Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Carcass Characteristics and Sample Collection
2.3. Meat Quality
2.4. Antioxidant Activity and Metabolite Content
2.5. Real-Time Polymerase Chain Reaction
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Trait
3.3. Meat Quality
3.4. Antioxidative Enzyme Activities and Metabolite Content
3.5. Antioxidant-Related Gene Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, S.P.; Arowolo, M.A.; Medrano, R.F.; Li, S.; Yu, Q.F.; Chen, J.Y.; He, J.H. Impact of heat stress and nutritional interventions on poultry production. World’s Poult. Sci. J. 2018, 74, 647–664. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of Heat Stress on Poultry Production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Zaboli, G.-R.; Rahimi, S.; Shariatmadari, F.; Torshizi, M.A.K.; Baghbanzadeh, A.; Mehri, M. Thermal manipulation during Pre and Post-Hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poult. Sci. 2017, 96, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Orhan, C.; Tuzcu, M.; Sahin, N.; Hayirli, A.; Bilgili, S.; Kucuk, O. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poult. Sci. 2016, 95, 1088–1095. [Google Scholar] [CrossRef]
- Tankson, J.D.; Vizzier-Thaxton, Y.; Thaxton, J.P.; May, J.D.; Cameron, J.A. Stress and nutritional quality of broilers. Poult. Sci. 2001, 80, 1384–1389. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Wang, L.; Yang, L.; Chen, X.; Geng, Z. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status. Anim. Sci. J. 2017, 88, 1569–1574. [Google Scholar] [CrossRef]
- Pelle, E.; Huang, X.; Mammone, T.; Marenus, K.; Maes, D.; Frenkel, K. Ultraviolet-B-induced oxidative DNA base damage in primary normal human epidermal keratinocytes and inhibition by a hydroxyl radical scavenger. J. Invest. Dermatol. 2003, 121, 177–183. [Google Scholar] [CrossRef]
- Liu, L.L.; He, J.H.; Xie, H.B.; Yang, Y.S.; Li, J.C.; Zou, Y. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 2014, 93, 54–62. [Google Scholar] [CrossRef]
- Liu, L.; Fu, C.; Yan, M.; Xie, H.; Li, S.; Yu, Q.; He, S.; He, J. Resveratrol modulates intestinal morphology and HSP70/90, NF-kappa B and EGF expression in the jejunal mucosa of black-boned chickens on exposure to circular heat stress. Food Funct. 2016, 7, 1329–1338. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.; Zhao, X.; Geng, Z. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis. J. Sci. Food Agric. 2018, 98, 5409–5417. [Google Scholar] [CrossRef] [PubMed]
- Fremont, L. Minireview—Biological effects of resveratrol. Life Sci. 2000, 66, 663–673. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, J.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; He, J.; Yu, J.; Chen, J.; Chen, D. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status. Meat Sci. 2015, 102, 15–21. [Google Scholar] [CrossRef]
- Yu, W.; Fu, Y.-C.; Wang, W. Cellular and molecular effects of resveratrol in health and disease. J. Cell Biochem. 2012, 113, 752–759. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Zhao, X.H.; Chen, X.Y.; Yang, L.; Geng, Z.Y. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poult. Sci 2017, 96, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liu, M.; Liu, X.; Jiao, Y.; Jin, S.; Shan, A.; Feng, X. Effects of Dietary Resveratrol Supplementation on Growth Performance and Anti-Inflammatory Ability in Ducks (Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-kappa B Signaling Pathways. Animals 2021, 11, 3588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, C.; Zhao, X.; Chen, K.; Geng, Z. Effect of L-theanine on meat quality, muscle amino acid profiles, and antioxidant status of broilers. Anim. Sci. J. 2020, 91, e13351. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, X.; Li, Y.; Chen, X.; Geng, Z.; Zhang, C. Effects of Dietary Supplementation with Epigallocatechin Gallate on Meat Quality and Muscle Antioxidant Capacity of Broilers Subjected to Acute Heat Stress. Animals 2021, 11, 3296. [Google Scholar] [CrossRef]
- Song, Z.; Liu, L.; Sheikhahmadi, A.; Jiao, H.; Lin, H. Effect of Heat Exposure on Gene Expression of Feed Intake Regulatory Peptides in Laying Hens. J. Biomed. Biotechnol. 2012, 2012, 484869. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Zhou, Y.; Feng, J.; Zhang, M. Effects of Heat Stress on Gut-Microbial Metabolites, Gastrointestinal Peptides, Glycolipid Metabolism, and Performance of Broilers. Animals 2021, 11, 1286. [Google Scholar] [CrossRef] [PubMed]
- Zeferino, C.P.; Komiyama, C.M.; Pelicia, V.C.; Fascina, V.B.; Aoyagi, M.M.; Coutinho, L.L.; Sartori, J.R.; Moura, A.S.A.M.T. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal 2016, 10, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Vesco, A.P.; Gasparino, E.; Grieser, D.O.; Zancanela, V.; Voltolini, D.M.; Khatlab, A.S.; Guimaraes, S.F.; Menck Soares, M.A.; Oliveira Neto, A.R. Effects of Methionine Supplementation on the Expression of Protein Deposition-Related Genes in Acute Heat Stress-Exposed Broilers. PLoS ONE 2015, 10, e0115821. [Google Scholar]
- Sahin, K.; Onderci, M.; Sahin, N.; Gursu, M.F.; Gursu, M.F.; Kucuk, O. Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. J. Therm. Biol. 2006, 31, 307–312. [Google Scholar] [CrossRef]
- Yu, Q.; Fang, C.; Ma, Y.; He, S.; Ajuwon, K.M.; He, J. Dietary resveratrol supplement improves carcass traits and meat quality of Pekin ducks. Poult. Sci. 2021, 100, 100802. [Google Scholar] [CrossRef]
- Meng, Q.; Sun, S.; Bai, Y.; Luo, Z.; Li, Z.; Shi, B.; Shan, A. Effects of dietary resveratrol supplementation in sows on antioxidative status, myofiber characteristic and meat quality of offspring. Meat Sci. 2020, 167, 108176. [Google Scholar] [CrossRef]
- Jin, S.; Pang, Q.; Yang, H.; Diao, X.; Shan, A.; Feng, X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks. Food Chem. 2021, 363, 130263. [Google Scholar] [CrossRef]
- Imik, H.; Ozlu, H.; Gumus, R.; Atasever, M.A.; Urcar, S.; Atasever, M. Effects of ascorbic acid and -lipoic acid on performance and meat quality of broilers subjected to heat stress. Br. Poult. Sci. 2012, 53, 800–808. [Google Scholar] [CrossRef]
- Shao, D.; Wang, Q.; Hu, Y.; Shi, S.; Tong, H. Effects of cyclic heat stress on the phenotypic response, meat quality and muscle glycolysis of breasts and thighs of yellow-feather broilers. Ital. J. Anim. Sci. 2019, 18, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Jang, A.; Kim, D.; Seol, K.H.; Oh, M.H.; Chae, H.S.; Dong-Hoon, K. Dietary Supplementation of Resveratrol and Methoxylated Resveratrol Affects on Chicken Thigh Meat Quality. Korean J. Poult. Sci. 2011, 38, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.Z.; Khan, I.U.; Khan, S.; Afzal, S.; Hamid, M.; Tariq, M.; Haq, I.U.; Ullah, N.; Khan, M.A.; Bilal, S.; et al. Selenium-enriched probiotics improve hepatic protection by regulating pro-inflammatory cytokines and antioxidant capacity in broilers under heat stress conditions. J. Adv. Vet. Anim. Res. 2019, 6, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Vashan, S.J.; Golian, A.; Yaghobfar, A. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. Int. J. Biometeorol. 2016, 60, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Dai, S.; Li, J.Q.; Xiao, S.S.; Wen, A.Y.; Hu, H. Glutamine Improves the Growth Performance, Serum Biochemical Profile and Antioxidant Status in Broilers Under Medium-Term Chronic Heat Stress. J. Appl. Poult. Res. 2019, 28, 1248–1254. [Google Scholar] [CrossRef]
- Horvath, M.; Asboth, G.; Galne, R.J.; Babinszky, L. The adverse effects of heat stress on the antioxidant status of broiler and reducing these effects with nutritional toold Part 1 The heat stress and the antioxidant defense system. Magy. Allatorv. Lapja 2016, 138, 471–481. [Google Scholar]
- Yulug, E.; Turedi, S.; Alver, A.; Turedi, S.; Kahraman, C. Effects of resveratrol on methotrexate-induced intestinal injury. Bratisl. Med. J. 2015, 116, 676–680. [Google Scholar] [CrossRef] [Green Version]
- Baxter, R.A. Anti-aging properties of resveratrol: Review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol. 2008, 7, 2–7. [Google Scholar] [CrossRef]
- Cai, L.; Kang, Y.J. Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovasc. Toxicol. 2001, 1, 181–193. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, Y.; Sun, G. The KCTD family of proteins: Structure, function, disease relevance. Cell Biosci. 2013, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Bhakkiyalakshmi, E.; Dineshkumar, K.; Karthik, S.; Sireesh, D.; Hopper, W.; Paulmurugan, R.; Ramkumar, K.M. Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface. Bioorg. Med. Chem. 2016, 24, 3378–3386. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, Y.L.; Zhu, Q.H.; Zhou, Z.K.; Gu, W.B.; Liu, Z.P.; Wang, L.Z.; Shu, M.A. Effects of heat stress on the liver of the Chinese giant salamander Andrias davidianus: Histopathological changes and expression characterization of Nrf2-mediated antioxidant pathway genes. J. Therm. Biol. 2018, 76, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, J.; Shen, C.; Cheng, W.; Yu, P.; Wang, L.; Tang, F.; Guo, S.; Yang, Q.; Zhang, J. Resveratrol Treatment in Different Time-Attenuated Neuronal Apoptosis After Oxygen and Glucose Deprivation/Reoxygenation via Enhancing the Activation of Nrf-2 Signaling Pathway In Vitro. Cell Transplant. 2018, 27, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
Items | CON | HS | HS + RES | SEM | p-Value |
---|---|---|---|---|---|
Initial BW (g) | 876.95 | 879.08 | 878.44 | 1.154 | 0.739 |
Final BW (g) | 2334.50 a | 2190.17 b | 2268.21 ab | 24.263 | 0.029 |
ADG (g) | 69.36 a | 62.43 b | 66.13 a | 1.161 | 0.026 |
ADFI (g) | 128.10 a | 123.07 b | 126.88 b | 0.794 | 0.006 |
F/G | 1.85 | 1.97 | 1.92 | 0.024 | 0.109 |
Items | CON | HS | HS + RES | SEM | p-Value |
---|---|---|---|---|---|
Slaughter percentage (%) | 93.00 | 92.66 | 93.05 | 0.085 | 0.169 |
Semi-eviscerated carcass yield (%) | 88.38 | 84.71 | 87.19 | 0.707 | 0.093 |
Eviscerated carcass yield (%) | 75.56 | 74.29 | 74.79 | 0.395 | 0.383 |
Breast muscle yield (%) | 21.38 a | 19.87 b | 21.06 a | 0.231 | 0.013 |
Leg muscle yield (%) | 16.35 a | 14.67 b | 15.66 a | 0.236 | 0.001 |
Items | CON | HS | HS + RES | SEM | p-Value |
---|---|---|---|---|---|
pH45min | 6.45 | 6.46 | 6.44 | 0.041 | 0.985 |
pH24h | 6.38 a | 5.97 b | 6.35 a | 0.059 | <0.001 |
L*45min | 49.34 | 50.46 | 50.46 | 0.354 | 0.325 |
a*45min | 10.04 | 9.20 | 9.91 | 0.205 | 0.227 |
b*45min | 13.19 b | 15.23 a | 14.35 ab | 0.324 | 0.012 |
L*24h | 53.44 b | 55.65 a | 55.26 a | 0.372 | 0.014 |
a*24h | 10.44 a | 9.34 b | 10.30 a | 0.210 | 0.039 |
b*24h | 12.84 | 13.93 | 13.55 | 0.252 | 0.147 |
Drip loss (%) | 1.94 b | 2.43 a | 2.02 b | 0.084 | 0.012 |
Cooking loss (%) | 22.81 | 25.66 | 23.94 | 0.547 | 0.065 |
Shear force (N) | 30.55 | 35.30 | 32.68 | 0.964 | 0.120 |
Items | CON | HS | HS + RES | SEM | p-Value |
---|---|---|---|---|---|
T-SOD (U/mg protein) | 5.42 | 5.04 | 5.27 | 0.213 | 0.772 |
CAT (U/mg protein) | 105.90 a | 87.45 b | 99.25 ab | 3.415 | 0.048 |
GST (U/mg protein) | 469.20 a | 382.30 b | 439.30 a | 14.080 | 0.006 |
GSH-Px (U/mg protein) | 239.30 a | 193.80 b | 234.90 a | 7.822 | 0.013 |
GR (U/mg protein) | 1.56 | 1.45 | 1.49 | 0.058 | 0.783 |
MDA (nmol/mg protein) | 0.39 b | 0.64 a | 0.53 ab | 0.048 | 0.170 |
PC (nmol/mg protein) | 1.85 | 2.13 | 1.90 | 0.089 | 0.446 |
Items | CON | HS | HS + RES | SEM | p-Value |
---|---|---|---|---|---|
Nrf2 | 1.00 a | 0.66 b | 0.93 a | 0.056 | 0.001 |
Keap1 | 1.00 c | 1.56 a | 1.24 b | 0.087 | 0.002 |
HO-1 | 1.00 a | 0.59 b | 0.89 a | 0.060 | 0.001 |
NQO1 | 1.00 a | 0.64 c | 0.82 b | 0.055 | 0.002 |
CAT | 1.00 | 0.83 | 0.88 | 0.042 | 0.276 |
SOD1 | 1.00 | 0.92 | 0.96 | 0.023 | 0.398 |
GST | 1.00 | 0.90 | 0.96 | 0.022 | 0.181 |
GSH-Px | 1.00 a | 0.59 b | 0.79 ab | 0.068 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, Z.; Wang, X.; Zhao, F.; Wang, C.; Zhang, Q.; Chen, X.; Geng, Z.; Zhang, C. Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway. Animals 2022, 12, 1889. https://doi.org/10.3390/ani12151889
Zhao Y, Li Z, Wang X, Zhao F, Wang C, Zhang Q, Chen X, Geng Z, Zhang C. Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway. Animals. 2022; 12(15):1889. https://doi.org/10.3390/ani12151889
Chicago/Turabian StyleZhao, Yiyang, Zhen Li, Xiaocheng Wang, Fei Zhao, Chi Wang, Qingyue Zhang, Xingyong Chen, Zhaoyu Geng, and Cheng Zhang. 2022. "Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway" Animals 12, no. 15: 1889. https://doi.org/10.3390/ani12151889
APA StyleZhao, Y., Li, Z., Wang, X., Zhao, F., Wang, C., Zhang, Q., Chen, X., Geng, Z., & Zhang, C. (2022). Resveratrol Attenuates Heat Stress-Induced Impairment of Meat Quality in Broilers by Regulating the Nrf2 Signaling Pathway. Animals, 12(15), 1889. https://doi.org/10.3390/ani12151889