Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Population
2.2. Experimental Design
2.3. Follow-Up Scheme
2.4. Serum and Milk ELISA Tests
2.5. Data Analysis and Processing
3. Results
3.1. Overall Results
3.2. Incidence Rate
3.3. Description of New Cases and Management Practices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polat, M.; Ohno, A.; Takeshima, S.N.; Kim, J.; Kikuya, M.; Matsumoto, Y.; Mingala, C.N.; Onuma, M.; Aida, Y. Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Arch. Virol. 2015, 160, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, H.C.; Norby, B.; Erskine, R.J.; Sporer, K.R.B.; Bartlett, P.C. Herd management practices associated with bovine leukemia virus incidence rate in Michigan dairy farms. Prev. Vet. Med. 2020, 182, 105084. [Google Scholar] [CrossRef] [PubMed]
- Frie, M.C.; Sporer, K.R.B.; Benitez, O.J.; Wallace, J.C.; Droscha, C.J.; Bartlett, P.C.; Coussens, P.M. Dairy Cows Naturally Infected with Bovine Leukemia Virus Exhibit Abnormal B- and T-Cell Phenotypes after Primary and Secondary Exposures to Keyhole Limpet Hemocyanin. Front. Vet. Sci. 2017, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Nekouei, O.; VanLeeuwen, J.; Stryhn, H.; Kelton, D.; Keefe, G. Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev. Vet. Med. 2016, 133, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.K.; Pelzer, K.D.; Johnson, Y.J. Economic implications of bovine leukemia virus infection in mid-Atlantic dairy herds. J. Am. Vet. Med. Assoc. 2003, 223, 346–352. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, W.; Mao, Y.; Yang, Z.; Lu, G.; Zhang, R.; Zhang, H.; Szeto, C.; Wang, C. Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. J. Dairy Sci. 2016, 99, 3688–3697. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA) AHAW Panel on Animal Health and Welfare. Enzootic bovine leukosis. EFSA J. 2015, 13, 4188. [Google Scholar] [CrossRef] [Green Version]
- Monti, G.E.; Frankena, K. Survival analysis on aggregate data to assess time to sero-conversion after experimental infection with Bovine Leukemia virus. Prev. Vet. Med. 2005, 68, 241–262. [Google Scholar] [CrossRef]
- Sajiki, Y.; Konnai, S.; Nishimori, A.; Okagawa, T.; Maekawa, N.; Goto, S.; Nagano, M.; Kohara, J.; Kitano, N.; Takahashi, T.; et al. Intrauterine infection with bovine leukemia virus in pregnant dam with high viral load. J. Vet. Med. Sci. 2017, 79, 2036–2039. [Google Scholar] [CrossRef] [Green Version]
- Nagy, D.W.; Tyler, J.W.; Klelboeker, S.B. Decreased periparturient transmission of bovine leukosis virus in colostrum-fed calves. J. Vet. Intern. Med. 2007, 21, 1104–1107. [Google Scholar] [CrossRef]
- Lucas, M.H.; Roberts, D.H.; Wibberley, G. Ear tattooing as a method of spread of bovine leukosis virus infection. Br. Vet. J. 1985, 141, 647–649. [Google Scholar] [CrossRef]
- Divers, T.J.; Bartholomew, R.C.; Galligan, D.; Littel, C. Evidence for transmission of bovine leukemia virus by rectal palpation in a commercial dairy herd. Prev. Vet. Med. 1995, 23, 133–141. [Google Scholar] [CrossRef]
- DiGiacomo, R.F.; Darlington, R.L.; Evermann, J.F. Natural transmission of bovine leukemia virus in dairy calves by dehorning. Can. J. Comp. Med. 1985, 49, 340–342. [Google Scholar]
- Bartlett, P.C.; Sordillo, L.M.; Byrem, T.M.; Norby, B.; Grooms, D.L.; Swenson, C.L.; Zalucha, J.; Erskine, R.J. Options for the control of bovine leukemia virus in dairy cattle. J. Am. Vet. Med. Assoc. 2014, 244, 914–922. [Google Scholar] [CrossRef]
- Ott, S.L.; Johnson, R.; Wells, S.J. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev. Vet. Med. 2003, 61, 249–262. [Google Scholar] [CrossRef] [PubMed]
- LaDronka, R.M.; Ainsworth, S.; Wilkins, M.J.; Norby, B.; Byrem, T.M.; Bartlett, P.C. Prevalence of Bovine Leukemia Virus Antibodies in US Dairy Cattle. Vet. Med. Int. 2018, 2018, 5831278. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, G.; Carignano, H.; Alvarez, I.; Martinez, C.; Porta, N.; Politzki, R.; Gammella, M.; Lomonaco, M.; Fondevila, N.; Poli, M.; et al. Bovine leukemia virus p24 antibodies reflect blood proviral load. BMC Vet. Res. 2012, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Nekouei, O.; VanLeeuwen, J.; Sanchez, J.; Kelton, D.; Tiwari, A.; Keefe, G. Herd-level risk factors for infection with bovine leukemia virus in Canadian dairy herds. Prev. Vet. Med. 2015, 119, 105–113. [Google Scholar] [CrossRef]
- Murakami, K.; Kobayashi, S.; Konishi, M.; Kameyama, K.; Tsutsui, T. Nationwide Survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009–2011. J. Vet. Med. Sci. 2013, 75, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Kobayashi, S.; Konishi, M.; Kameyama, K.; Yamamoto, T.; Tsutsui, T. The recent prevalence of bovine leukemia virus (BLV) infection among Japanese cattle. Vet. Microbiol. 2011, 148, 84–88. [Google Scholar] [CrossRef]
- Grau, M.A.; Monti, G. Between and within-herd seroprevalence for bovine leukosis virus infection in dairy herds from southern Chile. Arch. Med. Vet. 2010, 42, 87–91. [Google Scholar]
- Tapia Cruz, B. Situación de la Industria Láctea: Producción, Precios y Comercio Exterior; Oficina de Estudios y Políticas Agrarias (Odepa), Ministerio de Agricultura: Santiago, Chile, 2020. [Google Scholar]
- Instituto Nacional de Estadísticas (INE). VII Censo Nacional Agropecuario; INE: Santiago, Chile, 2007. [Google Scholar]
- Dohoo, I.; Martin, W.; Stryhn, H. Veterinary Epidemiological Research, 2nd ed.; VER Inc.: Charlottetown, PE, Canada, 2009; p. 865. [Google Scholar]
- Monti, G.E.; Frankena, K.; Engel, B.; Buist, W.; Tarabla, H.D.; de Jong, M.C.M. Evaluation of a new antibody-based enzyme-linked immunosorbent assay for the detection of bovine leukemia virus infection in dairy cattle. J. Vet. Diagn. Investig. 2005, 17, 451–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, G.E.; Frankena, K.; De Jong, M.C.M. Evaluation of natural transmission of bovine leukaemia virus within dairy herds of Argentina. Epidemiol. Infect. 2007, 135, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Lassauzet, M.L.; Johnson, W.O.; Thurmond, M.C. Regression models for time to seroconversion following experimental bovine leukaemia virus infection. Stat. Med. 1989, 8, 725–741. [Google Scholar] [CrossRef]
- Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS: A Bayesian modelling framework: Concepts, structure, and extensibility. Stat. Comput. 2000, 10, 325–337. [Google Scholar] [CrossRef]
- Juliarena, M.A.; Barrios, C.N.; Ceriani, M.C.; Esteban, E.N. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J. Dairy Sci. 2016, 99, 4586–4589. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Kaneene, J.B. Bovine leukaemia virus and enzootic bovine leukosis. Vet. Bull. 1992, 62, 287–312. [Google Scholar]
- Lloyd-Smith, J.O.; Cross, P.C.; Briggs, C.J.; Daugherty, M.; Getz, W.M.; Latto, J.; Sanchez, M.S.; Smith, A.B.; Swei, A. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 2005, 20, 511–519. [Google Scholar] [CrossRef]
- Wilesmith, J.W.; Straub, O.C.; Lorenz, R.J. Some observations on the epidemiology of bovine leucosis virus infection in a large dairy herd. Res. Vet. Sci. 1980, 28, 10–16. [Google Scholar] [CrossRef]
- Ruggiero, V.J.; Norby, B.; Benitez, O.J.; Hutchinson, H.; Sporer, K.R.B.; Droscha, C.; Swenson, C.L.; Bartlett, P.C. Controlling bovine leukemia virus in dairy herds by identifying and removing cows with the highest proviral load and lymphocyte counts. J. Dairy Sci. 2019, 102, 9165–9175. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, V.; Porta, N.G.; Lomonaco, M.; Trono, K.; Alvarez, I. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front. Vet. Sci. 2018, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Monti, G.E.; Frankena, K.; De Jong, M.C. Transmission of bovine leukaemia virus within dairy herds by simulation modelling. Epidemiol. Infect. 2007, 135, 722–732. [Google Scholar] [CrossRef] [PubMed]
- John, E.E.; Keefe, G.; Cameron, M.; Stryhn, H.; McClure, J.T. Development and implementation of a risk assessment and management program for enzootic bovine leukosis in Atlantic Canada. J. Dairy Sci. 2020, 103, 8398–8406. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, G.; Alvarez, I.; Politzki, R.; Lomonaco, M.; Dus Santos, M.J.; Rondelli, F.; Fondevila, N.; Trono, K. Natural progression of Bovine Leukemia Virus infection in Argentinean dairy cattle. Vet. Microbiol. 2011, 151, 255–263. [Google Scholar] [CrossRef]
- Juliarena, M.A.; Gutierrez, S.E.; Ceriani, C. Determination of proviral load in bovine leukemia virus-infected cattle with and without lymphocytosis. Am. J. Vet. Res. 2007, 68, 1220–1225. [Google Scholar] [CrossRef]
- Hopkins, S.G.; DiGiacomo, R.F. Natural transmission of bovine leukemia virus in dairy and beef cattle. Vet. Clin. North Am. Food Anim. Pract. 1997, 13, 107–128. [Google Scholar] [CrossRef]
- Kuczewski, A.; Orsel, K.; Barkema, H.W.; Mason, S.; Erskine, R.; van der Meer, F. Bovine leukemia virus-Transmission, control, and eradication. J. Dairy Sci. 2021, 104, 6358–6375. [Google Scholar] [CrossRef]
- Bartlett, P.C.; Norby, B.; Byrem, T.M.; Parmelee, A.; Ledergerber, J.T.; Erskine, R.J. Bovine leukemia virus and cow longevity in Michigan dairy herds. J. Dairy. Sci. 2013, 96, 1591–1597. [Google Scholar] [CrossRef] [Green Version]
- Benitez, O.J.; LaDronka, R.M.; Norby, B.; Grooms, D.L.; Bartlett, P.C. The effect of bovine leukemia virus on dairy cow longevity. JDS Commun. 2022, 3, 185–188. [Google Scholar] [CrossRef]
- Tiwari, A.; VanLeeuwen, J.A.; Dohoo, I.R.; Stryhn, H.; Keefe, G.P.; Haddad, J.P. Effects of seropositivity for bovine leukemia virus, bovine viral diarrhoea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum on culling in dairy cattle in four Canadian provinces. Vet. Microbiol. 2005, 109, 147–158. [Google Scholar]
- Kobayashi, S.; Hidano, A.; Tsutsui, T.; Yamamoto, T.; Hayama, Y.; Nishida, T.; Muroga, N.; Konishi, M.; Kameyama, K.; Murakami, K. Analysis of risk factors associated with bovine leukemia virus seropositivity within dairy and beef breeding farms in Japan: A nationwide survey. Res. Vet. Sci. 2014, 96, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, V.J.; Bartlett, P.C. Single-use hypodermic needles and obstetric sleeves failed to reduce bovine leukemia virus transmission in three dairy herds. Bov. Pract. 2019, 53, 128–133. [Google Scholar] [CrossRef]
- Erskine, R.J.; Bartlett, P.C.; Byrem, T.M.; Render, C.L.; Febvay, C.; Houseman, J.T. Herd-level determinants of bovine leukaemia virus prevalence in dairy farms. J. Dairy Res. 2012, 79, 445–450. [Google Scholar] [CrossRef]
- Wentink, G.H.; Pelgrim, W.; Wensing, T.; Gruys, W.E.; Van Oirschot, J.T. Experimental transmission of bovine leukosis virus by rectal palpation. Vet. Rec. 1993, 132, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, S.G.; DiGiacomo, R.F.; Evermann, J.F.; Christensen, J.D.; Deitelhoff, D.P.; Mickelsen, W.D. Rectal palpation and transmission of bovine leukemia virus in dairy cattle. J. Am. Vet. Med. Assoc. 1991, 199, 1035–1038. [Google Scholar] [PubMed]
- Choi, K.Y.; Monke, D.; Stott, J.L. Absence of bovine leukosis virus in semen of seropositive bulls. J. Vet. Diagn. Investig. 2002, 14, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benitez, O.J.; Roberts, J.N.; Norby, B.; Bartlett, P.C.; Takeshima, S.N.; Watanuki, S.; Aida, Y.; Grooms, D.L. Breeding bulls as a potential source of bovine leukemia virus transmission in beef herds. J. Am. Vet. Med. Assoc. 2019, 254, 1335–1340. [Google Scholar] [CrossRef]
- Benitez, O.J.; Roberts, J.N.; Norby, B.; Bartlett, P.C.; Maeroff, J.E.; Grooms, D.L. Lack of Bovine leukemia virus transmission during natural breeding of cattle. Theriogenology 2019, 126, 187–190. [Google Scholar] [CrossRef]
- Mekata, H.; Yamamoto, M.; Hayashi, T.; Kirino, Y.; Sekiguchi, S.; Konnai, S.; Horii, Y.; Norimine, J. Cattle with a low bovine leukemia virus proviral load are rarely an infectious source. Jpn. J. Vet. Res. 2018, 66, 157–163. [Google Scholar] [CrossRef]
- Dus Santos, M.J.; Trono, K.; Lager, I.; Wigdorovitz, A. Development of a PCR to diagnose BLV genome in frozen semen samples. Vet. Microbiol. 2007, 119, 10–18. [Google Scholar] [CrossRef]
- Wrathall, A.E.; Simmons, H.A.; Van Soom, A. Evaluation of risks of viral transmission to recipients of bovine embryos arising from fertilisation with virus-infected semen. Theriogenology 2005, 65, 247–274. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.D. Review: Risks of disease transmission through semen in cattle. Animal 2018, 12, S165–S171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassauzet, M.L.G.; Thurmond, M.C.; Johnson, W.O.; Stevens, F.; Picanso, J.P. Effect of brucellosis vaccination and dehorning on transmission of bovine leukemia virus in heifers on a California dairy. Can. J. Vet. Res. 1990, 54, 184–189. [Google Scholar] [PubMed]
- Salimov Kh, S.; Butaev, M.K. Ways in which bovine leukosis virus can be transmitted. Dokl. Vsesoyuznoi Akad. Sel’Skokhozyaistvennykh Nauk 1990, 5, 57–60. [Google Scholar]
- Miller, J.M.; Van der Maaten, M.J. Bovine leukosis virus. In Virus Infections of Ruminants; Dinter, Z., Morein, B., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; p. 572. [Google Scholar]
- Weber, A.F.; Meiske, J.C.; Haggard, D.L.; Sorensen, D.K.; Domagala, A.M.; Flaum, A.M. Failure to demonstrate transmission of enzootic bovine leukemia virus infection from cows to sheep by use of common injection needles. Am. J. Vet. Res. 1988, 49, 1814–1816. [Google Scholar] [PubMed]
- Hutchinson, H.C.; Norby, B.; Droscha, C.J.; Sordillo, L.M.; Coussens, P.M.; Bartlett, P.C. Bovine leukemia virus detection and dynamics following experimental inoculation. Res. Vet. Sci. 2020, 133, 269–275. [Google Scholar] [CrossRef]
- Arabe, M.F.; Megid, J.; Carneiro, D.; Carneiro, E.W.; Mioni, M.D.R. Diagnosis failure of bovine leukosis: Serology variation during the peripartum period. Braz. J. Microbiol. 2022, 53, 513–516. [Google Scholar] [CrossRef]
- Manet, G.; Guilbert, X.; Roux, A.; Vuillaume, A.; Parodi, A.L. Natural mode of horizontal transmission of bovine leukemia virus (BLV): The potential role of tabanids (Tabanus spp.). Vet. Immunol. Immunopathol. 1989, 22, 255–263. [Google Scholar] [CrossRef]
- Inagaki, H.; Konnai, S.; Kaburagi, H.; Murota, H.; Takabatake, N.; Watari, K.; Okagawa, T.; Maekawa, N.; Murata, S.; Ohashi, K. Vector transmission of bovine leukemia virus during summer season in Northern Hokkaido. Jpn. J. Vet. Res. 2019, 67, 235–239. [Google Scholar] [CrossRef]
Farm | Adult Cows | Young Stock | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NI (n) | IR | (95% CI) | I (n) | Sus | Total | NI(n) | IR | (95% CI) | I (n) | Sus | Total | |
A | 4 | 1.28 | (0.48; 3.48) | 1 | 24 | 29 | 1 | 1.48 | (0.20–10.56) | 0 | 12 | 13 |
B | 1 | 1.76 | (0.01; 1.24) | 8 | 54 | 63 | 0 | ND | ND | 1 | 53 | 54 |
C | 1 | 0.24 | (0.01; 1.92) | 5 | 23 | 29 | 0 | ND | ND | 0 | 11 | 11 |
D | 1 | 0.36 | (0.04; 2.72 | 10 | 19 | 30 | 1 | 0.88 | (0.12; 6.48) | 0 | 30 | 31 |
E | 13 | 0.76 | (0.44; 1.28) | 92 | 114 | 219 | 3 | 0.34 | (0.08; 1.04) | 0 | 126 | 129 |
F | 16 | 2.92 | (1.80; 4.80) | 89 | 46 | 151 | 11 | 2.04 | (1.12; 3.72) | 0 | 87 | 98 |
G | 26 | 1.32 | (0.88; 1.96) | 92 | 252 | 370 | 3 | 0.52 | (0.16; 3.12) | 41 | 67 | 111 |
H | 1 | 0.04 | (0.00; 0.48) | 7 | 225 | 233 | 0 | ND | ND | 0 | 72 | 72 |
I | 40 | 2.12 | (0.39; 2.92) | 139 | 113 | 292 | 3 | 1.00 | (0.81; 3.12) | 0 | 161 | 164 |
J | 2 | 1.16 | (0.28; 4.68) | 15 | 65 | 82 | 0 | 0.00 | ND | 16 | 73 | 89 |
K | 0 | 0.00 | ND | 1 | 28 | 29 | 0 | ND | ND | 0 | 5 | 5 |
Total | 105 | 459 | 963 | 1527 | 22 | 58 | 697 | 777 |
Age | New Infections | New Cases by Risk Management Practices Related to Transmission (n) | ||||
---|---|---|---|---|---|---|
(Years) | n | % | Mounted | AI | Palpation | Injections |
1–3 | 20 | 21.3 | 0 | 2 | 0 | 2 |
3–4 | 25 | 26.6 | 1 | 3 | 5 | 0 |
4–5 | 17 | 18.1 | 0 | 3 | 5 | 2 |
5–6 | 10 | 10.6 | 0 | 1 | 1 | 1 |
>6 | 22 | 23.4 | 2 | 2 | 2 | 1 |
Total | 94 | 100.0 | 3 | 11 | 13 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavides, B.; Monti, G. Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile. Animals 2022, 12, 1734. https://doi.org/10.3390/ani12131734
Benavides B, Monti G. Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile. Animals. 2022; 12(13):1734. https://doi.org/10.3390/ani12131734
Chicago/Turabian StyleBenavides, Bibiana, and Gustavo Monti. 2022. "Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile" Animals 12, no. 13: 1734. https://doi.org/10.3390/ani12131734
APA StyleBenavides, B., & Monti, G. (2022). Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile. Animals, 12(13), 1734. https://doi.org/10.3390/ani12131734