Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Compliance Statement
2.2. Experimental Design
2.3. Growth Performance
2.4. Stress Biomarkers
2.5. Blood Metabolites
2.6. Immune Response
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Stress Biomarkers
3.3. Blood Metabolites
3.4. Immune Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temim, S.; Chagneau, A.M.; Peresson, R.; Tesseraud, S. Chronic Heat Exposure Alters Protein Turnover of Three Different Skeletal Muscles in Finishing Broiler Chickens Fed 20 or 25% Protein Diets. J. Nutr. 2000, 130, 813–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Liu, L.; Ren, M.; Ren, K.; Jin, Y.; Yan, M. Heat stress impacts on broiler performance: A systematic review and meta-analysis. Poult. Sci. 2020, 99, 6205–6211. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.A.; Najaa, M.; Zulaikha, Z.A.; Zulkifli, I.; Soleimani, A.F. Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Asian-Australas. J. Anim. Sci. 2019, 33, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Boussaid-Om Ezzine, S.; Everaert, N.; Métayer-Coustard, S.; Rideau, N.; Berri, C.; Joubert, R.; Temim, S.; Collin, A.; Tesseraud, S. Effects of heat exposure on Akt/S6K1 signaling and expression of genes related to protein and energy metabolism in chicken (Gallus gallus) pectoralis major muscle. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2010, 157, 281–287. [Google Scholar] [CrossRef]
- He, S.; Yin, Q.; Xiong, Y.; Li, J.; Liu, D. Characterization of heat stress affecting the growth performance, blood biochemical profile, and redox status in male and female broilers at market age. Trop. Anim. Health Prod. 2020, 52, 3833–3841. [Google Scholar] [CrossRef]
- Habibu, B.; Dzenda, T.; Ayo, J.O.; Yaqub, L.S.; Kawu, M.U. Haematological changes and plasma fluid dynamics in livestock during thermal stress, and response to mitigative measures. Livest. Sci. 2018, 214, 189–201. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Liu, F.Z.; Yan, Q.L.; Li, W.C. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poult. Sci. 2009, 88, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, M.M.; Hendricks, G.L.; Kalama, M.A.; Gehad, A.E.; Abbas, A.O.; Patterson, P.H. Effect of Heat Stress on Production Parameters and Immune Responses of Commercial Laying Hens. Poult. Sci. 2004, 83, 889–894. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, X.; Li, Z.; Zhang, X.; Luo, Q. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 2018, 97, 4073–4082. [Google Scholar] [CrossRef]
- Olfati, A.; Mojtahedin, A.; Sadeghi, T.; Akbari, M.; Martínez-Pastor, F. Comparison of growth performance and immune responses of broiler chicks reared under heat stress, cold stress and thermoneutral conditions. Span. J. Agric. Res. 2018, 16, e0505. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, H.; Yamazaki, M.; Abe, H.; Murakami, H.; Toyomizu, M. Heat Stress Modulates Cytokine Gene Expression in the Spleen of Broiler Chickens. J. Poult. Sci. 2015, 52, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Liu, Q.; Zhang, M.; Feng, J.; Li, X.; Zhou, Y.; Wang, X. iTRAQ-based quantitative proteomics analysis of the spleen reveals innate immunity and cell death pathways associated with heat stress in broilers (Gallus gallus). J. Proteom. 2019, 196, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.O.; Alaqil, A.A.; El-Beltagi, H.S.; Abd El-Atty, H.K.; Kamel, N.N. Modulating laying hens productivity and immune performance in response to oxidative stress induced by e. Coli challenge using dietary propolis supplementation. Antioxidants 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Alzarah, M.I.; Althobiati, F.; Abbas, A.O.; Mehaisen, G.M.K.; Kamel, N.N. Citrullus colocynthis seeds: A potential natural immune modulator source for broiler reared under chronic heat stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef]
- Kamel, N.N.; Ahmed, A.M.H.; Mehaisen, G.M.K.; Mashaly, M.M.; Abass, A.O. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens. Int. J. Biometeorol. 2017, 61, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.K.K.; Eshak, M.G.; Elkaiaty, A.M.; Atta, A.R.M.; Mashaly, M.M.; Abass, A.O. Comprehensive growth performance, immune function, plasma biochemistry, gene expressions and cell death morphology responses to a daily corticosterone injection course in broiler chickens. PLoS ONE 2017, 12, e0172684. [Google Scholar] [CrossRef]
- Padgett, D.A.; Glaser, R. How stress influences the immune response. Trends Immunol. 2003, 24, 444–448. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Zaytsoff, S.J.M.; Brown, C.L.J.; Montina, T.; Metz, G.A.S.; Abbott, D.W.; Uwiera, R.R.E.; Inglis, G.D. Corticosterone-mediated physiological stress modulates hepatic lipid metabolism, metabolite profiles, and systemic responses in chickens. Sci. Rep. 2019, 9, 19225. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as Potential Attenuators of Heat Stress in Poultry Production. Antioxidants 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.R.; Awati, A.; Roubos-van den Hil, P.J.; van Kempen, T.A.T.G.; Tersteeg-Zijderveld, M.H.G.; Koolmees, P.A.; Smits, C.; Fink-Gremmels, J. Effects of a feed additive blend on broilers challenged with heat stress. Avian Pathol. 2019, 48, 582–601. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Bai, L.; Qu, Q.; Zhou, S.; Yang, M.; Guo, S.; Li, Q.; Liu, C. Impact of gut microbiota structure in heat-stressed broilers. Poult. Sci. 2019, 98, 2405–2413. [Google Scholar] [CrossRef]
- Dayyani, N.; Bakhtiari, H. Heat stress in poultry: Background and affective factors. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 1409–1413. [Google Scholar]
- Yang, H.; Xing, H.; Wang, Z.; Xia, J.; Wan, Y.; Hou, B.; Zhang, J. Effects of Intermittent Lighting on Broiler Growth Performance, Slaughter Performance, Serum Biochemical Parameters and Tibia Parameters. Ital. J. Anim. Sci. 2016, 14, 684–689. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.O.; Gehad, A.E.; Hendricks, G.L.; Gharib, H.B.A.; Mashaly, M.M. The effect of lighting program and melatonin on the alleviation of the negative impact of heat stress on the immune response in broiler chickens. Int. J. Poult. Sci. 2007, 6, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Rattenborg, N.C.; Obermeyer, W.H.; Vacha, E.; Benca, R.M. Acute effects of light and darkness on sleep in the pigeon (Columba livia). Physiol. Behav. 2005, 84, 635–640. [Google Scholar] [CrossRef]
- Ingram, D.R.; Hatten, L.F.; McPherson, B.N. Effects of Light Restriction on Broiler Performance and Specific Body Structure Measurements. J. Appl. Poult. Res. 2000, 9, 501–504. [Google Scholar] [CrossRef]
- Lien, R.J.; Hess, J.B.; McKee, S.R.; Bilgili, S.F.; Townsend, J.C. Effect of light intensity and photoperiod on live performance, heterophil-to-lymphocyte ratio, and processing yields of broilers. Poult. Sci. 2007, 86, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Petek, M.; Sönmez, G.; Yildiz, H.; Baspinar, H. Effects of different management factors on broiler performance and incidence of tibial dyschondroplasia. Br. Poult. Sci. 2005, 46, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kliger, C.A.; Gehad, A.E.; Hulet, R.M.; Roush, W.B.; Lillehoj, H.S.; Mashaly, M.M. Effects of photoperiod and melatonin on lymphocyte activities in male broiler chickens. Poult. Sci. 2000, 79, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Ma, Y.E.; Gu, L.Y.; Yuan, D.; Shi, M.L.; Guo, X.Y.; Zhan, X.A. Growth performance, antioxidant status, and nonspecific immunity in broilers under different lighting regimens. J. Appl. Poult. Res. 2013, 22, 798–807. [Google Scholar] [CrossRef]
- EI-Badry, A.; Abdel-Fattah, S.; Moslim, G. Effect of Early Heat Conditioning and Lighting Regime on Physiological and Immune Responses of Muscovy Ducks During Summer Season. J. Anim. Poult. Prod. 2015, 6, 163–180. [Google Scholar] [CrossRef]
- Abbas, A.O.; El-Dein, A.K.A.; Desoky, A.A.; Galal, M.A.A. The effects of photoperiod programs on broiler chicken performance and immune response. Int. J. Poult. Sci. 2008, 7, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Zapico, C.; Coto-Montes, A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J. Pineal Res. 2005, 39, 99–104. [Google Scholar] [CrossRef]
- Brennan, C.P.; Hendricks, G.L.; El-Sheikh, T.M.; Mashaly, M.M. Melatonin and the Enhancement of Immune Responses in Immature Male Chickens. Poult. Sci. 2002, 81, 371–375. [Google Scholar] [CrossRef]
- Haldar, C.; Ahmad, R. Photoimmunomodulation and melatonin. J. Photochem. Photobiol. B Biol. 2010, 98, 107–117. [Google Scholar] [CrossRef]
- Cobb500 Broiler Performance & Nutrition Supplement. Available online: https://www.cobb-vantress.com/en_US/products/cobb500/ (accessed on 7 June 2022).
- AOAC (Association of Official Analysis Chemists International). Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Washington, DC, USA, 2005; ISBN 0935584544. [Google Scholar]
- Romero, L.M.; Reed, J.M. Collecting baseline corticosterone samples in the field: Is under 3 min good enough? Comp. Biochem. Physiol.-A Mol. Integr. Physiol. 2005, 140, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yue, H.Y.; Zhang, H.J.; Xu, L.; Wu, S.G.; Yan, H.J.; Gong, Y.S.; Qi, G.H. Transport stress in broilers: I. Blood metabolism, glycolytic potential, and meat quality. Poult. Sci. 2009, 88, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Gehad, A.E.; Mehaisen, G.M.K.; Abbas, A.O.; Mashaly, M.M. The Role of Light Program and Melatonin on Alleviation of Inflammation Induced by Lipopolysaccharide Injection in Broiler Chickens. Int. J. Poult. Sci. 2008, 7, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Alaqil, A.A.; Abbas, A.O.; El-Beltagi, H.S.; Abd El-Atty, H.K.; Mehaisen, G.M.K.; Moustafa, E.S. Dietary supplementation of probiotic lactobacillus acidophilus modulates cholesterol levels, immune response, and productive performance of laying hens. Animals 2020, 10, 1588. [Google Scholar] [CrossRef]
- Loa, C.C.; Lin, T.L.; Wu, C.C.; Bryan, T.; Thacker, H.L.; Hooper, T.; Schrader, D. Humoral and cellular immune responses in turkey poults infected with turkey coronavirus. Poult. Sci. 2001, 80, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Jahanian, R.; Rasouli, E. Dietary chromium methionine supplementation could alleviate immunosuppressive effects of heat stress in broiler chicks. J. Anim. Sci. 2015, 93, 3355–3363. [Google Scholar] [CrossRef] [Green Version]
- Akhavan-Salamat, H.; Ghasemi, H.A. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: Dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Trop. Anim. Health Prod. 2016, 48, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Habibian, M.; Ghazi, S.; Moeini, M.M.; Abdolmohammadi, A. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int. J. Biometeorol. 2014, 58, 741–752. [Google Scholar] [CrossRef]
- Sohail, M.U.; Ijaz, A.; Yousaf, M.S.; Ashraf, K.; Zaneb, H.; Aleem, M.; Rehman, H. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 2010, 89, 1934–1938. [Google Scholar] [CrossRef]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Villar, S.R.; Ronco, M.T.; Fernández Bussy, R.; Roggero, E.; Lepletier, A.; Manarin, R.; Savino, W.; Pérez, A.R.; Bottasso, O. Tumor Necrosis Factor-α Regulates Glucocorticoid Synthesis in the Adrenal Glands of Trypanosoma cruzi Acutely-Infected Mice. The Role of TNF-R1. PLoS ONE 2013, 8, e63814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.M.; Liu, L.P.; Yin, B.; Liu, Y.Y.; Dong, W.W.; Gong, S.; Zhang, J.; Tan, J.H. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef] [PubMed]
- Webster Marketon, J.I.; Glaser, R. Stress hormones and immune function. Cell. Immunol. 2008, 252, 16–26. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, R.G.; Lara, L.J.C. Lighting programmes and its implications for broiler chickens. Worlds. Poult. Sci. J. 2016, 72, 735–741. [Google Scholar] [CrossRef]
- Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 2004, 36, 1–9. [Google Scholar] [CrossRef]
- Li, J.H.; Yu, J.P.; Yu, H.G.; Xu, X.M.; Yu, L.L.; Liu, J.; Luo, H.S. Melatonin Reduces Inflammatory Injury Through Inhibiting NF-κB Activation in Rats With Colitis. Mediat. Inflamm. 2005, 2005, 185. [Google Scholar] [CrossRef] [Green Version]
- Leal, M.; Shimada, A.; Ruíz, F.; De Mejía, E.G. Effect of lycopene on lipid peroxidation and glutathione-dependent enzymes induced by T-2 toxin in vivo. Toxicol. Lett. 1999, 109, 1–10. [Google Scholar] [CrossRef]
- Alzarah, M.I.; Alaqil, A.A.; Abbas, A.O.; Nassar, F.S.; Mehaisen, G.M.K.; Gouda, G.F.; Abd El-Atty, H.K.; Moustafa, E.S. Inclusion of citrullus colocynthis seed extract into diets induced a hypolipidemic effect and improved layer performance. Agriculture 2021, 11, 808. [Google Scholar] [CrossRef]
- Mauss, D.; Herr, R.M.; Jarczok, M.N.; Motoc, I.; Fischer, J.E.; Bosch, J.A. The association of cortisol levels with leukocyte distribution is disrupted in the metabolic syndrome. Obes. Res. Clin. Pract. 2021, 15, 78–84. [Google Scholar] [CrossRef]
- Shini, S.; Huff, G.R.; Shini, A.; Kaiser, P. Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes. Poult. Sci. 2010, 89, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Lardone, P.J.; Álvarez-Śnchez, N.; Rodrĩguez-Rodrĩguez, A.; Guerrero, J.M. Melatonin: Buffering the immune system. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, M.R. Protein metabolism and liver disease. Baillieres. Clin. Endocrinol. Metab. 1996, 10, 617–635. [Google Scholar] [CrossRef]
- Siegel, H.S.; Van Kampen, M. Energy relationships in growing chickens given daily injections of corticosterone. Br. Poult. Sci. 1984, 25, 477–485. [Google Scholar] [CrossRef]
- Mathivanan, R.; Edwin, S.C. Hematological and serum biochemical parameters of broilers fed with Andrographis paniculata as an alternative to antibiotic growth promoter. J. Med. Plants Res. 2012, 6, 5647–5650. [Google Scholar] [CrossRef]
- Darras, V.M.; Kotanen, S.P.; Geris, K.L.; Berghman, L.R.; Kühn, E.R. Plasma thyroid hormone levels and iodothyronine deiodinase activity following an acute glucocorticoid challenge in embryonic compared with posthatch chickens. Gen. Comp. Endocrinol. 1996, 104, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Mustonen, A.M.; Nieminen, P.; Hyvarinen, H.; Asikainen, J. Exogenous melatonin elevates the plasma leptin and thyroxine concentrations of the mink (Mustela vison). Z. Naturforsch. C 2000, 55, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Schwean-Lardner, K.; Fancher, B.I.; Classen, H.L. Impact of daylength on the productivity of two commercial broiler strains. Br. Poult. Sci. 2012, 53, 7–18. [Google Scholar] [CrossRef]
Ingredients (g/kg) | Starter (0–8 d) | Grower (9–28 d) | Finisher (29–42 d) |
---|---|---|---|
Corn | 607.0 | 654.0 | 693.0 |
Gluten meal | 70.0 | 50.0 | 50.0 |
Soybean meal, 48% CP | 289.0 | 243.0 | 203.0 |
Soybean oil | 0.0 | 20.0 | 22.0 |
Di-calcium phosphate | 4.0 | 4.0 | 4.0 |
Limestone | 20.0 | 19.0 | 18.0 |
salt | 4.5 | 4.5 | 4.5 |
Vitamin-Mineral Premix 1 | 5.5 | 5.5 | 5.5 |
Nutritional composition | |||
Dry matter (g/kg) 2 | 906.0 | 901.0 | 908.9 |
Total ash (g/kg) 2 | 55.0 | 53.0 | 39.1 |
Crude protein (g/kg) 2 | 229.8 | 199.8 | 184.6 |
Crude fat (g/kg) 2 | 58.3 | 77.5 | 83.4 |
Crude fiber (g/kg) 2 | 32.0 | 35.0 | 35.8 |
Metabolizable energy (MJ/kg) 3 | 12.6 | 13.1 | 13.3 |
L-lysine (g/kg) 3 | 12.1 | 11.6 | 10.4 |
DL-Methionine (g/kg) 3 | 4.8 | 4.7 | 4.3 |
Calcium (g/kg) 3 | 9.1 | 8.6 | 8.1 |
Available phosphorus (g/kg) 3 | 4.5 | 4.2 | 4.1 |
Parameters | Thermoneutral | Heat Stress | SEM (n) | p-Value | ||||
---|---|---|---|---|---|---|---|---|
C.L. | I.L. | C.L. | I.L. | HS | LP | HS∗LP | ||
IBW (g) | 750 | 736 | 731 | 747 | 33.3 (50) | NS | NS | NS |
FBW (g) | 2341 a | 2410 a | 1780 c | 2010 b | 93.7 (50) | 0.016 | NS | 0.044 |
BWG (g) | 1591 a | 1674 a | 1049 c | 1263 b | 82.5 (50) | <0.001 | 0.013 | 0.039 |
FI (g) | 2955 a | 3025 a | 2523 b | 2497 b | 147.3 (50) | 0.007 | NS | NS |
FCR | 1.86 c | 1.81 c | 2.41 a | 1.98 b | 0.033 (50) | 0.024 | 0.047 | 0.031 |
Parameters | Thermoneutral | Heat Stress | p-Value | |||||
---|---|---|---|---|---|---|---|---|
C.L. | I.L. | C.L. | I.L. | SEM (n) | HS | LP | HS∗LP | |
H/L ratio | 0.41 c | 0.37 c | 0.93 a | 0.66 b | 0.07 (10) | <0.001 | 0.006 | 0.047 |
CORT, ng/mL | 2.14 c | 1.87 c | 8.41 a | 4.57 b | 0.67 (10) | <0.001 | 0.002 | 0.002 |
TNF-α, pg/mL | 102.91 c | 93.87 d | 192.55 a | 141.36 b | 6.71 (10) | <0.001 | <0.001 | 0.002 |
MDA, µmol/mL | 1.13 c | 1.07 c | 5.21 a | 2.57 b | 0.31 (10) | <0.001 | 0.007 | 0.004 |
Parameters | Thermoneutral | Heat Stress | p-Value | |||||
---|---|---|---|---|---|---|---|---|
C.L. | I.L. | C.L. | I.L. | SEM (n) | HS | LP | HS∗LP | |
TP, g/dL | 3.46 c | 3.54 c | 5.88 a | 4.36 b | 0.28 (10) | <0.001 | 0.001 | 0.043 |
AST, U/mL | 86.49 c | 81.34 c | 157.34 a | 118.97 b | 4.77 (10) | <0.001 | 0.013 | 0.025 |
ALT, U/mL | 11.14 c | 10.87 c | 25.61 a | 17.36 b | 1.29 (10) | <0.001 | 0.021 | 0.033 |
chT3, µmol/ml | 5.23 a | 5.88 a | 2.19 c | 4.12 b | 0.39 (10) | <0.001 | 0.005 | 0.037 |
Parameters | Thermoneutral | Heat Stress | p-Value | |||||
---|---|---|---|---|---|---|---|---|
C.L. | I.L. | C.L. | I.L. | SEM (n) | HS | LP | HS∗LP | |
TWBC, 103/mL | 49.41 b | 61.26 a | 29.63 d | 38.43 c | 3.48 (10) | <0.001 | <0.001 | 0.019 |
T-lymphocytes SI | 5.36 b | 7.21 a | 2.49 d | 4.15 c | 0.47 (10) | <0.001 | 0.003 | 0.029 |
B-lymphocytes SI | 2.51 b | 3.17 a | 0.91 c | 2.33 b | 0.24 (10) | <0.001 | 0.001 | 0.008 |
Anti-SRBCs AB, log2 | 6.78 a | 7.11 a | 3.19 c | 4.66 b | 0.63 (10) | 0.002 | 0.014 | 0.036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaqil, A.A.; Abd El-Atty, H.K.; Abbas, A.O. Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals 2022, 12, 1834. https://doi.org/10.3390/ani12141834
Alaqil AA, Abd El-Atty HK, Abbas AO. Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals. 2022; 12(14):1834. https://doi.org/10.3390/ani12141834
Chicago/Turabian StyleAlaqil, Abdulaziz A., Hanaa K. Abd El-Atty, and Ahmed O. Abbas. 2022. "Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens" Animals 12, no. 14: 1834. https://doi.org/10.3390/ani12141834
APA StyleAlaqil, A. A., Abd El-Atty, H. K., & Abbas, A. O. (2022). Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals, 12(14), 1834. https://doi.org/10.3390/ani12141834