Effect of Dietary Supplementation with Calcium, Phosphorus and Vitamin D3 on Growth Performance, Nutrient Digestibility, and Serum Biochemical Parameters of Growing Blue Foxes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Diets, Management, and Experimental Design
2.2. Sample Collection and Preparation
2.3. Analysis of Diets, Feces, and Urine Samples
2.4. Analysis of Serum Samples
2.5. Statistics
3. Results
3.1. Growth Performance
3.2. Digestibility
3.3. N Metabolism
3.4. Ca and P Digestibility
3.5. Serum Biochemical Levels
3.6. Serum Hormone Levels
4. Discussion
4.1. Growth Performance
4.2. Digestibility
4.3. N Metabolism
4.4. Ca and P Digestibility
4.5. Serum Biochemical Levels
4.6. Serum Biochemical Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capra, S. Nutrient Reference Values for Australia and New Zealand: Including Recommended Dietary Intakes; Commonwealth of Australia: Canberra, Australia, 2006. [Google Scholar]
- Berridge, M.J.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, D.; Bryden, W.L. Calcium and phosphorus metabolism and nutrition of poultry: Are current diets formulated in excess? Anim. Prod. Sci. 2017, 57, 2304–2310. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Koreleski, J.; Arczewska-Włosek, A. Effect of inulin and oligofructose on performance and bone characteristics of broiler chickens fed on diets with different concentrations of calcium and phosphorus. Br. Poult. Sci. 2011, 52, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.D.; Cromwell, G.L.; Stahly, T.S. Effects of dietary calcium, phosphorus, calcium: Phosphorus ratio and vitamin K on performance, bone strength and blood clotting status of pigs. J. Anim. Sci. 1991, 69, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, R.; Heaney, R.P. Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone 2003, 32, 532–540. [Google Scholar] [CrossRef]
- Abrams, S.A.; Atkinson, S.A. Calcium, magnesium, phosphorus and vitamin D fortification of complementary foods. J. Nutr. 2003, 133, 2994S–2999S. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Kornegay, E.T.; Conner, D.E., Jr. Adverse effects of wide calcium: Phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. J. Anim. Sci. 1996, 74, 1288–1297. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Fargione, J.; Wolff, B.; D’antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Kazemi Fard, M.; Nassiri Moghaddam, H.; Saki, A.A. Effect of Different Levels of Calcium, Phosphorus and Vitamin D3 on the Calcium, Phosphorus and Magnesium of Plasma, Hatchability and Performance on the Boiler Breeder Hens. Res. J. Biol. Sci. 2010, 5, 223–227. [Google Scholar]
- Harris, L.E.; Bassett, C.F.; Smith, S.E.; Yeoman, E.D. The calcium requirement of growing foxes. Cornell Vet. 1945, 36, 9–22. [Google Scholar]
- Trautvetter, U.; Neef, N.; Leiterer, M.; Kiehntopf, M.; Kratzsch, J.; Jahreis, G. Effect of calcium phosphate and vitamin D3supplementation on bone remodelling and metabolism of calcium, phosphorus, magnesium and iron. Nutr. J. 2014, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mermerci Başkan, B.; Pekin Doğan, Y.; Sivas, F.; Bodur, H.; Özoran, K. The relation between osteoporosis and vitamin D levels and disease activity in ankylosing spondylitis. Rheumatol. Int. 2010, 30, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Bloomfield, S.A.; Ricke, S.C. Effects of age, vitamin D3, and fructooligosaccharides on bone growth and skeletal integrity of broiler chicks. Poult. Sci. 2011, 90, 2425–2432. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, C.C.; McCormack, H.A.; McTeir, L.; Fleming, R.H. High vitamin D3 requirements in broilers for bone quality and prevention of tibial dyschondroplasia and interactions with dietary calcium, available phosphorus and vitamin A. Br. Poult. Sci. 2004, 45, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.E.; Bassett, C.F.; Wilke, C.F. Effect of Various Levels of Calcium, Phosphorus and Vitamin D Intake on Bone Growth: I. Foxes, Six Figures. J. Nutr. 1951, 43, 153–165. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Mink and Foxes; National Academy Press: Washington, DC, USA, 1982. [Google Scholar]
- Korhonen, H.T.; Eskeli, P.; Lappi, T.; Huuki, H.; Sepponen, J. Effects of feeding intensity and Ca: P ratio on foot welfare in blue foxes (Vulpes lagopus). Open J. Anim. Sci. 2014, 4, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- AOAC: Official Methods of Analysis, 18th ed.; The Association of Official Analytical Chemists: Washington, DC, USA, 2005.
- Flohr, J.R.; Woodworth, J.C.; Bergstrom, J.R.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Derouchey, J.M. Evaluating the impact of maternal vitamin D supplementation on sow performance: II. Subsequent growth performance and carcass characteristics of growing pigs. J. Anim. Sci. 2016, 94, 4643–4653. [Google Scholar] [CrossRef] [Green Version]
- Geiger, K.E.; Koeller, D.M.; Harding, C.O.; Huntington, K.L.; Gillingham, M.B. Normal vitamin D levels and bone mineral density among children with inborn errors of metabolism consuming medical food–based diets. Nutr. Res. 2016, 36, 101–108. [Google Scholar] [CrossRef]
- Kono, N.; Arai, H. Intracellular transport of fat-soluble vitamins A and E. Traffic 2015, 16, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Goncalves, A.; Roi, S.; Nowicki, M.; Dhaussy, A.; Huertas, A.; Amiot, M.J.; Reboul, E. Fat-soluble vitamin intestinal absorption: Absorption sites in the intestine and interactions for absorption. Food Chem. 2015, 172, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.R.; Duangnumsawang, Y.; Kwakkel, R.P.; Steenfeldt, S.; Bootwalla, S.M.; Ravindran, V. Investigation of the interaction between separate calcium feeding and phytase supplementation on growth performance, calcium intake, nutrient digestibility and energy utilisation in broiler starters. Anim. Feed Sci. Technol. 2016, 219, 48–58. [Google Scholar] [CrossRef]
- Sun, C.; Wang, L.; Yan, J.; Liu, S. Calcium ameliorates obesity induced by high-fat diet and its potential correlation with p38 MAPK pathway. Mol. Biol. Rep. 2012, 39, 1755–1763. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.N.; Jun-Ich, A. Effect of dietary phosphorus on lipid content and its composition in carp. Nippon Suisan Gakkaishi 1981, 47, 347–352. [Google Scholar] [CrossRef]
- Martíntereso, J.; Ter, W.H.; Van, L.H.; Verstegen, M.W. Peripartal calcium homoeostasis of multiparous dairy cows fed rumen-protected rice bran or a lowered dietary cation/anion balance diet before calving. J. Anim. Physiol. Anim. Nutr. 2014, 98, 775–784. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.H.; Xu, Y.; Li, R.; Zhang, X.; Cui, H.; Nie, H.; Li, G. Effects of dietary vitamin D and calcium levels on growth performance, nutrient digestibility and nitrogen metabolism of growing minks. Chin. J. Anim. Nutr. 2017, 29, 4216–4226. [Google Scholar]
- Li, G.; Wang, J.; Zhang, H.; Zhang, X.; Xu, Y.; Li, R. Effects of calcium, phosphorus, and vitamin D on growing mink (Mustela vison). Can. J. Anim. Sci. 2018, 98, 769–777. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.X.; Bikker, P.; Duijster, M.; Hendriks, W.H.; van Baal, J.; van Krimpen, M.M. Coarse limestone does not alleviate the negative effect of a low Ca/P ratio diet on characteristics of tibia strength and growth performance in broilers. Poult. Sci. 2020, 99, 4978–4989. [Google Scholar] [CrossRef]
- Li, J.; Yuan, J.; Guo, Y.; Sun, Q.; Hu, X. The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and calbindin mRNA expression and tibia parameters of broilers. Asian-Australas. J. Anim. Sci. 2012, 25, 552. [Google Scholar] [CrossRef] [Green Version]
- Masuyama, R.; Nakaya, Y.; Katsumata, S.; Kajita, Y.; Uehara, M.; Tanaka, S.; Suzuki, K. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. J. Bone Miner. Res. 2003, 18, 1217–1226. [Google Scholar] [CrossRef]
- Kemi, V.E.; Kärkkäinen MU, M.; Rita, H.J.; Laaksonen, M.M.; Outila, T.A.; Lamberg-Allardt, C.J. Low calcium: Phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br. J. Nutr. 2010, 103, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormick, G.; Belizán, J.M. Calcium intake and health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saponaro, F.; Saba, A.; Zucchi, R. An update on vitamin D metabolism. Int. J. Mol. Sci. 2020, 21, 6573. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Vaes AM, M.; van der Zwaluw, N.L. Relative importance of summer sun exposure, vitamin D intake, and genes to vitamin D status in Dutch older adults: The B-PROOF study. J. Steroid Biochem. Mol. Biol. 2016, 164, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Fleet, J.C. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol. Cell. Endocrinol. 2017, 453, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Favus, M.J. Factors that influence absorption and secretion of calcium in the small intestine and colon. Am. J. Physiol. Gastrointest. Liver Physiol. 1985, 248, G147–G157. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Shaikh, A.; Abaalkhail, B.; Soliman, A.; Kaddam, I.; Mukhtar, A.M. Prevalence of Vitamin D Deficiency and Calcium Homeostasis in Saudi Children and Adolescents. J. Clin. Res. Pediatric Endocrinol. 2016, 8, 461–467. [Google Scholar] [CrossRef]
- Abbas, M.A. Physiological functions of Vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Palacios, C.; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 2014, 144, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.C.; Bilezikian, J.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. J. Endocrinol. Investig. 2011, 34, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moor, M.B.; Bonny, O. Ways of calcium reabsorption in the kidney. Am. J. Physiol. Ren. Physiol. 2016, 310, F1337–F1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cline, J. Calcium and vitamin d metabolism, deficiency, and excess. Top. Companion Anim. Med. 2012, 27, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Hazewinkel, H.A.W.; Tryfonidou, M.A. Vitamin D3 metabolism in dogs. Mol. Cell. Endocrinol. 2002, 197, 23–33. [Google Scholar] [CrossRef]
- Heaney, R.P.; Dowell, M.S.; Hale, C.A.; Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr. 2003, 22, 142–146. [Google Scholar] [CrossRef]
- Heaney, R.P.; Barger-Lux, M.J.; Dowell, M.S.; Chen, T.C.; Holick, M.F. Calcium absorptive effects of vitamin D and its major metabolites. J. Clin. Endocrinol. Metab. 1997, 82, 4111–4116. [Google Scholar] [CrossRef]
- Regassa, A.; Adhikari, R.; Nyachoti, C.M.; Kim, W.K. Effects of 25-(OH) D3 on fecal Ca and P excretion, bone mineralization, Ca and P transporter mRNA expression and performance in growing female pigs. J. Environ. Sci. Health Part B 2015, 50, 293–299. [Google Scholar] [CrossRef]
Items | Groups | ||||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | |
Ingredients (%) | |||||||||
Extruded corn | 42.06 | 42.06 | 42.06 | 40.56 | 40.56 | 40.56 | 38.66 | 38.66 | 38.66 |
Soybean meal | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
DDGS | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Corn protein meal | 11.24 | 11.24 | 11.24 | 11.34 | 11.34 | 11.34 | 11.64 | 11.64 | 11.64 |
Fish meal | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Chicken meal | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
CaHPO4 | 0.00 | 0.00 | 0.00 | 1.30 | 1.30 | 1.30 | 2.80 | 2.80 | 2.80 |
Limestone | 0.70 | 0.70 | 0.70 | 0.80 | 0.80 | 0.80 | 0.90 | 0.90 | 0.90 |
Soybean oil | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Premix † | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels | |||||||||
ME ‡ (MJ/kg) | 13.81 | 13.81 | 13.81 | 13.69 | 13.69 | 13.69 | 13.73 | 13.73 | 13.73 |
CP (%) | 28.12 | 28.12 | 28.12 | 28.09 | 28.09 | 28.09 | 28.11 | 28.11 | 28.11 |
EE §(%) | 10.82 | 10.82 | 10.82 | 10.81 | 10.81 | 10.81 | 10.79 | 10.79 | 10.79 |
Ca (%) | 0.82 | 0.82 | 0.82 | 1.18 | 1.18 | 1.18 | 1.59 | 1.59 | 1.59 |
Total P (%) | 0.55 | 0.55 | 0.55 | 0.81 | 0.81 | 0.81 | 1.06 | 1.06 | 1.06 |
Ca/P | 1.49 | 1.49 | 1.49 | 1.45 | 1.45 | 1.45 | 1.50 | 1.50 | 1.50 |
VD3 ¶ (IU/kg) | 1 327 | 2 327 | 4 327 | 1 327 | 2 327 | 4 327 | 1 327 | 2 327 | 4 327 |
Items | Ca Supplementation Level (%) | VD3 † Supplementation Level (IU/kg) | SEM ‡ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
Initial BW (kg) | 1.91 | 1.92 | 1.95 | 1.92 | 1.94 | 1.92 | 0.079 | 0.810 | 0.937 | 0.989 |
Final BW (kg) | 4.11 | 4.05 | 4.07 | 4.00 b | 4.17 a | 4.07 ab | 0.075 | 0.255 | 0.049 ** | 0.806 |
ADG (g/d) | 36.72 | 35.12 | 35.39 | 34.42 b | 37.16 a | 35.82 ab | 9.512 | 0.128 | 0.015 ** | 0.312 |
ADFI (g/d) | 176.37 | 174.86 | 173.69 | 175.20 | 175.09 | 174.64 | 22.497 | 0.154 | 0.910 | 0.381 |
F/G | 4.81 | 5.08 | 4.92 | 5.05 a | 4.71 b | 4.87 ab | 0.193 | 0.100 | 0.045 ** | 0.300 |
Items | Ca Supplementation Level (%) | VD3 † Supplementation Level (IU/kg) | SEM ‡ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
DM digestibility (%) | 70.81 | 71.43 | 74.27 | 71.18 | 73.57 | 71.31 | 18.051 | 0.052 | 0.129 | 0.267 |
CP digestibility (%) | 64.52 b | 66.76 ab | 69.08 a | 65.62 | 68.72 | 66.07 | 37.900 | 0.047 ** | 0.169 | 0.132 |
EE § digestibility (%) | 89.36 b | 90.74 a | 90.64 a | 89.97 | 90.72 | 90.17 | 2.906 | 0.019 ** | 0.283 | 0.291 |
CHO ¶ digestibility (%) | 74.40 b | 74.85 b | 77.45 a | 74.96 | 77.07 | 74.88 | 15.969 | 0.027 ** | 0.126 | 0.342 |
Items | Ca Supplementation Level (%) | VD3 † Supplementation Level (IU/kg) | SEM ‡ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
N § intake (g/d) | 7.19 a | 7.18 a | 6.86 b | 7.01 b | 7.16 a | 7.05 ab | 0.038 | <0.001 ** | 0.040 ** | 0.013 ** |
Urinary N (g/d) | 1.81 | 1.75 | 1.80 | 1.89 | 1.76 | 1.71 | 0.156 | 0.858 | 0.315 | 0.674 |
Fecal N (g/d) | 2.52 a | 2.35 a | 2.09 b | 2.41 a | 2.12 b | 2.40 a | 0.162 | 0.003 ** | 0.027 ** | 0.108 |
N deposition (g/d) | 2.81 | 3.01 | 2.94 | 2.67 b | 3.19 a | 2.89 ab | 0.271 | 0.404 | 0.004 ** | 0.023 ** |
NPU ¶ (%) | 39.12 b | 43.82 a | 45.63 a | 39.96 b | 45.89 a | 42.57 b | 9.498 | <0.001 ** | 0.007 ** | 0.033 ** |
BV * of protein (%) | 60.27 | 62.63 | 62.54 | 56.53 b | 64.42 a | 62.23 a | 23.684 | 0.2901 | <0.001 ** | 0.006 ** |
Items | Ca Supplementation Level (%) | VD3 † Supplementation Level (IU/kg) | SEM ‡ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
Fecal Ca (g/d) | 1.00 c | 1.72 b | 2.26 a | 1.71 a | 1.50 b | 1.78 a | 0.093 | <0.001 ** | 0.019 ** | 0.012 ** |
Fecal P (g/d) | 0.65 c | 0.93 b | 1.21 a | 0.96 | 0.90 | 0.94 | 0.022 | <0.001 ** | 0.445 | 0.009 ** |
Ca digestibility (%) | 39.59 a | 31.08 b | 29.19 b | 35.60 a | 38.86 a | 27.30 b | 12.264 | <0.001 ** | <0.001 ** | <0.001 ** |
P digestibility (%) | 43.76 a | 42.85 a | 38.06 b | 38.20 b | 44.85 a | 41.92 ab | 0.985 | 0.010 ** | 0.008 ** | <0.001 ** |
Items | Ca Supplementation Level (%) | VD3 † Supplementation Level (IU/kg) | SEM ‡ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | 0.8 | 1000 | Ca × VD3 Interaction | ||
TP § (g/L) | 48.83 ab | 50.27 a | 47.81 b | 48.77 | 49.18 | 49.01 | 7.906 | 0.015 ** | 0.847 | 0.085 ** |
Serum Ca (mmol/L) | 2.83 b | 3.04 a | 2.83 b | 2.92 | 2.96 | 2.83 | 0.078 | 0.018 ** | 0.204 | 0.216 |
Serum P (mmol/L) | 2.61 ab | 2.50 b | 2.66 a | 2.51 | 2.64 | 2.60 | 0.043 | 0.037 ** | 0.115 | 0.091 ** |
ALP ¶ (U/L) | 176.21 | 187.37 | 177.02 | 180.04 | 180.06 | 180.63 | 4.722 | 0.585 | 0.998 | 0.792 |
Items | Ca Supplementation Level (%) | VD3 † Supplementation Level (IU/kg) | SEM ‡ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4 | 0.8 | 1000 | 2000 | 4000 | Ca Level | VD3 Level | Ca × VD3 Interaction | ||
PTH § (pg./mL) | 18.83 a | 19.05 a | 17.39 b | 16.73b | 17.77 b | 20.75 a | 3.667 | 0.008 ** | <0.001 ** | <0.001 ** |
CT ¶ (pg./mL) | 15.01 a | 12.40 b | 12.90 b | 14.10a | 13.59 a | 12.66 b | 2.076 | <0.001 ** | 0.005 ** | <0.001 ** |
25-OH-D3 (ng/mL) | 8.65 b | 8.87 b | 9.98 a | 9.64a | 8.22 b | 9.62 a | 0.520 | <0.001 ** | <0.001 ** | <0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Du, Z.; Li, T.; Xu, Y.; Lv, J.; Bai, X.; Xu, Y.; Li, G. Effect of Dietary Supplementation with Calcium, Phosphorus and Vitamin D3 on Growth Performance, Nutrient Digestibility, and Serum Biochemical Parameters of Growing Blue Foxes. Animals 2022, 12, 1814. https://doi.org/10.3390/ani12141814
Liu J, Du Z, Li T, Xu Y, Lv J, Bai X, Xu Y, Li G. Effect of Dietary Supplementation with Calcium, Phosphorus and Vitamin D3 on Growth Performance, Nutrient Digestibility, and Serum Biochemical Parameters of Growing Blue Foxes. Animals. 2022; 12(14):1814. https://doi.org/10.3390/ani12141814
Chicago/Turabian StyleLiu, Jiayu, Zhiheng Du, Ting Li, Yinan Xu, Jing Lv, Xiujuan Bai, Yuan Xu, and Guangyu Li. 2022. "Effect of Dietary Supplementation with Calcium, Phosphorus and Vitamin D3 on Growth Performance, Nutrient Digestibility, and Serum Biochemical Parameters of Growing Blue Foxes" Animals 12, no. 14: 1814. https://doi.org/10.3390/ani12141814
APA StyleLiu, J., Du, Z., Li, T., Xu, Y., Lv, J., Bai, X., Xu, Y., & Li, G. (2022). Effect of Dietary Supplementation with Calcium, Phosphorus and Vitamin D3 on Growth Performance, Nutrient Digestibility, and Serum Biochemical Parameters of Growing Blue Foxes. Animals, 12(14), 1814. https://doi.org/10.3390/ani12141814