Clinical Overview of Luteal Deficiency in Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Early Luteal Phase of Pregnancy
3. The Late Embryonic Period
4. Diagnostic Tools for Luteal Deficiency
5. Clinical Perspectives
6. The Situation in Other Mammalian Species
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, G.S. The luteal phase defect. Fertil. Steril. 1976, 27, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Csapo, A.I.; Pulkkinen, M. Indispensability of the human corpus luteum in the maintenance of early pregnancy. Luteectomy evidence. Obstet. Gynecol. Surv. 1978, 33, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Practice Committees of the American Society for Reproductive Medicine and the Society for Reproductive Endocrinology and Infertility. Diagnosis and treatment of luteal phase deficiency: A committee opinion. Fertil. Steril. 2021, 115, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, M.; Buckingham, K.; Farquhar, C.; Kremer, J.A.M.; Metwally, M. Luteal phase support for assisted reproduction cycles. Hum. Reprod. Update 2012, 18, 473. [Google Scholar] [CrossRef] [Green Version]
- Mizrachi, Y.; Horowitz, E.; Ganer Herman, H.; Farhi, J.; Raziel, A.; Weissman, A. Should women receive luteal support following natural cycle frozen embryo transfer? A systematic review and meta-analysis. Hum. Reprod. Update 2021, 27, 643–650. [Google Scholar] [CrossRef]
- Kimura, M.; Nakao, T.; Moriyoshi, M.; Kawata, K. Luteal phase deficiency as a possible cause of repeat breeding in dairy cows. Br. Vet. J. 1987, 143, 560–566. [Google Scholar] [CrossRef]
- Starbuck, G.R.; Gutierrez, C.G.; Peters, A.R.; Mann, G.E. Timing of follicular phase events and the postovulatory progesterone rise following synchronisation of oestrus in cows. Vet. J. 2006, 172, 103–108. [Google Scholar] [CrossRef]
- Pérez-Marín, C.C.; España, F. Oestrus expression and ovarian function in repeat breeder cows, monitored by ultrasonography and progesterone assay. Reprod. Domest. Anim. 2007, 42, 449–456. [Google Scholar] [CrossRef]
- Lukaszewska, J.; Hansel, W. Corpus luteum maintenance during early pregnancy in the cow. J. Reprod. Fertil. 1980, 59, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Mann, G.E.; Lamming, G.E. The influence of progesterone during early pregnancy in cattle. Reprod. Domest. Anim. 1999, 34, 269–274. [Google Scholar] [CrossRef]
- Nascimento, A.B.; Bender, R.W.; Souza, A.H.; Ayres, H.; Araujo, R.R.; Guenther, J.N.; Sartori, R.; Wiltbank, M.C. Effect of treatment with human chorionic gonadotropin on day 5 after timed artificial insemination on fertility of lactating dairy cows. J. Dairy Sci. 2013, 96, 2873–2882. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Robinson, R.; Shi, Z.; Mann, G. Efficacy of progesterone supplementation during early pregnancy in cows: A meta-analysis. Theriogenology 2016, 85, 1390–1398. [Google Scholar] [CrossRef]
- Besbaci, M.; Abdelli, A.; Minviel, J.J.; Belabdi, I.; Kaidi, R.; Raboisson, D. Association of pregnancy per artificial insemination with gonadotropin-releasing hormone and human chorionic gonadotropin administered during the luteal phase after artificial insemination in dairy cows: A meta-analysis. J. Dairy Sci. 2020, 103, 2006–2018. [Google Scholar] [CrossRef]
- Gustafsson, H. Studies on follicular dynamics and hormonal asynchrony around ovulation as a potential cause of repeat breeding. Reprod. Domest. Anim. 1988, 33, 139–140. [Google Scholar] [CrossRef]
- Gustafsson, H.; Emanuelson, U. Characterisation of the repeat breeding syndrome in Swedish dairy cattle. Acta Vet. Scand. 2002, 43, 115–125. [Google Scholar] [CrossRef]
- Yusuf, M.; Nakao, T.; Ranasinghe, R.B.; Gautam, G.; Long, S.T.; Yoshida, C.; Koike, K.; Hayashi, A. Reproductive performance of repeat breeders in dairy herds. Theriogenology 2010, 73, 1220–1229. [Google Scholar] [CrossRef]
- López-Gatius, F.; Garcia-Ispierto, I. Treatment with an elevated dose of the GnRH analogue dephereline in the early luteal phase improves pregnancy rates in repeat-breeder dairy cows. Theriogenology 2020, 155, 12–16. [Google Scholar] [CrossRef]
- Committee on Bovine Reproductive Nomenclature. Recommendations for standardizing bovine reproductive terms. Cornell Vet. 1972, 62, 216–237. [Google Scholar]
- Grimard, B.; Freret, S.; Chevallier, A.; Pinto, A.; Ponsart, C.; Humblot, P. Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Anim. Reprod. Sci. 2006, 91, 31–44. [Google Scholar] [CrossRef]
- López-Gatius, F. Factors of a noninfectious nature affecting fertility after artificial insemination in lactating dairy cows. A review. Theriogenology 2012, 77, 1029–1041. [Google Scholar] [CrossRef]
- Ealy, A.D.; Seekford, Z.K. Predicting pregnancy loss in dairy cattle. J. Dairy Sci. 2019, 102, 11798–11804. [Google Scholar] [CrossRef]
- Szenci, O. Recent Possibilities for the diagnosis of early pregnancy and embryonic mortality in dairy cows. Animals 2021, 11, 1666. [Google Scholar] [CrossRef]
- López-Gatius, F.; Santolaria, P.; Yániz, J.L.; Hunter, R.H.F. Progesterone supplementation during the early fetal period reduces pregnancy loss in high-yielding dairy cattle. Theriogenology 2004, 62, 1529–1535. [Google Scholar] [CrossRef]
- Alnimer, M.A.; Lubbadeh, W.F. Effect of progesterone (P(4)) intravaginal device (CIDR) to reduce embryonic loss and to synchronize return to oestrus of previously timed inseminated lactating dairy cows. Anim. Reprod. Sci. 2008, 107, 36–47. [Google Scholar] [CrossRef]
- Bech-Sàbat, G.; López-Gatius, F.; García-Ispierto, I.; Santolaria, P.; Serrano, B.; Nogareda, C.; de Sousa, N.M.; Beckers, J.F.; Yániz, J. Pregnancy patterns during the early fetal period in high producing dairy cows treated with GnRH or progesterone. Theriogenology 2009, 71, 920–929. [Google Scholar] [CrossRef]
- Bartolome, J.A.; Kamimura, S.; Silvestre, F.; Arteche, A.C.; Trigg, T.; Thatcher, W.W. The use of a deslorelin implant (GnRH agonist) during the late embryonic period to reduce pregnancy loss. Theriogenology 2006, 65, 1443–1453. [Google Scholar] [CrossRef]
- Stevenson, J.S.; Tiffany, S.M.; Inskeep, E.K. Maintenance of pregnancy in dairy cattle after treatment with human chorionic gonadotropin or gonadotropin-releasing hormone. J. Dairy Sci. 2008, 91, 3092–3101. [Google Scholar] [CrossRef]
- Garcia-Ispierto, I.; López-Gatius, F. The effects of a single or double GnRH dose on pregnancy survival in high producing dairy cows carrying singletons or twins. J. Reprod. Dev. 2018, 64, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Kastelic, J.P.; Northey, D.L.; Ginther, O.J. Spontaneous embryonic death on Days 20 to 40 in heifers. Theriogenology 1991, 35, 351–363. [Google Scholar] [CrossRef]
- Bech-Sàbat, G.; García-Ispierto, I.; Yániz, J.; López-Gatius, F. Therapeutic approaches to pregnancy loss of non-infectious cause during the late embryonic/early foetal period in dairy cattle. A review. Reprod. Domest. Anim. 2010, 45, e469–e475. [Google Scholar] [CrossRef]
- Niswender, G.D.; Juengel, J.L.; Silva, P.J.; Rollyson, M.K.; McIntush, E.W. Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 2000, 80, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakumoto, R. Pregnancy-associated changes in uterine-luteal relationships in cows: A mini-review. Reprod. Biol. 2016, 16, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Sangsritavong, S.; Combs, D.K.; Sartori, R.; Armentano, L.-E.; Wiltbank, M.C. High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17beta in dairy cattle. J. Dairy Sci. 2002, 85, 2831–2842. [Google Scholar] [CrossRef] [Green Version]
- Wiltbank, M.; Lopez, H.; Sartori, R.; Sangsritavong, S.; Gümen, A. Changes in reproductive physiology of lactating dairy cows due to elevated steroid metabolism. Theriogenology 2006, 65, 17–29. [Google Scholar] [CrossRef]
- Wolfenson, D.; Flamenbaum, I.; Berman, A. Hyperthermia and body energy store effects on estrous behavior, conception rate, and corpus luteum function in dairy cows. J. Dairy Sci. 1988, 71, 3497–3504. [Google Scholar] [CrossRef]
- Kornmatitsuk, B.; Chantaraprateep, P.; Kornmatitsuk, S.; Kindahl, H. Different types of postpartum luteal activity affected by the exposure of heat stress and subsequent reproductive performance in Holstein lactating cows. Reprod. Domest. Anim. 2008, 43, 515–519. [Google Scholar] [CrossRef]
- Nanas, I.; Chouzouris, T.M.; Dovolou, E.; Dadouli, K.; Stamperna, K.; Kateri, I.; Barbagianni, M.; Amiridis, G.S. Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows. J. Thermal Biol. 2021, 98, 102951. [Google Scholar] [CrossRef]
- Spencer, T.E.; Forde, N.; Lonergan, P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 2016, 99, 5941–5950. [Google Scholar] [CrossRef]
- Bruinjé, T.C.; Colazo, M.G.; Ribeiro, E.S.; Gobikrushanth, M.; Ambrose, D.J. Using in-line milk progesterone data to characterize parameters of luteal activity and their association with fertility in Holstein cows. J. Dairy Sci. 2019, 102, 780–798. [Google Scholar] [CrossRef] [Green Version]
- Bech-Sàbat, G.; López-Gatius, F.; Yániz, J.L.; García-Ispierto, I.; Santolaria, P.; Serrano, B.; Sulon, J.; de Sousa, N.M.; Beckers, J.F. Factors affecting plasma progesterone in the early fetal period in high producing dairy cows. Theriogenology 2008, 69, 426–432. [Google Scholar] [CrossRef]
- Katagiri, S.; Moriyoshi, M. Alteration of the endometrial EGF profile as a potential mechanism connecting the alterations in the ovarian steroid hormone profile to embryonic loss in repeat breeders and high-producing cows. J. Reprod. Dev. 2013, 59, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Nyman, S.; Gustafsson, H.; Berglund, B. Extent and pattern of pregnancy losses and progesterone levels during gestation in Swedish Red and Swedish Holstein dairy cows. Acta Vet. Scand. 2018, 60, 68. [Google Scholar] [CrossRef] [Green Version]
- Herzog, K.; Bollwein, H. Application of Doppler ultrasonography in cattle reproduction. Reprod. Domest. Anim. 2007, 42 (Suppl. 2), 51–58. [Google Scholar] [CrossRef]
- Matsui, M.; Miyamoto, A. Evaluation of ovarian blood flow by colour Doppler ultrasound: Practical use for reproductive management in the cow. Vet. J. 2009, 181, 232–240. [Google Scholar] [CrossRef]
- Lüttgenau, J.; Bollwein, H. Evaluation of bovine luteal blood flow by using color Doppler ultrasonography. Reprod. Biol. 2014, 14, 103–109. [Google Scholar] [CrossRef]
- Kanazawa, T.; Seki, M.; Ishiyama, K.; Kubo, T.; Kaneda, Y.; Sakaguchi, M.; Izaike, Y.; Takahashi, T. Pregnancy prediction on the day of embryo transfer (Day 7) and Day 14 by measuring luteal blood flow in dairy cows. Theriogenology 2016, 86, 1436–1444. [Google Scholar] [CrossRef]
- Pugliesi, G.; de Melo, G.D.; Ataíde, G.A., Jr.; Pellegrino, C.; Silva, J.B.; Rocha, C.C.; Motta, I.G.; Vasconcelos, J.; Binelli, M. Use of Doppler ultrasonography in embryo transfer programs: Feasibility and field results. Anim. Reprod. 2018, 15, 239–246. [Google Scholar] [CrossRef]
- Pugliesi, G.; Dalmaso de Melo, G.; Silva, J.B.; Carvalhêdo, A.S.; Lopes, E.; de Siqueira Filho, E.; Silva, L.A.; Binelli, M. Use of color-Doppler ultrasonography for selection of recipients in timed-embryo transfer programs in beef cattle. Theriogenology 2019, 135, 73–79. [Google Scholar] [CrossRef]
- Beindorff, N.; Nagai, K.; Shirasuna, K.; Herzog, K.; Hoeffmann, K.; Sasaki, M.; Bollwein, M.; Miyamoto, K. Vascular changes in the corpus luteum during early pregnancy in the cow. J. Reprod. Dev. 2010, 56, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Nebel, R.L. On-farm milk progesterone tests. J. Dairy Sci. 1988, 71, 1682–1690. [Google Scholar] [CrossRef]
- Claycomb, R.W.; Delwiche, M.J.; Munro, C.J.; BonDurant, R.H. Rapid enzyme immunoassay for measurement of bovine progesterone. Biosens. Bioelectron. 1998, 13, 1165–1171. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Safronova, V.A.; Osipov, A.P. Rapid flow-through enzyme immunoassay of progesterone in whole cows’ milk. Anal. Biochem. 2018, 545, 43–48. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; van Amerongen, A.; Korf, J.; van Berkel, W.J. Perspectives for on-site monitoring of progesterone. Trends Biotechnol. 2009, 27, 652–660. [Google Scholar] [CrossRef]
- Bruinjé, T.C.; Gobikrushanth, M.; Colazo, M.G.; Ambrose, D.J. Dynamics of pre- and post-insemination progesterone profiles and insemination outcomes determined by an in-line milk analysis system in primiparous and multiparous Canadian Holstein cows. Theriogenology 2017, 102, 147–153. [Google Scholar] [CrossRef]
- Bruinjé, T.C.; Ambrose, D.J. Technical note: Validation of an automated in-line milk progesterone analysis system to diagnose pregnancy in dairy cattle. J. Dairy Sci. 2019, 102, 3615–3621. [Google Scholar] [CrossRef] [Green Version]
- Gavelis, A.; Juozaitis, A.; Japertienė, R.; Palubinskas, G.; Juozaitienė, V.; Žilaitis, V. Relationship between in-line milk progesterone before and after artificial insemination and fertility outcomes in dairy cows. Pol. J. Vet. Sci. 2021, 24, 183–190. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Potential of connected devices to optimize cattle reproduction. Theriogenology 2018, 112, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Allen, W.R. Luteal deficiency and embryo mortality in the mare. Reprod. Domesst. Anim. 2001, 36, 121–131. [Google Scholar] [CrossRef]
- Günzel-Apel, A.; Urhausen, C.; Wolf, K.; Einspanier, A.; Oei, C.; Piechotta, M. Serum progesterone in pregnant bitches supplemented with progestin because of expected or suspected luteal insufficiency. Reprod. Domest. Anim. 2012, 47 (Suppl. 6), 55–60. [Google Scholar] [CrossRef]
- Moon, J.; Choi, J.Y.; Kang, J.T.; Park, S.J.; Kim, S.J.; Jang, G.; Lee, B.C. Relationship between pregnancy rate and serum progesterone concentration in cases of porcine embryo transfer. J. Vet. Sci. 2014, 15, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Brogan, P.T.; Henning, H.; Stout, T.A.; de Ruijter-Villani, M. Relationship between colour flow Doppler sonographic assessment of corpus luteum activity and progesterone concentrations in mares after embryo transfer. Anim. Reprod. Sci. 2016, 166, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Morais, R.; de Andrade, A.; Balaro, M.; Ribas, J.; Gomes, G.M.; Pinna, A.E. Spectral Doppler ultrasound in selecting an equine embryo receiver. Reprod. Domest. Anim. 2020, 55, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Labarta, E.; Rodríguez, C. Progesterone use in assisted reproductive technology. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 69, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Zeng, M.; Duan, J. Luteal phase support for natural cycle frozen embryo transfer: A meta-analysis. Gynecol. Endocrinol. 2022, 38, 116–123. [Google Scholar] [CrossRef]
- Humblot, P. From clinics to (cow)mics: A reproductive journey. Anim. Reprod. 2018, 15, 278–291. [Google Scholar] [CrossRef]
- Lucy, M.C. Symposium review: Selection for fertility in the modern dairy cow-Current status and future direction for genetic selection. J. Dairy Sci. 2019, 102, 3706–3721. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gatius, F.; Garcia-Ispierto, I. Clinical Overview of Luteal Deficiency in Dairy Cattle. Animals 2022, 12, 1871. https://doi.org/10.3390/ani12151871
López-Gatius F, Garcia-Ispierto I. Clinical Overview of Luteal Deficiency in Dairy Cattle. Animals. 2022; 12(15):1871. https://doi.org/10.3390/ani12151871
Chicago/Turabian StyleLópez-Gatius, Fernando, and Irina Garcia-Ispierto. 2022. "Clinical Overview of Luteal Deficiency in Dairy Cattle" Animals 12, no. 15: 1871. https://doi.org/10.3390/ani12151871
APA StyleLópez-Gatius, F., & Garcia-Ispierto, I. (2022). Clinical Overview of Luteal Deficiency in Dairy Cattle. Animals, 12(15), 1871. https://doi.org/10.3390/ani12151871