Drug Policy. 2010, 21, 283–288. [Google Scholar] [CrossRef]
- Sultana, N.; Alimon, A.; Huque, K.; Sazili, A.; Yaakub, H.; Hossain, M.B. The feeding value of moringa (Moringa oleifera) foliage as replacement to conventional concentrate diet in Bengal goats. Adv. Anim. Vet. Sci. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Chen, X. Current status and potential of Moringa oleifera leaf as an alternative protein source for animal feeds. Front. Vet. Sci. 2020, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Cieślak, P.; Zmora, A.; Matkowski, I.; Nawrot-Hadzik, E.; Pers-kamczyc, M.; El-Sherbiny, M.; Bryszak, M.S.S. Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J. Anim. Plant Sci. 2016, 26, 54–62. [Google Scholar]
- Mirzaei-Aghsaghali, A.; Syadati, S.A.; Fathi, H.; Rasouli, S.; Sadaghian, M.; Tarahomi, M. Garlic in ruminant feeding. Asian J. Biolog. Sci. 2012, 5, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, O.; Kadim, I.T.; Al-Saqry, N.M.; Al-Busaidi, R.M. Effects of body weight and sex on carcass tissue distribution in goats. Meat Sci. 2004, 67, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, O.; Lu, C.D. Growth, body composition and carcass tissue distribution in goats of large and small sizes. Small Rumin. Res. 1998, 27, 267–278. [Google Scholar] [CrossRef]
- Turner, K.E.; Wildeus, S.; Collins, J.R. Intake, performance and blood parameters in young goats offered high forage diets of lespedeza or alfalfa hay. Small Rumin. Res. 2005, 59, 15–23. [Google Scholar] [CrossRef]
- Wildeus, S.; Luginbuhl, J.M.; Turner, K.E.; Nutall, Y.L.; Collins, J.R. Growth and carcass characteristics in goat kids fed grass-and alfalfahay-based diets with limited concentrate supplementation. Sheep Goat Res. J. 2007, 22, 15–19. [Google Scholar]
- Tshabalalaa, P.A.; Strydom, P.E.; Webb, E.C.; Kocka, H.L. Meat quality of designated South African indigenous goat and sheep breeds. Meat Sci. 2003, 65, 563–570. [Google Scholar] [CrossRef]
- Lupton, C.J.; Huston, J.E.; Hruska, J.W.; Craddock, B.F.; Pfeiffer, F.A.; Polk, W.L. 2008. Comparison of three systems for concurrent production of high-quality mohair and meat from angora male kids. Small Rumin. Res. 2008, 74, 64–71. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of grass feeding systems on ruminant meat colour and flavour: A review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Priolo, A.; Waghorn, G.C.; Lanza, M.; Biondi, L.; Pennisi, P. Polyethylene glycol as a means for reducing the impact of condensed tannins in carob pulp: Effects on lamb growth performance and meat quality. J. Anim. Sci. 2000, 78, 810e6. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S.; Gurung, N.; Behrends, J.; Eun, J.S.; Taha, E.; Rose, J. Effects of pine bark supplementation on performance, rumen fermentation, and carcass characteristics of Kiko crossbred male goats. J. Anim. Sci. 2012, 90, 3556e67. [Google Scholar] [CrossRef] [Green Version]
- Simela, L.; Webb, E.C.; Frylinck, L. Effect of sex, age, and pre-slaughter conditioning on pH, temperature, tenderness properties and colour of indigenous South African goats. S. Afr. J. Anim. Sci. 2004, 34, 208–211. [Google Scholar]
- Warriss, P.D.; Kestin, S.C.; Brown, S.N.; Wilkins, L.J. The time required for recovery from mixing stress in young bulls and preventing DFD. Meat Sci. 1984, 10, 53–68. [Google Scholar] [CrossRef]
- Farouk, M.M.; Al-Mazeedi, H.M.; Sabow, A.B.; Bekhit, A.E.D.; Adeyemi, K.D.; Sazili, A.Q.; Ghani, A. Halal andkosher slaughter methods and meat quality: A review. Meat. Sci. 2014, 98, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Chanjula, P.; Petcharat, V.; Cherdthong, A. Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats. Asian-Australas. J. Anim. Sci. 2017, 30, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Babiker, S.A.; El Khider, I.A.; Shafie, S.A. Chemical composition and quality attributes of goat meat and lamb. Meat Sci. 1990, 28, 273–277. [Google Scholar] [CrossRef]
- Luciano, G.; Monahan, F.J.; Vasta, V.; Biondi, L.; Lanza, M.; Priolo, A. Dietary tannins improve lamb meat color stability. Meat Sci. 2009, 81, 120–125. [Google Scholar] [CrossRef]
- Solaiman, S.; Kerth, C.; Willian, K.; Min, B.N.; Shoemaker, C.; Jones, W.; Bransby, D. Growth performance, carcass characteristics and meat quality of Boer-cross Wether and Buck goats grazing marshall ryegrass. Asian Australas. J. Anim. Sci. 2011, 24, 351–357. [Google Scholar] [CrossRef]
- Miller, M.F.; Carr, M.A.; Ramsey, C.B.; Crockett, K.L.; Hoover, L.C. Consumer thresholds for establishing the value of beef tenderness. J. Anim. Sci. 2001, 79, 3062–3068. [Google Scholar] [CrossRef] [PubMed]
- Shackelford, S.D.; Morgan, J.B.; Cross, H.R.; Savell, J.W. Identification of threshold levels for warner-bratzler shear force in beef top loin steaks. J. Muscle Foods 1991, 2, 289–296. [Google Scholar] [CrossRef]
- Beserra, F.J.; Madruga, M.S.; Leite, A.M.; da Silva, E.M.C.; Maia, E.L. Effect of age at slaughter on chemical composition of meat from Moxotó goats and their crosses. Small Rumin. Res. 2004, 55, 77–81. [Google Scholar] [CrossRef]
- Smith, S.B.; Kawachi, H.; Choi, C.B.; Choi, C.; Wu, G.; Sawyer, J. Cellular regulation of bovine intramuscular adipose tissue development and composition. J. Anim. Sci. 2009, 87, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, K.S.; Waldron, D.F.; Ziprin, Y.A.; Rhee, K.C. Fatty acid composition of goat diets vs. intramuscular fat. Meat Sci. 2000, 54, 313–318. [Google Scholar] [CrossRef]
- Wiseman, J.; Agunbiade, J.A. The influence of changes in dietary fat and oils on fatty acid profiles of carcass fat in finishing pigs. Livest. Prod. Sci. 1998, 54, 217–227. [Google Scholar] [CrossRef]
- Banskalieva, V.; Sahlu, T.; Goetsch, A.L. Fatty acid composition of goat muscles and fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef]
- Diaz, M.T.; Álvarez, I.; De La Fuente, J.; Saňudo, C.; Campo, M.M.; Oliver, M.A.; Fontifurnols, M.; Montossi, F.; San Julián, R.; Nute, G.R.; et al. Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci. 2005, 71, 256–263. [Google Scholar] [CrossRef]
- Gotoh, T.; Joo, S. Characteristics and health benefit of highly marbled wagyu and hanwoo beef. Korean J. Food Sci. Anim. Resour. 2016, 36, 709–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladokun, A.; Yakubu, A.; Otite, J.; Omeje, J.; Sokunbi, O.; Onyeji, E. Haematological and serum biochemical indices of naked neck and normally feathered Nigerian indigenous chickens in a sub humid tropical environment. Int. J. Poult. Sci. 2008, 7, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Quintavalla, F.; Bigliardi, E.; Bertoni, P. Blood biochemical baseline values in the ostrich (Struthio camelus). Annali Fac. Med. Vet. Univ. Parma 2001, 21, 61–71. [Google Scholar]
- Soetan, K.O.; Akinrinde, A.S.; Ajibade, T.O. Preliminary Studies on the haematological parameters of cockerels fed raw and processed guinea corn (Sorghum bicolor). In Proceedings of the 38th Conference of Nigerian Society of Animal Production, Port Harcourt, Nigeria, 17–20 March 2013; pp. 10–12. [Google Scholar]
- Adeyinka, J.N.; Bello, H.O. Serum biochemical parameters in clinically healthy dogs in Ibadan. Trop. Vet. 2013, 16, 123–129. [Google Scholar]
- Silanikove, N.; Tiomkin, D. Toxicity induced by poultry litter consumption: Effect on measurements reflecting liver function in beef cows. Anim. Prod. 1992, 54, 203–209. [Google Scholar] [CrossRef]
- Olafadehan, O.A. Changes in haematological and biochemical diagnostic parameters of Red Sokoto goats fed tannin-rich Pterocarpus erinaceus forage diets. Vet. Arch. 2011, 81, 471–483. [Google Scholar]
Item (% of DM) | TMR 1 | |
---|---|---|
Concentrate Diet | Roughage Source | |
Pangola grass hay (PGH) | - | 30.0 |
Ground corn | 36.2 | - |
Soybean meal | 22.7 | - |
Fish meal | 0.5 | - |
Leucaena leaf meal | 4.0 | - |
Molasses | 5.0 | - |
Dicalcium phosphate | 0.3 | - |
Salt | 0.3 | - |
Mineral and vitamin mix 2 | 1.0 | - |
Chemical composition, % | ||
Dry matter | 91.69 | 94.26 |
% of DM | ||
Crude protein | 16.46 | 3.18 |
Ash | 5.92 | 5.65 |
Organic matter | 94.08 | 94.35 |
Ether extract | 3 | 1.99 |
Non-fibrous carbohydrate 3 | 31.92 | 14.77 |
Neutral detergent fiber | 42.7 | 74.41 |
Acid detergent fiber | 19.6 | 41.6 |
Acid detergent lignin | 5.4 | 6.07 |
Gross energy, Mcal/kg DM | 4.09 | 3.91 |
TDN, % 4 | 76.06 | 55.6 |
Metabolizable energy, Mcal/kg DM 5 | 2.75 | 2.01 |
Parameters | DKTL 1 |
---|---|
Dry matter 2 (%) | 25.45 |
Chemical composition (% of DM) | |
Dry matter | 95.24 |
Crude protein | 20.1 |
Ash | 4.11 |
Organic matter | 95.89 |
Ether extract | 1.71 |
Neutral detergent fiber | 44.49 |
Acid detergent fiber | 27.31 |
Acid detergent lignin | 8.25 |
Gross energy, Mcal/kg DM | 4.63 |
Alkaloid profile (%) | |
Mitragynine | 4.14 |
Paynantheine | 0.59 |
Speciogynine | 0.26 |
Total condensed tannin content (%) | 8.28 |
Total saponin content (%) | 5.21 |
Flavonoids (%) | 11.24 |
Phenolic acids (%) | 4.1 |
Antioxidant activity | |
DPPH 4 (IC50 (mg/mL) | 1.04 |
FRAP 5 (%) | 3.98 |
Mineral profile 3 | |
Ca, % | 0.84 |
P, % | 0.2 |
K, % | 1.53 |
Mg, % | 0.3 |
S, % | 1.26 |
Na, % | 0.01 |
Fe, ppm | 80.67 |
Cu, ppm | 11.54 |
Mn, ppm | 1862.3 |
Zn, ppm | 32.14 |
B, ppm | 69.71 |
Cr, ppm | 3.23 |
Se, ppm | ND |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
Day on test | 90 | 90 | 90 | 90 | - | ||
Pen replicates | 5 | 5 | 5 | 5 | - | ||
Initial BW, kg | 17.7 | 17.7 | 17.7 | 17.7 | 0.55 | 1.00 | 1.00 |
Final BW, kg | 30.1 | 30.2 | 31.8 | 31.3 | 1.14 | 0.59 | 0.89 |
Weight gain (kg) | 12.4 | 12.5 | 14.1 | 13.6 | 1.11 | 0.29 | 0.78 |
DMI | |||||||
kg/d | 0.731 | 0.717 | 0.767 | 0.769 | 0.03 | 0.46 | 0.87 |
% BW | 3.10 | 3.01 | 3.10 | 3.15 | 0.09 | 0.62 | 0.51 |
g/kg of BW0.75 | 68.1 | 66.4 | 69.03 | 69.77 | 1.96 | 0.36 | 0.51 |
Nutrient Intake, kg/d 4 | |||||||
OMI, kg/d | 0.693 | 0.68 | 0.727 | 0.729 | 0.02 | 0.46 | 0.87 |
CPI, kg/d | 0.119 | 0.116 | 0.124 | 0.125 | 0.01 | 0.46 | 0.87 |
NDFI, kg/d | 0.339 | 0.333 | 0.356 | 0.357 | 0.01 | 0.46 | 0.87 |
ADFI, kg/d | 0.161 | 0.158 | 0.168 | 0.169 | 0.005 | 0.47 | 0.86 |
ADG, kg/d | 0.138 | 0.139 | 0.157 | 0.151 | 0.14 | 0.90 | 0.88 |
ADG, g/kg BW0.75 | 13.03 | 12.92 | 14.19 | 13.65 | 0.95 | 0.48 | 0.83 |
G:F, kg/kg | 0.191 | 0.194 | 0.206 | 0.196 | 0.01 | 0.67 | 0.63 |
FCR | 5.51 | 5.25 | 4.88 | 5.14 | 0.42 | 0.44 | 0.56 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
Shrunk live weight, kg | 33.83 | 32.67 | 34.17 | 35.5 | 1.19 | 0.38 | 0.45 |
HCW 4, kg | 15.33 | 14.83 | 15.67 | 16.33 | 0.38 | 0.21 | 0.39 |
Warm dressing percentage, % | 45.33 | 45.49 | 45.86 | 46.11 | 1.39 | 0.64 | 0.97 |
CCW 5, kg | 14.83 | 14.7 | 15.4 | 16.1 | 0.41 | 0.14 | 0.52 |
Cold dressing percentage, % | 43.85 | 45.05 | 45.08 | 45.45 | 1.07 | 0.30 | 0.68 |
Carcass length, cm | 63.97 | 64.0 | 63.2 | 63.17 | 1.03 | 0.32 | 0.96 |
Carcass width, cm | 14.6 | 16.33 | 16.83 | 16.53 | 0.35 | 0.01 | 0.02 |
LM area 6, cm2 | 11.43 | 11.23 | 15.1 | 14.77 | 0.72 | <0.01 | 0.92 |
Physical Properties of Meat Goats | |||||||
WBSF 7 (kg/cm2) | 2.92 | 3.10 | 3.41 | 3.59 | 0.15 | <0.01 | 0.94 |
Drip loss (%) | 2.68 | 2.87 | 1.57 | 1.72 | 0.29 | 0.03 | 0.95 |
Cooking loss (%) | 33.98 | 37.36 | 25.31 | 26.44 | 3.07 | 0.02 | 0.69 |
Ultimate pH 8 | |||||||
45 min pH | 6.55 | 6.53 | 6.67 | 6.50 | 0.12 | 0.87 | 0.84 |
24 h pH | 5.37 | 5.31 | 5.27 | 5.26 | 0.09 | 0.40 | 0.77 |
Temperature 9 | |||||||
45 min | 37.03 | 36.43 | 36.35 | 36.03 | 0.72 | 0.36 | 0.85 |
24 h | 8.48 | 8.50 | 8.37 | 8.53 | 0.15 | 0.98 | 0.62 |
Color of LM 10 | |||||||
L* | 38.1 | 39.31 | 38.34 | 39.44 | 0.68 | 0.32 | 0.93 |
a* | 16.16 | 18.42 | 17.06 | 17.77 | 0.63 | 0.20 | 0.20 |
b* | 5.43 | 5.50 | 5.26 | 5.63 | 0.41 | 0.81 | 0.66 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
Carcass composition, kg | |||||||
Loins (kg) | 0.503 | 0.567 | 0.650 | 0.647 | 0.07 | 0.11 | 0.62 |
Hind leg (kg) | 1.723 | 1.780 | 1.747 | 1.857 | 0.09 | 0.33 | 0.74 |
Chump (kg) | 0.990 | 0.923 | 0.827 | 1.000 | 0.05 | 0.74 | 0.02 |
Rack (kg) | 0.677 | 0.800 | 0.667 | 0.647 | 0.19 | 0.77 | 0.68 |
Shoulder (kg) | 1.470 | 1.487 | 1.517 | 1.650 | 0.1 | 0.31 | 0.63 |
Fore leg (kg) | 1.510 | 1.600 | 1.617 | 1.597 | 0.07 | 0.4 | 0.45 |
Breast (kg) | 0.423 | 0.490 | 0.487 | 0.493 | 0.04 | 0.39 | 0.57 |
Neck (kg) | 0.717 | 0.700 | 0.500 | 0.707 | 0.09 | 0.56 | 0.22 |
Carcass Composition 4, % | |||||||
Loins, % | 6.29 | 6.77 | 8.11 | 7.52 | 0.87 | 0.18 | 0.5 |
Hind leg, % | 21.51 | 21.46 | 21.82 | 21.61 | 1.04 | 0.88 | 0.94 |
Chump, % | 12.37 | 11.04 | 10.33 | 11.62 | 0.6 | 0.25 | 0.04 |
Rack, % | 8.45 | 9.59 | 8.32 | 7.53 | 2.34 | 0.67 | 0.65 |
Shoulder, % | 18.36 | 17.82 | 18.94 | 19.20 | 1.2 | 0.58 | 0.78 |
Fore leg, % | 18.83 | 19.16 | 20.17 | 18.59 | 0.84 | 0.94 | 0.29 |
Breast, % | 5.29 | 5.86 | 6.10 | 5.74 | 0.46 | 0.57 | 0.47 |
Neck, % | 8.92 | 8.37 | 6.27 | 8.22 | 1.14 | 0.38 | 0.26 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
Nutritional composition | |||||||
Dry matter, % | 23.32 | 24.10 | 25.12 | 24.02 | 0.51 | 0.18 | 0.08 |
Ash, % | 1.55 | 1.50 | 1.65 | 1.63 | 0.11 | 0.55 | 0.57 |
Protein, % | 20.77 | 21.67 | 22.86 | 23.07 | 0.32 | <0.01 | 0.34 |
Ether extract, % | 9.26 | 9.25 | 8.97 | 3.88 | 1.50 | 0.03 | 0.10 |
Calcium, % | 0.95 | 0.11 | 0.10 | 0.11 | 0.01 | 0.81 | 0.81 |
Phosphorous, % | 0.65 | 0.63 | 0.65 | 0.66 | 0.04 | 0.71 | 0.23 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
Fatty acid, % of total FAME 4 | |||||||
C12:0 | 0.33 | 0.29 | 0.30 | 0.32 | 0.04 | 0.91 | 0.41 |
C14:0 | 2.59 | 2.74 | 2.45 | 2.78 | 0.11 | 0.63 | 0.49 |
C14:1 | 0.36 | 0.40 | 0.23 | 0.85 | 0.08 | <0.01 | <0.01 |
C16:0 | 25.11 | 22.52 | 23.13 | 23.43 | 0.32 | <0.011 | <0.01 |
C16:1 | 1.72 | 2.12 | 1.87 | 2.45 | 0.24 | 0.09 | 0.73 |
C18:0 | 15.42 | 13.72 | 14.17 | 14.42 | 0.26 | 0.05 | <0.01 |
C18:1 n9 | 42.04 | 45.90 | 45.88 | 45.40 | 0.22 | <0.01 | <0.01 |
C18:2 n6 | 7.41 | 7.09 | 7.03 | 5.41 | 0.34 | <0.01 | 0.08 |
C18:3 n3 | 3.02 | 3.23 | 3.15 | 3.01 | 0.15 | 0.89 | 0.27 |
n6/n3 | 2.45 | 2.22 | 2.23 | 1.80 | 0.16 | 0.02 | 0.44 |
C20:0 | 0.63 | 0.39 | 0.38 | 0.33 | 0.03 | <0.01 | 0.01 |
C20:4 n6 | 1.13 | 0.98 | 1.00 | 1.10 | 0.12 | 0.87 | 0.32 |
C20:5 n3 | 0.25 | 0.64 | 0.43 | 0.49 | 0.05 | 0.06 | 0.01 |
SFA 5 | 44.08 | 39.65 | 40.42 | 41.29 | 0.33 | <0.01 | <0.01 |
MUFA 6 | 44.11 | 48.42 | 47.97 | 48.70 | 0.36 | <0.01 | <0.01 |
PUFA 7 | 11.81 | 11.94 | 11.61 | 10.01 | 0.35 | <0.01 | 0.03 |
PUFA/SFA | 0.27 | 0.30 | 0.29 | 0.24 | 0.01 | 0.07 | <0.01 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
TP 4, g% | |||||||
0 h, post-feeding | 5.89 | 6.45 | 6.14 | 6.26 | 0.42 | 0.66 | 0.60 |
4 h, post-feeding | 6.13 | 5.99 | 6.20 | 6.18 | 0.16 | 0.71 | 0.76 |
Mean | 6.01 | 6.22 | 6.17 | 6.22 | 0.27 | 0.66 | 0.79 |
ALB 5, g% | |||||||
0 h, post-feeding | 3.67 | 3.58 | 3.70 | 3.77 | 0.07 | 0.20 | 0.28 |
4 h, post-feeding | 3.58 | 3.56 | 3.79 | 3.72 | 0.09 | 0.11 | 0.71 |
Mean | 3.62 | 3.57 | 3.75 | 3.74 | 0.06 | 0.07 | 0.71 |
GLB 6, g% | |||||||
0 h, post-feeding | 2.22 | 2.87 | 2.44 | 2.50 | 0.36 | 0.81 | 0.42 |
4 h, post-feeding | 2.56 | 2.43 | 2.40 | 2.46 | 0.17 | 0.76 | 0.67 |
Mean | 2.39 | 2.65 | 2.42 | 2.48 | 0.24 | 0.97 | 0.71 |
A:G ratio 7, g% | |||||||
0 h, post-feeding | 1.66 | 1.36 | 1.53 | 1.52 | 0.15 | 0.69 | 0.33 |
4 h, post-feeding | 1.45 | 1.48 | 1.58 | 1.53 | 0.11 | 0.62 | 0.78 |
Mean | 1.56 | 1.42 | 1.55 | 1.53 | 0.11 | 0.92 | 0.69 |
SGOT 8, U/L | |||||||
0 h, post-feeding | 102.33 | 86.00 | 104.67 | 105.67 | 6.73 | 0.47 | 0.33 |
4 h, post-feeding | 113.67 | 91.33 | 113.33 | 109.33 | 4.71 | 0.76 | 0.18 |
Mean | 108.00 | 88.67 | 109.00 | 107.50 | 5.20 | 0.57 | 0.24 |
SGPT 9, U/L | |||||||
0 h, post-feeding | 26.00 | 25.33 | 20.67 | 22.00 | 2.41 | 0.29 | 0.77 |
4 h, post-feeding | 26.67 | 21.67 | 21.67 | 23.33 | 1.30 | 0.33 | 0.16 |
Mean | 26.33 | 23.50 | 21.17 | 22.67 | 1.55 | 0.27 | 0.41 |
ALP 10, U/L | |||||||
0 h, post-feeding | 398.00 | 292.00 | 229.33 | 334.33 | 0.48 | 0.14 | 0.68 |
4 h, post-feeding | 442.67 | 349.33 | 257.00 | 346.33 | 0.18 | 0.08 | 0.40 |
Mean | 420.33 | 320.67 | 243.17 | 340.33 | 0.33 | 0.11 | 0.55 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
RBC 4, 106/µL | |||||||
0 h, post-feeding | 3.52 | 3.10 | 3.52 | 3.56 | 0.23 | 0.63 | 0.36 |
4 h, post-feeding | 3.48 | 3.40 | 3.62 | 3.54 | 0.25 | 0.73 | 1.00 |
Mean | 3.50 | 3.25 | 3.57 | 3.55 | 0.24 | 0.68 | 0.66 |
Hb 5, g/dL | |||||||
0 h, post-feeding | 10.73 | 10.57 | 10.53 | 10.37 | 0.48 | 0.58 | 1.00 |
4 h, post-feeding | 11.37 | 11.47 | 10.73 | 10.40 | 0.24 | <0.01 | 0.36 |
Mean | 11.05 | 11.02 | 10.63 | 10.38 | 0.31 | 0.09 | 0.70 |
MCV 6, fL | |||||||
0 h, post-feeding | 86.33 | 94.43 | 80.77 | 80.57 | 0.12 | 0.33 | 0.09 |
4 h, post-feeding | 91.57 | 93.83 | 78.67 | 81.03 | 0.10 | 0.99 | 0.14 |
Mean | 88.95 | 94.13 | 79.72 | 80.80 | 0.09 | 0.63 | 0.09 |
MCH 7, pg | |||||||
0 h, post-feeding | 30.63 | 34.43 | 30.10 | 29.17 | 0.22 | 0.19 | 0.16 |
4 h, post-feeding | 33.30 | 34.07 | 29.83 | 29.37 | 0.21 | 0.76 | 0.34 |
Mean | 31.97 | 34.25 | 29.97 | 29.27 | 0.22 | 0.42 | 0.23 |
MCHC 8, g/dL | |||||||
0 h, post-feeding | 35.40 | 36.47 | 37.20 | 36.20 | 0.56 | 0.22 | 0.70 |
4 h, post-feeding | 36.30 | 36.33 | 37.87 | 36.30 | 0.41 | 0.31 | 0.20 |
Mean | 35.85 | 36.40 | 37.53 | 36.25 | 0.39 | 0.19 | 0.32 |
RDW-CV 9, % | |||||||
0 h, post-feeding | 28.03 | 27.10 | 27.87 | 27.83 | 0.67 | 0.46 | 0.37 |
4 h, post-feeding | 27.93 | 28.33 | 28.03 | 27.90 | 0.95 | 0.64 | 0.73 |
Mean | 27.98 | 27.72 | 27.95 | 27.87 | 0.99 | 0.87 | 0.74 |
WBC 10, 103/µL | |||||||
0 h, post-feeding | 15.96 | 17.74 | 12.79 | 14.99 | 0.72 | 0.03 | 0.77 |
4 h, post-feeding | 15.30 | 17.57 | 13.94 | 15.90 | 1.14 | 0.70 | 0.88 |
Mean | 15.63 | 17.65 | 13.37 | 15.45 | 0.80 | 0.17 | 0.97 |
NEU 11, % | |||||||
0 h, post-feeding | 33.33 | 28.67 | 29.33 | 36.67 | 0.92 | 0.49 | 0.97 |
4 h, post-feeding | 62.00 | 48.67 | 50.00 | 46.67 | 0.25 | 0.46 | 0.52 |
Mean | 47.67 | 38.67 | 39.67 | 41.67 | 0.78 | 0.43 | 0.77 |
LYMPH 12, % | |||||||
0 h, post-feeding | 64.00 | 57.00 | 60.33 | 54.67 | 0.86 | 0.93 | 0.58 |
4 h, post-feeding | 34.00 | 44.33 | 41.00 | 42.67 | 0.85 | 0.66 | 0.67 |
Mean | 49.00 | 50.67 | 50.67 | 48.67 | 1.00 | 0.82 | 0.99 |
MONO 13, % | |||||||
0 h, post-feeding | 1.67 | 1.67 | 1.33 | 1.00 | 0.67 | 0.69 | 0.86 |
4 h, post-feeding | 3.67 | 4.00 | 3.00 | 4.00 | 0.98 | 0.87 | 0.71 |
Mean | 2.67 | 2.83 | 2.17 | 2.50 | 0.98 | 0.94 | 0.70 |
Parameters | Supplement Levels of DKTL (g/d) 1 | SEM 2 | Contrasts p-Value 3 | ||||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | ||
CHOL, mg% | |||||||
0 h, post-feeding | 80.00 | 77.33 | 70.00 | 75.33 | 8.14 | 0.59 | 0.55 |
4 h, post-feeding | 84.00 | 78.33 | 67.33 | 71.33 | 10.30 | 0.26 | 0.60 |
Mean | 82.00 | 77.83 | 68.67 | 73.33 | 9.77 | 0.40 | 0.63 |
HDL-Chol, mg% | |||||||
0 h, post-feeding | 38.67 | 38.67 | 38.00 | 39.00 | 4.41 | 0.99 | 0.90 |
4 h, post-feeding | 40.33 | 48.00 | 44.33 | 43.33 | 6.03 | 0.83 | 0.44 |
Mean | 39.50 | 43.33 | 41.17 | 41.17 | 5.05 | 0.89 | 0.68 |
TG, mg% | |||||||
0 h, post-feeding | 39.00 | 39.00 | 29.00 | 45.67 | 7.63 | 0.82 | 0.40 |
4 h, post-feeding | 60.33 | 57.33 | 37.67 | 49.33 | 8.54 | 0.35 | 0.56 |
Mean | 49.67 | 48.17 | 33.33 | 47.50 | 7.86 | 0.66 | 0.47 |
LDL-Chol, mg% | |||||||
0 h, post-feeding | 33.87 | 26.77 | 27.93 | 29.20 | 5.28 | 0.55 | 0.39 |
4 h, post-feeding | 39.40 | 35.53 | 30.40 | 31.47 | 4.77 | 0.17 | 0.58 |
Mean | 36.63 | 31.15 | 29.17 | 30.33 | 4.60 | 0.28 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanjula, P.; Wungsintaweekul, J.; Chiarawipa, R.; Phesatcha, K.; Suntara, C.; Prachumchai, R.; Pakdeechanuan, P.; Cherdthong, A. Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality. Animals 2022, 12, 1637. https://doi.org/10.3390/ani12131637
Chanjula P, Wungsintaweekul J, Chiarawipa R, Phesatcha K, Suntara C, Prachumchai R, Pakdeechanuan P, Cherdthong A. Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality. Animals. 2022; 12(13):1637. https://doi.org/10.3390/ani12131637
Chicago/Turabian StyleChanjula, Pin, Juraithip Wungsintaweekul, Rawee Chiarawipa, Kampanat Phesatcha, Chanon Suntara, Rittikeard Prachumchai, Patcharin Pakdeechanuan, and Anusorn Cherdthong. 2022. "Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality" Animals 12, no. 13: 1637. https://doi.org/10.3390/ani12131637
APA StyleChanjula, P., Wungsintaweekul, J., Chiarawipa, R., Phesatcha, K., Suntara, C., Prachumchai, R., Pakdeechanuan, P., & Cherdthong, A. (2022). Effects of Supplementing Finishing Goats with Mitragyna speciosa (Korth) Havil Leaves Powder on Growth Performance, Hematological Parameters, Carcass Composition, and Meat Quality. Animals, 12(13), 1637. https://doi.org/10.3390/ani12131637