Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Procedures
2.3. Immunohistochemical Analysis
2.4. Histochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. The Numbers of Uterine-Supplying Neurons Containing VAChT, SOM, VIP, GAL, and nNOS in the PCG
3.2. The Number of Uterine Perikarya Containing AChE in the PCG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keast, J.R. Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience 1995, 66, 655–662. [Google Scholar] [CrossRef]
- Keast, J.R. The autonomic nerve supply of male sex organs—An important target of circulating androgens. Behav. Brain Res. 1999, 105, 81–92. [Google Scholar] [CrossRef]
- Wasowicz, K.; Podlasz, P.; Czaja, K.; Łakomy, M. Uterus-innervating neurones of paracervical ganglion in the pig: Immunohistochemical characteristics. Folia Morphol. 2002, 61, 15–20. [Google Scholar]
- Keast, J.R.; Luckensmeyer, G.B.; Schemann, M. All pelvic neurons in male rats contain immunoreactivity for the synthetic enzymes of either noradrenaline or acetylcholine. Neurosci. Lett. 1995, 196, 209–212. [Google Scholar] [CrossRef]
- Majewski, M. Afferent and efferent innervation of the porcine ovary-sourcesof origin and chemical coding. Acta Acad. Agric. Techcol. Olst. Vet. Suppl. 1997, B24, 3–125. (In Polish) [Google Scholar]
- Bell, C. Dual vasoconstrictor and vasodilator innervation of the uterine arterial supply in the guinea-pig. Circ. Res. 1968, 23, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Wasowicz, K.; Majewski, M.; Lakomy, M. Distribution of neurons innervating the uterus of the pig. J. Auton. Nerv. Syst. 1998, 74, 13–22. [Google Scholar] [CrossRef]
- De Winter, P.J.J.; Verdonck, M.; De Kruif, A.; Devriese, L.A.; Haesebrouck, R. Bacterial endometritis and vaginal discharge in the sow: Prevalence of different bacterial species and experimental reproduction of the syndrome. Anim. Reprod. Sci. 1995, 37, 325–335. [Google Scholar] [CrossRef]
- Robertson, J.; Moll, D.; Saunders, G. Chronic Staphylococcus aureus endometritis in a virgin gilt. Vet. Rec. 2007, 161, 821–822. [Google Scholar]
- Tummaruk, P.; Kesdangsakonwut, S.; Prapasarakul, N.; Kaeoket, K. Endometritis in gilts: Reproductive data, bacterial culture, histopathology, and infiltration of immune cells in the endometrium. Comp. Clin. Pathol. 2010, 19, 575–584. [Google Scholar] [CrossRef]
- Karnovsky, M.J.; Roots, L.A. “Direct-coloring” thicholine method for cholinesterases. J. Histochem. Cytochem. 1964, 12, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Silver, A. The Biology of Cholinesterases; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Fischer, M.; Ittah, A.; Liefer, I.; Gorecki, M. Expression and reconstruction of biologically active human acetylcholinesterase from Escherichia coli. Cell. Mol. Neurobiol. 1993, 13, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Garfield, R.E. Structural studies of innervation on nonpregnant rat uterus. Am. J. Physiol. 1986, 251, C41–C54. [Google Scholar] [CrossRef] [PubMed]
- Haase, G.; Kennel, P.; Pettmann, B.; Vigne, E.; Akli, S.; Revah, F.; Schmalbruch, H.; Kahn, A. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat. Med. 1997, 3, 429–436. [Google Scholar] [CrossRef]
- Papka, R.E.; Traurig, H.H.; Schemann, M.; Collins, J.; Copelin, T.; Wilson, K. Cholinergic neurons of the pelvic autonomic ganglia and uterus of the female rat: Distribution of axons and presence of muscarinic receptors. Cell Tissue Res. 1999, 296, 293–305. [Google Scholar] [CrossRef]
- Richeri, A.; Viettro, L.; Chavez-Genaro, R.; Burnstock, G.; Cowen, T.; Monica Brauer, M. Effects of infantile/prepubertal chronic estrogen treatment and chemical sympathectomy with guanethidine on developing cholinergic nerves of the rat uterus. J. Histochem. Cytochem. 2002, 50, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, B.S. Morphology and neurochemistry of the pelvic and paracervical ganglia. Histol. Histopathol. 1993, 8, 761–773. [Google Scholar]
- Alm, P.; Aluments, J.; Hakanson, R.; Helm, G.; Owman, C.; Sjöberg, N.O.; Sundler, F. Vasoactive intestinal polypeptide nerves in the human female genital tract. Am. J. Obstet. Gynecol. 1980, 136, 349–351. [Google Scholar] [CrossRef]
- Schultzberg, M.; Hökfelt, T.; Lundberg, J.M.; Daalsgard, C.J.; Elfvin, L.G. Transmitter histochemistry of autonomic ganglia. In Autonomic Ganglia; Elfvin, L.-G., Ed.; Chichester: Wiley, UK, 1983; pp. 205–233. [Google Scholar]
- Gu, J.; Polak, J.M.; Su, H.C.; Blank, M.A.; Morrison, J.F.B.; Bloom, S.R. Demonstration of paracervical ganglion origin for the vasoactive intestinal polypeptide containing nerves of the rat uterus using retrograde tracing techniques combined with immunocytochemistry and denervation procedures. Neurosci. Lett. 1984, 51, 377–382. [Google Scholar] [CrossRef]
- Inyama, C.O.; Hacker, G.W.; Gu, J.; Dahl, D.; Bloom, S.R.; Polak, J.M. Cytochemical relationships in the paracervical ganglion (Frankenhauser) of rat studied by immunocytochemistry. Neurosci. Lett. 1985, 55, 311–316. [Google Scholar] [CrossRef]
- Podlasz, P.; Wasowicz, K. Neurochemical characteristics of paracervical ganglion in the pig. Vet. Med. 2008, 53, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Burliński, P.J.; Gonkowski, S.; Całka, J. Tetrodotoxin- and resiniferatoxin-induced changes in paracervical ganglion ChAT- and nNOS-IR neurons supplying the urinary bladder in female pigs. Acta Vet. Hung. 2011, 59, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Wesselmann, U.; Czakanski, P.P.; Affaitati, G.; Giamberardino, M.A. Uterine inflammation as a noxious visceral stimulus: Behavioral characterization in the rat. Neurosci. Lett. 1998, 246, 73–76. [Google Scholar] [CrossRef]
- Li, J.; Micevych, P.; McDonald, J.; Rapkin, A.; Chaban, V. Inflammation in the uterus induces phosphorylated extracellular signal-regulated kinase and substance P immunoreactivity in dorsal root ganglia neurons innervating both uterus and colon in rats. J. Neurosci. Res. 2008, 86, 2746–2752. [Google Scholar] [CrossRef] [Green Version]
- Meller, K.; Całka, J.; Palus, K.; Jana, B. Inflammation-induced changes in expression of DβH, SP and GAL in the porcine uterine nerve fibres. In Proceedings of the 4th Winter Workshop of the Society for Biology of Reproduction “Central and local Regulations of Reproductive Processes”, Zakopane, Poland, 3–4 February 2016. [Google Scholar]
- Bulc, M.; Całka, J.; Meller, K.; Jana, B. Endometritis affects chemical coding of the dorsal root ganglia neurons supplying uterus in the sexually mature gilts. Res. Vet. Sci. 2019, 124, 417–425. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J. Endometritis changes the neurochemical characteristics of the caudal mesenteric ganglion neurons supplying the gilt uterus. Animals 2020, 10, 891. [Google Scholar] [CrossRef]
- Miciński, B.; Jana, B.; Całka, J. Endometritis decreases the population of uterine neurons in the paracervical ganglion and changes the expression of sympathetic neurotransmitters in sexually mature gilts. BMC Vet. Res. 2021, 17, 240. [Google Scholar] [CrossRef]
- Verma, N.; Rettenmeier, A.W.; Schmitz-Spanke, S. Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics 2011, 11, 776–793. [Google Scholar] [CrossRef]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J., Jr.; Frazier, K.S. Swine as models in biomedical research and toxicology testing. Proc. Natl. Acad. Sci. USA 2012, 109, 16612–16617. [Google Scholar] [CrossRef]
- De Winter, P.J.J.; Verdonck, M.; De Kruif, A.; Coryn, M.; Deluyker, H.A.; Devriese, L.A.; Haesebrouck, F. The relationship between the blood progesterone concentration at early metoestrus and uterine infection in the sow. Anim. Reprod. Sci. 1996, 41, 51–59. [Google Scholar] [CrossRef]
- Lewis, G.S. Steroidal regulation of uterine immune defenses. Anim. Reprod. Sci. 2004, 82–83, 281–294. [Google Scholar] [CrossRef] [PubMed]
- De Winter, P.J.J.; Verdonck, M.; de Kruif, A.; Devriese, L.A.; Haesebrouck, F. Endometritis and vaginal discharge in the sow. Anim. Reprod. Sci. 1992, 28, 51–58. [Google Scholar] [CrossRef]
- Jana, B.; Kucharski, J.; Dzienis, A.; Deptuła, K. Changes in prostaglandin production and ovarian function in gilts during endometritis induced by Escherichia coli infection. Anim. Reprod. Sci. 2007, 97, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Palus, K.; Czarzasta, J.; Całka, J. Long-term estradiol-17β administration changes population of paracervical ganglion neurons supplying the ovary in adult gilts. J. Mol. Neurosci. 2013, 50, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Całka, J.; Bulc, M.; Czarzasta, J. Long-term testosterone administration affects the number of paracervical ganglion ovary-projecting neurons in sexually mature gilts. Neurosci. Res. 2014, 83, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Listowska, Ż.; Pidsudko, Z. Changes in the neurochemical coding of the anterior pelvic ganglion neurons supplying the male pig urinary bladder trigone after one-sided axotomy of their nerve fibers. Int. J. Mol. Sci. 2021, 22, 2231. [Google Scholar] [CrossRef]
- Podlasz, P.; Wąsowicz, K. Effect of partial hysterectomy on the neurons of the paracervical ganglion (PCG) of the pig. PLoS ONE 2021, 16, e0245974. [Google Scholar]
- Rytel, L.; Gonkowski, S. The influence of bisphenol a on the nitrergic nervous structures in the domestic porcine uterus. Int. J. Mol. Sci. 2020, 21, 4543. [Google Scholar] [CrossRef]
- Łakomy, M.; Kaleczyc, J.; Całka, J. The effect of oestradiolum benzoicum and progesterone on AChE activity in the nerves of the female reproductive system of immature pigs. Gegenbaurs Morphol. Jahrb. 1986, 132, 333–348. [Google Scholar]
- Rienda, B.; Elexpe, A.; Tolentino-Cortez, T.; Gulak, M.; Bruzos-Cidon, C.; Torrecilla, M.; Astigarraga, E.; Barreda-Gomez, G. Analysis of acetylcholinesterase activity in cell membrane microarrays of brain areas as a screening tool to identify tissue specific inhibitors. Analytica 2021, 2, 25–36. [Google Scholar] [CrossRef]
- Łakomy, M.; Doboszyńska, T.; Dynarowicz, I.; Kotwica, J.; Zasadowski, A. Changes of AChE activity in ovarian nerves of pigs in different periods of the oestrous cycle: Relationship to ovarian steroids. Gegenbaurs Morphol. Jahrb. 1984, 130, 719–731. [Google Scholar] [PubMed]
- Jana, B.; Kucharski, J.; Ziecik, A. Effect of intrauterine infusion of Escherichia coli on hormonal patterns in gilts during the oestrous cycle. Reprod. Nutr. Dev. 2004, 44, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.P.; Stabenfeldt, G.H.; Kindahl, H.; Kennedy, P.C.; Edqvist, L.E.; Neely, D.P.; Schalm, O.W. Pyometra in the mare. J. Reprod. Fertil. Suppl. 1979, 27, 321–329. [Google Scholar]
- Owman, C.; Alm, P.; Bjorklund, A.; Thorbert, G. Extensive sympathetic denervation of the uterus during pregnancy as evidenced by tyrosine hydroxylase determinations in the guinea pig. Adv. Biochem. Psychopharmacol. 1980, 25, 313–320. [Google Scholar]
- Alm, P.; Owman, C.; Sjoberg, N.O.; Stjernquist, M.; Sundler, F. Histochemical demonstration of a concomitant reduction in neural vasoactive intestinal polypeptide, acetylcholinesterase, and noradrenaline of cat uterus during pregnancy. Neuroscience 1986, 18, 713–726. [Google Scholar] [CrossRef]
- Alm, P.; Lundberg, L.M.; Wharton, J.; Polak, J.M. Effects of pregnancy on the extrinsic innervation of the guinea pig uterus. A histochemical, immunohistochemical and ultrastructural study. Histochem. J. 1988, 20, 414–426. [Google Scholar] [CrossRef]
- Alm, P.; Lundberg, L.M.; Wharton, J.; Polak, J.M. Organization of the guinea-pig uterine innervation. Distribution of immunoreactivities for different neuronal markers. Effects of chemical- and pregnancy-induced sympathectomy. Histochem. J. 1988, 20, 290–300. [Google Scholar] [CrossRef]
- Zoubina, E.V.; Fan, Q.; Smith, P.G. Variations in uterine innervation during the estrous cycle in rat. J. Comp. Neurol. 1998, 397, 561–571. [Google Scholar] [CrossRef]
- Zoubina, E.V.; Smith, P.G. Axonal degeneration and regeneration in rat uterus during the estrous cycle. Auton. Neurosci. Basic. Clin. 2000, 84, 176–185. [Google Scholar] [CrossRef]
- Bryman, I.; Norström, A.; Lindblom, B.; Dahlström, A. Histochemical localization of vasoactive intestinal polypeptide and its influence on contractile activity in the non-pregnant and pregnant human cervix. Gynecol. Obstet. Investig. 1989, 28, 57–61. [Google Scholar] [CrossRef]
- Delgado, M.; Ganea, D. Cutting edge: Is vasoactive intestinal peptide a type 2 cytokine? J. Immunol. 2001, 166, 2907–2912. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.; Abad, C.; Martinez, C.; Juarranz, M.G.; Arranz, A.; Gomariz, R.P.; Leceta, J. Vasoactive intestinal peptide in the immune system: Potential therapeutic role in inflammatory and autoimmune diseases. J. Mol. Med. 2002, 80, 16–24. [Google Scholar] [CrossRef]
- Abad, C.; Martinez Juarranz, M.G.; Arranz, A.; Leceta, J.; Delgado, M.; Gomariz, R. Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn′s disease. Gastroenterology 2003, 124, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Palus, K.; Całka, J.; Jana, B. Alterations in the relative abundance of the vasoactive intestinal peptide receptors (VPAC1 and VPAC2) and functions in uterine contractility during inflammation. Anim. Reprod. Sci. 2021, 225, 106680. [Google Scholar] [CrossRef]
- Annunziata, M.; Luque, R.M.; Durán-Prado, M.; Baragli, A.; Grande, C.; Volante, M.; Gahete, M.D.; Deltetto, F.; Camanni, M.; Ghigo, E.; et al. Somatostatin and somatostatin analogues reduce PDGF-induced endometrial cell proliferation and motility. Hum. Reprod. 2012, 27, 2117–2129. [Google Scholar] [CrossRef] [Green Version]
- Jana, B.; Całka, J.; Czajkowska, M. The role of somatostatin and its receptors (sstr2, sstr5) in the contractility of gilt inflamed uterus. Res. Vet. Sci. 2020, 133, 163–173. [Google Scholar] [CrossRef]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, A.D.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef]
- Rytel, L.; Całka, J. Neuropeptide profile changes in sensory neurones after partial prepyloric resection in pigs. Ann. Anat. 2016, 206, 48–56. [Google Scholar] [CrossRef]
- Papka, R.E.; McNeill, D.L.; Thompson, D.; Schmidt, H.H.H.W. Nitric oxide nerves in the uterus are parasympathetic, sensory, and contain neuropeptides. Cell Tissue Res. 1995, 279, 339–349. [Google Scholar] [CrossRef]
- Weyne, E.; Albersen, M.; Hannan, J.L.; Castiglione, F.; Hedlund, P.; Verbist, G.; De Ridder, D.; Bivalacqua, T.J.; Van der Aa, F. Increased expression of the neuroregenerative peptide galanin in the major pelvic ganglion following cavernous nerve injury. J. Sex. Med. 2014, 11, 1685–1693. [Google Scholar] [CrossRef]
- Niiro, N.; Nishimura, J.; Hirano, K.; Nakano, H.; Kanaide, H. Mechanisms of galanin-induced contraction in the rat myome-trium. Br. J. Pharmacol. 1998, 124, 1623–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shew, R.; Papka, R.; McNeill, D. Galanin and calcitonin gene-related peptide immunoreactivity in nerves of the rat uterus: Localization, colocalization, and effects on uterine contractility. Peptides 1992, 13, 273–279. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Miciński, B. Regulatory influence of galanin and GALR/GALR2 receptors on inflamed uterus contractility in pigs. Int. J. Mol. Sci. 2021, 22, 6415. [Google Scholar] [CrossRef]
- Miller, M.A.; Kolb, P.E.; Raskind, M.A. GALR1 galanin receptor mRNA is co-expessed by galanin neurons but not cholinergic neurons in the rat basal forebrain. Brain. Res. Mol. Brain. Res. 1997, 52, 121–129. [Google Scholar] [CrossRef]
- Jovanović, A.; Jovanović, S.; Urbović, L. Endothelium-dependent relaxation in response to acetylcholine in pregnant guinea-pig uterine artery. Hum. Reprod. 1997, 12, 1805–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamireau, D.; Nuyt, A.M.; Hou, X.; Bernier, S.; Beauchamp, M.; Gobeil, F.; Lahaie, I.; Varma, D.R.; Chemtob, S. Altered vascular function in fetal programming of hypertension. Stroke 2002, 33, 2992–2998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, B.; Jaroszewski, J.; Kucharski, J.; Koszykowska, M.; Górska, J.; Markiewicz, W. Participation of prostaglandin E2 in contractile activity of inflamed porcine uterus. Acta Vet. Brno 2010, 79, 249–259. [Google Scholar] [CrossRef]
- Jana, B.; Jaroszewski, J.; Czarzasta, J.; Włodarczyk, M.; Markiewicz, W. Synthesis of prostacyclin and its effect on the contractile activity of the inflamed porcine uterus. Theriogenology 2013, 79, 470–485. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Bulc, M.; Piotrowska-Tomala, K.K. Participation of acetylcholine and its receptors in the contractility of inflamed porcine uterus. Theriogenology 2019, 143, 123–132. [Google Scholar] [CrossRef]
- Jana, B.; Całka, J.; Palus, K.; Sikora, M. Escherichia coli-induced inflammation changes the expression of acetylcholine receptors (M2R, M3R and α-7 nAChR) in the pig uterus. J. Vet. Res. 2020, 64, 531–541. [Google Scholar] [CrossRef]
- Español, A.J.; Maddaleno, M.O.; Lombardi, M.G.; Cella, M.; Martínez Pulido, P.; Sales, M.E. Treatment with LPS plus INF-γ induces the expression and function of muscarinic acetylcholine receptors, modulating NIH3T3 cell proliferation: Participation of NOS and COX. Br. J. Pharmacol. 2014, 171, 5154–5167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gańko, M.; Całka, J. Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcinedorsal motor vagal nucleus (DMX). J. Mol. Neurosci. 2014, 54, 188–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, J.; Williams, K.J.; Hermsmeyer, K.R.; Delansorne, R. Nomegestrol acetate and vascular reactivity: Nonhuman primate experiments. Steroids 2000, 65, 621–627. [Google Scholar] [CrossRef]
- Pan, J.; Rhode, H.K.; Undem, B.J.; Myers, A.C. Neurotransmitters in airway parasympathetic neurons altered by neurotrophin-3 and repeated allergen challenge. Am. J. Respir. Cell. Mol. Biol. 2010, 43, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primary Antibodies | ||||
---|---|---|---|---|
Antigen | Code | Host Species | Dilution | Supplier |
VAChT | V5387 | rabbit | 1:2000 | Sigma-Aldrich, Saint Louis, MO, USA |
VIP | ABS 023-02 | mouse | 1:1000 | ThermoFisher Scientific Waltham, MA, USA |
SOM | 8330-0009 | rat | 1:60 | Bio-Rad Laboratories, Watford, United Kingdom |
GAL | T-5036 | guinea-pig | 1:2000 | Peninsula, San Carlos, CA, USA |
nNOS | N218 | mouse | 1:1000 | Sigma-Aldrich, Saint Louis, MO, USA |
Secondary Antibodies | ||||
Reagent | Code | Dilution | Supplier | |
Alexa Fluor 546 nm goat anti-rabbit IgG | A21202 | 1:1000 | ThermoFisher Scientific Waltham, MA, USA | |
Alexa Fluor 488 nm donkey anti-mouse IgG | A11010 | 1:1000 | ThermoFisher Scientific Waltham, MA, USA | |
Alexa Fluor 488 nm goat anti-guinea pig IgG | A11073 | 1:1000 | ThermoFisher Scientific Waltham, MA, USA | |
Alexa Fluor 488 nm donkey anti-rat IgG | A21208 | 1:1000 | ThermoFisher Scientific Waltham, MA, USA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miciński, B.; Jana, B.; Całka, J. Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts. Animals 2022, 12, 1676. https://doi.org/10.3390/ani12131676
Miciński B, Jana B, Całka J. Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts. Animals. 2022; 12(13):1676. https://doi.org/10.3390/ani12131676
Chicago/Turabian StyleMiciński, Bartosz, Barbara Jana, and Jarosław Całka. 2022. "Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts" Animals 12, no. 13: 1676. https://doi.org/10.3390/ani12131676
APA StyleMiciński, B., Jana, B., & Całka, J. (2022). Uterine Inflammation Changes the Expression of Cholinergic Neurotransmitters and Decreases the Population of AChE-Positive, Uterus-Innervating Neurons in the Paracervical Ganglion of Sexually Mature Gilts. Animals, 12(13), 1676. https://doi.org/10.3390/ani12131676