Reproductive Hormones Mediate Intestinal Microbiota Shifts during Estrus Synchronization in Grazing Simmental Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedure
2.2. Sample Collection and Analysis of Serum Reproductive Hormones
2.3. Sample Collection and Total DNA Extraction of Rectal Microbes
2.4. 16S rRNA Gene Sequencing
2.5. Microbial Data Processing
2.6. Statistical Analysis
3. Results
3.1. Reproductive Hormone Shifts in Host Serum
3.2. Diversity Shifts and Composition Biomarkers of Intestinal Microbiota
3.3. Function Shifts in the Intestinal Microbiota
3.4. Correlation of Reproductive Hormones and Intestinal Diversity Indices and Microbiota Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyer, C.N.; Griffith, A.P.; Delong, K.L. Reproductive failure and long-term profitability of spring- and fall-calving beef cows. J. Agric. Resour. Econ. 2020, 45, 78–91. [Google Scholar]
- Lamb, G.C.; Mercadante, V.R.G.; Henry, D.D.; Fontes, P.L.P.; Dahlen, C.R.; Larson, J.E.; DiLorenzo, N. Invited review: Advantages of current and future reproductive technologies for beef cattle production. Prof. Anim. Sci. 2016, 32, 162–171. [Google Scholar] [CrossRef]
- Robertson, R.C.; Manges, A.R.; Finlay, B.B.; Prendergast, A.J. The human microbiome and child growth—First 1000 days and beyond. Trends Microbiol. 2019, 27, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quadros, D.L.; Zanella, R.; Bondan, C.; Zanella, G.C.; Facioli, F.L.; da Silva, A.N.; Zanella, E.L. Study of vaginal microbiota of Holstein cows submitted to an estrus synchronization protocol with the use of intravaginal progesterone device. Res. Vet. Sci. 2020, 131, 1–6. [Google Scholar] [CrossRef]
- Simintiras, C.A.; Sánchez, J.M.; McDonald, M.; Lonergan, P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci. Rep. 2019, 9, 7716. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, C.; Wang, J.; Celi, P.; Ding, X.; Bai, S.; Zeng, Q.; Mao, X.; Zhuo, Y.; Xu, S.; et al. Characterization of the intestinal microbiota of broiler breeders with different egg laying rate. Front. Vet. Sci. 2020, 7, 599337. [Google Scholar] [CrossRef]
- Litvinova, E.A.; Bets, V.D.; Feofanova, N.A.; Gvozdeva, O.V.; Achasova, K.M.; Alperina, E.L.; Kozhevnikova, E.N. Dietary fucose affects macrophage polarization and reproductive performance in mice. Nutrients 2021, 13, 855. [Google Scholar] [CrossRef]
- Wu, J.; Xiong, Y.; Zhong, M.; Li, Y.; Wan, H.; Wu, D.; Liu, Q. Effects of purified fibre-mixture supplementation of gestation diet on gut microbiota, immunity and reproductive performance of sows. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1144–1154. [Google Scholar] [CrossRef]
- Santos-Marcos, J.A.; Rangel-Zuñiga, O.A.; Jimenez-Lucena, R.; Quintana-Navarro, G.M.; Garcia-Carpintero, S.; Malagon, M.M.; Landa, B.B.; Tena-Sempere, M.; Perez-Martinez, P.; Lopez-Miranda, J.; et al. Influence of gender and menopausal status on gut microbiota. Maturitas 2018, 116, 43–53. [Google Scholar] [CrossRef]
- He, H.; Xu, H.; Xu, J.; Zhao, H.; Lin, Q.; Zhou, Y.; Nie, Y. Sodium butyrate ameliorates gut microbiota dysbiosis in lupus-like mice. Front. Nutr. 2020, 7, 604283. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, N. Roles of sex hormones and gender in the gut microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Barroso, A.; Santos-Marcos, J.A.; Perdices-Lopez, C.; Vega-Rojas, A.; Sanchez-Garrido, M.A.; Krylova, Y.; Molina-Abril, H.; Ohlsson, C.; Perez-Martinez, P.; Poutanen, M.; et al. Neonatal exposure to androgens dynamically alters gut microbiota architecture. J. Endocrinol. 2020, 247, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Watson, S.E.; Thomas, L.N.; Allred, C.D.; Dabney, A.; Azcarate-Peril, M.A.; Sturino, J.M. Diet complexity and estrogen receptor β status affect the composition of the murine intestinal microbiota. Appl. Environ. Microbiol. 2013, 79, 5763–5773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodosiadou, E.; Goulas, P.; Kouskoura, T.; Smokovitis, A. Oestrogen and progesterone concentrations in plasma and oviductal tissue of ewes exhibiting a natural or induced estrus. Anim. Reprod. Sci. 2004, 80, 59–67. [Google Scholar] [CrossRef]
- Macmillan, K.L. Recent advances in the synchronization of estrus and ovulation in dairy cows. J. Reprod. Dev. 2010, 56, S42–S47. [Google Scholar] [CrossRef] [Green Version]
- Salci, E.S.O.; Demirbilek, S.K.; Gunes, N.; Goncagul, G.; Uzabacı, E.; Carli, T.; Seyrek-Intas, K. Comparison of the endocrinological and immunological results of different induction of parturition methods in ewes. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 2018, 46, 22–28. [Google Scholar] [CrossRef]
- Moronkeji, M.A.; Emokpae, M.A.; Ojo, T.A.; Moronkeji, R.E.; Ogundoju, L.T. The patterns and occupational distribution of hormonal abnormalities among men investigated for infertility in some centers in the southwest. Nigeria. J. Clin. Transl. Res. 2021, 7, 221–228. [Google Scholar] [CrossRef]
- Swelum, A.A.; Alowaimer, A.N.; Abouheif, M.A. Use of fluorogestone acetate sponges or controlled internal drug release for estrus synchronization in ewes: Effects of hormonal profiles and reproductive performance. Theriogenology 2015, 84, 498–503. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Huasai, S.; Chen, A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci. Rep. 2021, 11, 17023. [Google Scholar] [CrossRef]
- Chang, M.N.; Wei, J.Y.; Hao, L.Y.; Ma, F.T.; Li, H.Y.; Zhao, S.G.; Sun, P. Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. J. Dairy Sci. 2020, 103, 6100–6113. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.M.A.; Bicalho, R.C. Diversity and succession of bacterial communities in the uterine fluid of postpartum metritic, endometritic and healthy dairy cows. PLoS ONE 2012, 7, e53048. [Google Scholar] [CrossRef] [Green Version]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Uterine and vaginal bacterial community diversity prior to artificial insemination between pregnant and nonpregnant postpartum cows. J. Anim. Sci. 2019, 97, 4298–4304. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; McClure, M.; Rorie, R.; Wang, X.; Chai, J.; Wei, X.; Lai, S.; Zhao, J. The vaginal and fecal microbiomes are related to pregnancy status in beef heifers. J. Anim. Sci. Biotechnol. 2019, 10, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal microbiome of reproductive-age women. Proc Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4680. [Google Scholar] [CrossRef] [Green Version]
- The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.T.; Conley, A.J.; Soboleva, T.K.; Lee, R.S. Multilevel regulation of steroid synthesis and metabolism in the bovine placenta. Mol. Reprod. Dev. 2012, 79, 239–254. [Google Scholar] [CrossRef]
- Geyer, J.; Bakhaus, K.; Bernhardt, R.; Blaschka, C.; Dezhkam, Y.; Fietz, D.; Grosser, G.; Hartmann, K.; Hartmann, M.F.; Neunzig, J.; et al. The role of sulfated steroid hormones in reproductive processes. J. Steroid Biochem. Mol. Biol. 2017, 172, 207–221. [Google Scholar] [CrossRef]
- Trostchansky, A.; Wood, I.; Rubbo, H. Regulation of arachidonic acid oxidation and metabolism by lipid electrophiles. Prostaglandins Other Lipid Mediat. 2021, 152, 106482. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores, R.; Shi, J.; Fuhrman, B.; Xu, X.; Veenstra, T.D.; Gail, M.H.; Gajer, P.; Ravel, J.; Goedert, J.J. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: A cross-sectional study. J. Transl. Med. 2012, 10, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016, 14, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Hooda, S.; Boler, B.M.; Serao, M.C.; Brulc, J.M.; Staeger, M.A.; Boileau, T.W.; Dowd, S.E.; Fahey, G.C., Jr.; Swanson, K.S. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J. Nutr. 2012, 142, 1259–1265. [Google Scholar] [CrossRef]
- Lee, G.; You, H.J.; Bajaj, J.S.; Joo, S.K.; Yu, J.; Park, S.; Kang, H.; Park, J.H.; Kim, J.H.; Lee, D.H.; et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat. Commun. 2020, 11, 4982. [Google Scholar] [CrossRef]
- Wen, M.; Liu, T.; Zhao, M.; Dang, X.; Feng, S.; Ding, X.; Xu, Z.; Huang, X.; Lin, Q.; Xiang, W.; et al. Correlation analysis between gut microbiota and metabolites in children with systemic lupus erythematosus. J. Immunol. Res. 2021, 2021, 5579608. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, Y.; Li, H.; Shen, L.; Ni, Y.; Fang, Q.; Wu, G.; Qian, L.; Xiao, Y.; Zhang, J.; et al. Metabolic phenotypes and the gut microbiota in response to dietary resistant starch type 2 in normal-weight subjects: A randomized crossover trial. Sci. Rep. 2019, 9, 4736. [Google Scholar] [CrossRef]
- Lyu, W.; Liu, X.; Lu, L.; Dai, B.; Wang, W.; Yang, H.; Xiao, Y. Cecal microbiota modulates fat deposition in muscovy ducks. Front. Vet. Sci. 2021, 8, 609348. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, J.; Wei, L.; Ma, X.; Zhang, W.; Nie, C. Cottonseed meal fermented by Candida tropical reduces the fat deposition in white–feather broilers through cecum bacteria–host metabolic cross-talk. Appl. Microbiol. Biotechnol. 2020, 104, 4345–4357. [Google Scholar] [CrossRef]
- Mallott, E.K.; Borries, C.; Koenig, A.; Amato, K.R.; Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 2020, 10, 9961. [Google Scholar] [CrossRef] [PubMed]
- Lacasse, P.; Ollier, S. Effect of premilking stimulation and milking frequency on milking-induced prolactin release in lactating dairy cows. Domest. Anim. Endocrinol. 2014, 47, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Kolmeder, C.A.; de Vos, W.M. Roadmap to functional characterization of the human intestinal microbiota in its interaction with the host. J. Pharm. Biomed. Anal. 2021, 194, 113751. [Google Scholar] [CrossRef] [PubMed]
- Giordano, J.O.; Wiltbank, M.C.; Fricke, P.M. Humoral immune response in lactating dairy cows after repeated exposure to human chorionic gonadotropin. Theriogenology 2012, 78, 218–224. [Google Scholar] [CrossRef]
- Moonmanee, T.; Yammuen-art, S. Relationships among feed intake, blood metabolites, follicle size and progesterone concentration in ewes exhibiting or not exhibiting estrus after estrous synchronization in the Tropics. Agric. Agric. Sci. Procedia 2015, 5, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Wu, H.; He, M.; Zhang, L.; Huang, Y.; Geng, Y.; Liu, J.; Wang, Q.; Fan, Z.; Hou, R.; et al. Transcriptome analyses provide insights into maternal immune changes at several critical phases of giant panda reproduction. Dev. Comp. Immunol. 2020, 110, 103699. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC Int.: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Zhu, L.; Jones, C.; Guo, Q.; Lewis, L.; Stark, C.R.; Alavi, S. An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed. J. Anim. Sci. 2016, 94, 1501–1507. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
Pathway Description | D0 | D9 | D12 | SEM | p-Value |
---|---|---|---|---|---|
Carbohydrate metabolism | 10.105 a | 10.137 a | 10.067 b | 0.0117 | <0.001 |
Excretory system | 0.0234 ab | 0.0231 b | 0.0248 a | 0.00048 | 0.038 |
Cellular processes and signaling | 3.984 a | 3.957 b | 3.989 a | 0.0063 | 0.002 |
Genetic information processing | 2.788 b | 2.779 b | 2.808 a | 0.0047 | <0.001 |
Immune system diseases | 0.0295 a | 0.0296 a | 0.0281 b | 0.00039 | 0.046 |
Metabolism | 2.426 b | 2.423 b | 2.441 a | 0.00340 | 0.001 |
Item | GnRH | FSH | LH | PROG | E2 | PRL | OT |
---|---|---|---|---|---|---|---|
Sobs | −0.30 | −0.28 | 0.01 | −0.17 | −0.24 | −0.26 | 0.60 |
Shannon | 0.15 | −0.19 | 0.06 | −0.05 | −0.06 | −0.27 | −0.01 |
Simpson | −0.03 | 0.22 | −0.04 | −0.05 | 0.07 | 0.22 | −0.04 |
Ace | −0.09 | −0.31 | 0.06 | −0.19 | −0.29 | −0.07 | 0.04 |
Chao1 | −0.08 | −0.30 | 0.08 | −0.11 | −0.32 * | −0.11 | −0.08 |
Coverage | 0.02 | −0.11 | −0.09 | −0.01 | −0.15 | 0.27 | −0.19 |
PC1 | 0.29 | 0.28 | 0.26 | 0.28 | 0.38 * | 0.02 | 0.11 |
PC2 | −0.12 | −0.34 * | −0.04 | 0.17 | −0.27 | −0.12 | 0.24 |
Item | FSH | LH | PROG | E2 | PRL | OT |
---|---|---|---|---|---|---|
p__Actinobacteriota | −0.36 * | −0.24 | −0.13 | −0.33 * | −0.10 | 0.05 |
p__Verrucomicrobiota | 0.36 * | 0.36 * | 0.32 * | 0.44 ** | 0.30 | 0.26 |
p__Patescibacteria | −0.41 ** | −0.20 | −0.03 | −0.30 | −0.22 | 0.02 |
o__Acidaminococcales | 0.27 | 0.22 | 0.08 | 0.38 * | 0.06 | 0.01 |
o__Christensenellales | 0.03 | 0.11 | 0.15 | 0.16 | 0.08 | 0.40 ** |
o__Saccharimonadales | −0.41 ** | −0.20 | −0.03 | −0.30 | −0.22 | 0.02 |
o__Gastranaerophilales | 0.29 | 0.29 | 0.20 | 0.31 * | 0.13 | 0.12 |
o__Verrucomicrobiales | 0.34 * | 0.31 * | 0.28 | 0.41 ** | 0.31 * | 0.27 |
o__Coriobacteriales | −0.32 * | −0.31 * | −0.20 | −0.27 | −0.12 | 0.00 |
c__Vampirivibrionia | 0.34 * | 0.31 * | 0.28 | 0.41 ** | 0.31 * | 0.27 |
c__Negativicutes | 0.25 | 0.21 | 0.07 | 0.38* | 0.06 | 0.01 |
c__Coriobacteriia | −0.32 * | −0.31 * | −0.20 | −0.27 | −0.12 | 0.00 |
c__Verrucomicrobiae | 0.34 * | 0.31 * | 0.28 | 0.41 ** | 0.31 * | 0.27 |
c__Saccharimonadia | −0.41 ** | −0.20 | −0.03 | −0.30 | −0.22 | 0.02 |
f__Acidaminococcaceae | 0.27 | 0.22 | 0.08 | 0.38 * | 0.06 | 0.01 |
f__Christensenellaceae | 0.03 | 0.11 | 0.15 | 0.16 | 0.08 | 0.40 ** |
f__Hungateiclostridiaceae | −0.43 ** | −0.21 | −0.21 | −0.35 * | −0.37 * | 0.07 |
f__norank_o__Gastranaerophilales | 0.29 | 0.29 | 0.20 | 0.31 * | 0.13 | 0.12 |
f__Akkermansiaceae | 0.34 * | 0.31 * | 0.28 | 0.41 * | 0.31 * | 0.27 |
f__Atopobiaceae | −0.35 * | −0.35 * | −0.36 * | −0.38 * | −0.16 | −0.07 |
f__Saccharimonadaceae | −0.41 ** | −0.20 | −0.03 | −0.30 | −0.22 | 0.02 |
g__Ruminococcus_torques_group | −0.42 ** | −0.32 * | −0.29 | −0.51 # | −0.17 | −0.22 |
g__Phascolarctobacterium | 0.27 | 0.23 | 0.09 | 0.39 * | 0.07 | 0.01 |
g__Christensenellaceae_R-7_group | 0.02 | 0.10 | 0.16 | 0.15 | 0.11 | 0.40 ** |
g__norank_f__Ruminococcaceae | −0.16 | −0.03 | −0.05 | −0.31 * | 0.10 | 0.13 |
g__Candidatus_Saccharimonas | −0.41 ** | −0.20 | −0.03 | −0.30 | −0.22 | 0.02 |
g__norank_f__norank_o__Gastranaerophilales | 0.29 | 0.29 | 0.20 | 0.31 * | 0.13 | 0.12 |
g__Akkermansia | 0.34 * | 0.31 * | 0.28 | 0.41 ** | 0.31 * | 0.27 |
g__Saccharofermentans | −0.37 * | −0.30 | −0.30 | −0.44 ** | −0.40 ** | 0.06 |
g__Olsenella | −0.34 * | −0.35 * | −0.37 * | −0.40 ** | −0.20 | −0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Wang, C.; Simujide, H.; Liu, B.; Chen, Z.; Zhao, P.; Huangfu, M.; Liu, J.; Gao, X.; Wu, Y.; et al. Reproductive Hormones Mediate Intestinal Microbiota Shifts during Estrus Synchronization in Grazing Simmental Cows. Animals 2022, 12, 1751. https://doi.org/10.3390/ani12141751
Wu D, Wang C, Simujide H, Liu B, Chen Z, Zhao P, Huangfu M, Liu J, Gao X, Wu Y, et al. Reproductive Hormones Mediate Intestinal Microbiota Shifts during Estrus Synchronization in Grazing Simmental Cows. Animals. 2022; 12(14):1751. https://doi.org/10.3390/ani12141751
Chicago/Turabian StyleWu, Donglin, Chunjie Wang, Huasai Simujide, Bo Liu, Zhimeng Chen, Pengfei Zhao, Mingke Huangfu, Jiale Liu, Xin Gao, Yi Wu, and et al. 2022. "Reproductive Hormones Mediate Intestinal Microbiota Shifts during Estrus Synchronization in Grazing Simmental Cows" Animals 12, no. 14: 1751. https://doi.org/10.3390/ani12141751
APA StyleWu, D., Wang, C., Simujide, H., Liu, B., Chen, Z., Zhao, P., Huangfu, M., Liu, J., Gao, X., Wu, Y., Li, X., Chen, H., & Chen, A. (2022). Reproductive Hormones Mediate Intestinal Microbiota Shifts during Estrus Synchronization in Grazing Simmental Cows. Animals, 12(14), 1751. https://doi.org/10.3390/ani12141751