Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Experimental Design, and Dietary Treatments
2.3. Sample Collection and Analysis
2.3.1. Liver Biopsies
2.3.2. Fetal Muscle and Liver
2.3.3. Allantoic and Amniotic Fluids
2.3.4. Trace Mineral Analysis
2.3.5. Glutathione Peroxidase Activity
2.4. Statistical Analysis
3. Results
3.1. Maternal Liver
3.2. Fetal Liver
3.3. Fetal Muscle
3.4. Allantoic and Amniotic Fluids
3.5. Correlations among Tissues and Fluids
3.6. Abundance of Trace Minerals in Maternal and Fetal Tissues and Fluids
3.7. Glutathione Peroxidase Activity
4. Discussion
4.1. Impact of Maternal Dietary Treatments on Fetal Trace Mineral Reserves
4.2. Abundance of Trace Minerals in Maternal and Fetal Tissues and Fluids
4.3. GPX Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of Maternal Nutrition on Conceptus Growth and Offspring Performance: Implications for Beef Cattle Production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Academy of Sciences Engineering and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-27335-0. [Google Scholar]
- Van Emon, M.; Sanford, C.; McCoski, S. Impacts of Bovine Trace Mineral Supplementation on Maternal and Offspring Production and Health. Animals 2020, 10, 2404. [Google Scholar] [CrossRef] [PubMed]
- Hostetler, C.E.; Kincaid, R.L.; Mirando, M.A. The Role of Essential Trace Elements in Embryonic and Fetal Development in Livestock. Vet. J. 2003, 166, 125–139. [Google Scholar] [CrossRef]
- Martin, J.L.; Vonnahme, K.A.; Adams, D.C.; Lardy, G.P.; Funston, R.N. Effects of Dam Nutrition on Growth and Reproductive Performance of Heifer Calves. J. Anim. Sci. 2007, 85, 841–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohnert, D.W.; Stalker, L.A.; Mills, R.R.; Nyman, A.; Falck, S.J.; Cooke, R.F. Late Gestation Supplementation of Beef Cows Differing in Body Condition Score: Effects on Cow and Calf Performance. J. Anim. Sci. 2013, 91, 5485–5491. [Google Scholar] [CrossRef] [Green Version]
- Davy, J.S.; Forero, L.C.; Shapero, M.W.K.; Rao, D.R.; Becchetti, T.A.; Koopman Rivers, C.; Stackhouse, J.W.; Deatley, K.L.; McNabb, B.R. Mineral Status of California Beef Cattle. Transl. Anim. Sci. 2019, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.C. Cow Supplementation: Getting the Best Bang for Your Buck. In Proceedings of the Range Beef Cow Symposium XXIV, Loveland, CO, USA, 17–19 November 2015. [Google Scholar]
- Olson, K.C. Delivery of Supplements on Rangelands. In Proceedings of the Range Beef Cow Symposium XX, Fort Collins, CO, USA, 11–13 December 2007. [Google Scholar]
- Diniz, W.J.S.; Reynolds, L.P.; Borowicz, P.P.; Ward, A.K.; Sedivec, K.K.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; et al. Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes. Genes 2021, 12, 385. [Google Scholar] [CrossRef]
- McCarthy Nestande, J.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.R.; Sedivec, K.K.; et al. Effects of feeding vitamin and mineral and (or) energy supplements to beef heifers during the first 83 days of gestation on progesterone concentrations, corpus luteum size, and fetal body measurements. J. Anim. Sci. 2020, 98 (Suppl. 4), 161–162. [Google Scholar] [CrossRef]
- Menezes, A.C.B.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and Mineral Supplementation and Rate of Gain during the First Trimester of Gestation Affect Concentrations of Amino Acids in Maternal Serum and Allantoic Fluid of Beef Heifers. J. Anim. Sci. 2021, 99, skab024. [Google Scholar] [CrossRef]
- Menezes, A.C.B.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers I: Effects on Dam Hormonal and Metabolic Status, Fetal Tissue and Organ Mass, and Concentration of Glucose and Fructose in Fetal Fluids at Day 83 of Gestation. Animals 2022, 12, 1757. [Google Scholar] [CrossRef]
- Lamb, G.C.; Dahlen, C.R.; Larson, J.E.; Marquezini, G.; Stevenson, J.S. Control of the Estrous Cycle to Improve Fertility for Fixed-Time Artificial Insemination in Beef Cattle: A Review. J. Anim. Sci. 2010, 88, E181–E192. [Google Scholar] [CrossRef] [PubMed]
- Mclean, K.J.; Dahlen, C.R.; Borowicz, P.P.; Reynolds, L.P.; Crosswhite, M.R.; Neville, B.W.; Walden, S.D.; Caton, J.S. Technical note: A new surgical technique for ovariohysterectomy during early pregnancy in beef heifers. J. Anim. Sci. 2016, 94, 5089–5096. [Google Scholar] [CrossRef] [PubMed]
- Crouse, M.S.; Caton, J.S.; Cushman, R.A.; McLean, K.J.; Dahlen, C.R.; Borowicz, P.P.; Reynolds, L.P.; Ward, A.K. Moderate Nutrient Restriction of Beef Heifers Alters Expression of Genes Associated with Tissue Metabolism, Accretion, and Function in Fetal Liver, Muscle, and Cerebrum by Day 50 of Gestation. Transl. Anim. Sci. 2019, 3, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Crouse, M.S.; Greseth, N.P.; McLean, K.J.; Crosswhite, M.R.; Pereira, N.N.; Ward, A.K.; Reynolds, L.P.; Dahlen, C.R.; Neville, B.W.; Borowicz, P.P.; et al. Maternal Nutrition and Stage of Early Pregnancy in Beef Heifers: Impacts on Hexose and AA Concentrations in Maternal and Fetal Fluids. J. Anim. Sci. 2019, 97, 1296–1316. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.S.; Oikonomou, G.; Lima, S.F.; Bicalho, M.L.S.; Kacar, C.; Foditsch, C.; Felippe, M.J.; Gilbert, R.O.; Bicalho, R.C. The Effect of Injectable Trace Minerals (Selenium, Copper, Zinc, and Manganese) on Peripheral Blood Leukocyte Activity and Serum Superoxide Dismutase Activity of Lactating Holstein Cows. Vet. J. 2014, 200, 299–304. [Google Scholar] [CrossRef]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Cappellozza, B.I.; Mills, R.R.; Larson, C.K.; Moriel, P.; Bohnert, D.W. Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. J. Anim. Sci. 2016, 94, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Price, D.M.; Arellano, K.K.; Irsik, M.; Rae, D.O.; Yelich, J.V.; Mjoun, K.; Hersom, M.J. Effects of Trace Mineral Supplement Source during Gestation and Lactation in Angus and Brangus Cows and Subsequent Calf Immunoglobulin Concentrations, Growth, and Development. Prof. Anim. Sci. 2017, 33, 194–204. [Google Scholar] [CrossRef]
- Harvey, K.M.; Cooke, R.F.; Colombo, E.A.; Rett, B.; de Sousa, O.A.; Harvey, L.M.; Russell, J.R.; Pohler, K.G.; Brandão, A.P. Supplementing Organic-Complexed or Inorganic Co, Cu, Mn, and Zn to Beef Cows during Gestation: Physiological and Productive Response of Cows and Their Offspring until Weaning. J. Anim. Sci. 2021, 99, skab095. [Google Scholar] [CrossRef]
- Goff, J.P. Invited Review: Mineral Absorption Mechanisms, Mineral Interactions That Affect Acid–Base and Antioxidant Status, and Diet Considerations to Improve Mineral Status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef]
- Laforgia, N.; di Mauro, A.; Guarnieri, G.F.; Varvara, D.; de Cosmo, L.; Panza, R.; Capozza, M.; Baldassarre, M.E.; Resta, N. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. Oxidative Med. Cell. Longev. 2018, 2018, 7404082. [Google Scholar] [CrossRef]
- Mccarthy, K.L.; Undi, M.; Becker, S.; Dahlen, C.R. Utilizing an Electronic Feeder to Measure Individual Mineral Intake, Feeding Behavior, and Growth Performance of Cow-Calf Pairs Grazing Native Range. Transl. Anim. Sci. 2021, 5, txab007. [Google Scholar] [CrossRef]
- Shirley, B.L.; Jeter, M.A.; Feaster, J.P.; Mccall, J.T.; Outler, J.C.; Davis, G.K. Placental Transfer of Mo99 and Ca45 in Swine. J. Nut. 1954, 54, 59–64. [Google Scholar] [CrossRef]
- Fungwe, T.V.; Buddingh, F.; Yang, M.T.; Yang, S.P. Hepatic, Placental, and Fetal Trace Dements Following Molybdenum Supplementation During Gestation. Biol. Trace Elem. Res. 1989, 22, 189–199. [Google Scholar] [CrossRef]
- Mohamed, H.R.H.; El-Atawy, R.H.; Ghoneim, A.M.; El-Ghor, A.A. Induction of Fetal Abnormalities and Genotoxicity by Molybdenum Nanoparticles in Pregnant Female Mice and Fetuses. Environ. Sci. Pollut. Res. 2020, 27, 23950–23962. [Google Scholar] [CrossRef]
- Yin, S.; Wang, C.; Wei, J.; Wang, D.; Jin, L.; Liu, J.; Wang, L.; Li, Z.; Ren, A.; Yin, C. Essential Trace Elements in Placental Tissue and Risk for Fetal Neural Tube Defects. Environ. Int. 2020, 139, 105688. [Google Scholar] [CrossRef]
- Chernitskiy, A.E.; Skogoreva, T.S.; Safonov, V.A. Study of Interrelations of the Bioelement Status of Mother and Fetus at Cattle. J. Mech. Cont. Math. Sci. 2020, spl10, 154–170. [Google Scholar] [CrossRef]
- Hackbart, K.S.; Ferreira, R.M.; Dietsche, A.A.; Socha, M.T.; Shaver, R.D.; Wiltbank, M.C.; Fricke, P.M. Effect of Dietary Organic Zinc, Manganese, Copper, and Cobalt Supplementation on Milk Production, Follicular Growth, Embryo Quality, and Tissue Mineral Concentrations in Dairy Cows. J. Anim. Sci. 2010, 88, 3856–3870. [Google Scholar] [CrossRef] [Green Version]
- Pogge, D.J.; Richter, E.L.; Drewnoski, M.E.; Hansen, S.L. Mineral Concentrations of Plasma and Liver after Injection with a Trace Mineral Complex Differ among Angus and Simmental Cattle. J. Anim. Sci. 2012, 90, 2692–2698. [Google Scholar] [CrossRef]
- Ryu, M.-S.; Aydemir, T.B. Chapter 23—Zinc. In Present Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 393–408. ISBN 978-0-323-66162-1. [Google Scholar]
- McClung, J.P.; Tarr, T.N.; Barnes, B.R.; Scrimgeour, A.G.; Young, A.J. Effect of Supplemental Dietary Zinc on the Mammalian Target of Rapamycin (MTOR) Signaling Pathway in Skeletal Muscle and Liver from Post-Absorptive Mice. Biol. Trace Elem. Res. 2007, 118, 65–76. [Google Scholar] [CrossRef]
- Gao, J.; Lv, Z.; Li, C.; Yue, Y.; Zhao, X.; Wang, F.; Guo, Y. Maternal Zinc Supplementation Enhanced Skeletal Muscle Development Through Increasing Protein Synthesis and Inhibiting Protein Degradation of Their Offspring. Biol. Trace Elem. Res. 2014, 162, 309–316. [Google Scholar] [CrossRef]
- Gao, J.; Nie, W.; Xing, K.; Guo, Y. Comparative Study of Different Maternal Zinc Resource Supplementation on Performance and Breast Muscle Development of Their Offspring. Biol. Trace Elem. Res. 2019, 190, 197–207. [Google Scholar] [CrossRef]
- Abdelrahman, R.L. Kincaid. Trace Minerals in Bovine Fetuses Different Stages of Gestation. J. Dairy Sci. 1993, 76, 3588–3593. [Google Scholar] [CrossRef]
- Wintour, E.M.; Laurence, B.M.; Lingwood, B.E. Anatomy, Physiology and Pathology of the Amniotic and Allantoic Compartments in the Sheep and Cow. Aust. Vet. J. 1986, 63, 216–221. [Google Scholar] [CrossRef]
- Wintour, E.M.; Alcorn, D.; Mcfarlane, A.; Moritz, K.; Potocnik, S.J.; Howard, K.T.; Tangalakis, K. Effect of Maternal Glucocorticoid Treatment on Fetal Fluids in Sheep at 0.4 Gestation. Am. J. Physiol. 1994, 266, R1174–R1181. [Google Scholar] [CrossRef]
- Li, N.; Wells, D.N.; Peterson, A.J.; Lee, R.S.F. Perturbations in the Biochemical Composition of Fetal Fluids Are Apparent in Surviving Bovine Somatic Cell Nuclear Transfer Pregnancies in the First Half of Gestation. Biol. Reprod. 2005, 73, 139–148. [Google Scholar] [CrossRef]
- Nielsen, F.H. Chapter 29—Manganese, Molybdenum, Boron, Silicon, and Other Trace Elements. In Present Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 485–500. ISBN 978-0-323-66162-1. [Google Scholar]
- Hong, L.K.; Diamond, A.M. Chapter 26—Selenium. In Present Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 443–456. ISBN 978-0-323-66162-1. [Google Scholar]
Item | Assurance Levels | |
---|---|---|
Minerals 1 | Min | Max |
Calcium, g/kg of DM | 135.0 | 162.0 |
Phosphorus, g/kg of DM | 75.0 | - |
Sodium Chloride, g/kg of DM | 180.0 | 216.0 |
Magnesium, g/kg of DM | 10.0 | - |
Potassium, g/kg of DM | 10.0 | - |
Manganese, mg/kg of DM | 3600.0 | - |
Cobalt, mg/kg of DM | 12.0 | - |
Copper, mg/kg of DM | 1200.0 | - |
Iodine, mg/kg of DM | 60.0 | - |
Selenium, mg/kg of DM | 27.0 | - |
Zinc, mg/kg of DM | 3600.0 | - |
Vitamins 2, IU/kg of DM | ||
A | 661,500.0 | |
D | 66,150.0 | |
E | 661.5 |
Chemical Composition | Total Mixed Ration 1 | Supplements | ||
---|---|---|---|---|
NoVTM 2 | VTM 3 | Protein/Energy 4 | ||
Dry Matter, % | 53.0 | 86.6 | 89.6 | 87.7 |
Ash, % DM | 11.5 | 5.3 | 25.1 | 2.4 |
Crude Protein, % DM | 9.9 | 15.6 | 14.8 | 17.5 |
Neutral Detergent Fiber, % DM | 65.9 | 41.9 | 27.6 | 19.4 |
Ether Extract, % DM | 1.5 | - | - | 9.1 |
Non-Fiber Carbohydrates, % DM | 11.1 | 37.2 | 32.5 | 51.6 |
Mineral Content | ||||
Calcium, g/kg DM | 5.74 | 2.47 | 50.62 | 0.30 |
Phosphorus, g/kg DM | 2.05 | 8.94 | 22.82 | 4.59 |
Sodium, g/kg DM | 0.26 | 0.12 | 19.44 | 0.24 |
Magnesium, g/kg DM | 2.83 | 4.47 | 5.20 | 1.96 |
Potassium, g/kg DM | 15.81 | 14.22 | 13.15 | 6.05 |
Sulfur, g/kg DM | 2.25 | 2.41 | 4.84 | 2.57 |
Manganese, mg/kg DM | 121.2 | 103.9 | 953.4 | 26.0 |
Cobalt, mg/kg DM | 0.36 | 0.14 | 3.38 | 0.05 |
Copper, mg/kg DM | 4.8 | 13.7 | 285.8 | 3.6 |
Selenium, mg/kg DM | 0.3 | 0.4 | 7.0 | 0.3 |
Zinc, mg/kg DM | 28.4 | 130.2 | 1051.8 | 35.0 |
Composition | Dietary Treatments | BCNRM (2016) Requirements | |||
---|---|---|---|---|---|
NoVTM-LG 1 | NoVTM-MG 2 | VTM-LG 3 | VTM-MG 4 | ||
Macrominerals | |||||
Ca, g/d | 25.70 | 32.98 | 48.04 | 50.42 | 26.30 |
P, g/d | 12.32 | 23.57 | 19.07 | 28.61 | 14.71 |
Mg, g/d | 13.94 | 21.03 | 15.72 | 20.40 | 9.80 |
K, g/d | 73.67 | 103.82 | 81.42 | 98.08 | 48.99 |
Na, g/d | 1.17 | 1.93 | 9.09 | 9.64 | 5.72 |
S, g/d | 10.63 | 18.22 | 12.78 | 18.47 | 12.25 |
Microminerals | |||||
Co, mg/d | 1.61 | 2.12 | 3.10 | 3.31 | 1.22 |
Cu, mg/d | 26.02 | 38.58 | 138.34 | 146.82 | 81.65 |
Mn, mg/d | 562.73 | 754.58 | 967.92 | 1056.12 | 326.59 |
Se, mg/d | 1.45 | 2.38 | 4.27 | 4.94 | 0.82 |
Zn, mg/d | 173.11 | 273.86 | 560.82 | 637.53 | 244.94 |
Trace Mineral Concentration, μg/g Dry | NoVTM 1 | VTM 2 | SEM 4 | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LG | MG 3 | LG | MG 3 | VMSUP | GAIN | Day | VMSUP × GAIN | VMSUP × Day | GAIN × Day | VMSUP × GAIN × Day | ||
Selenium | ||||||||||||
Prior to VMSUP 5 | 2.05 a | 1.47 a | 1.94 a | 1.72 a | 0.25 | <0.01 | 0.02 | <0.01 | 0.79 | <0.01 | 0.05 | <0.01 |
Breeding 6 | 1.76 a | 1.56 a | 2.98 c | 3.12 c | ||||||||
Surgery 7 | 1.64 a | 1.54 a | 2.87 c | 2.26 b | ||||||||
Iron | ||||||||||||
Prior to VMSUP | 208.95 | 230.32 | 214.12 | 217.98 | 49.3 | 0.17 | 0.51 | <0.01 | 0.56 | 0.28 | 0.02 | 0.47 |
Breeding | 375.87 | 348.74 | 275.35 | 317.63 | ||||||||
Surgery | 347.97 | 261.66 | 298.21 | 246.19 | ||||||||
Copper | ||||||||||||
Prior to VMSUP | 83.69 a | 50.1 a | 112.28 a | 66.55 a | 29.56 | <0.01 | 0.33 | <0.01 | 0.73 | <0.01 | 0.05 | 0.02 |
Breeding | 66.82 a | 38.88 a | 195.28 b | 218.04 c | ||||||||
Surgery | 39.35 a | 27.35 a | 196.27 b | 184.21 b | ||||||||
Zinc | ||||||||||||
Prior to VMSUP | 139.9 | 173.54 | 165.46 | 178.07 | 13.76 | 0.27 | 0.15 | <0.01 | 0.78 | 0.62 | 0.23 | 0.39 |
Breeding | 120.53 | 123.27 | 122.68 | 133.65 | ||||||||
Surgery | 119.49 | 120.37 | 121.95 | 123.93 | ||||||||
Molybdenum | ||||||||||||
Prior to VMSUP | 3.38 | 3.63 | 3.68 | 4.05 | 0.2 | 0.52 | 0.04 | 0.06 | 0.33 | 0.06 | 0.19 | 0.83 |
Breeding | 3.57 | 3.47 | 3.33 | 3.57 | ||||||||
Surgery | 3.58 | 3.85 | 3.39 | 3.95 | ||||||||
Manganese | ||||||||||||
Prior to VMSUP | 9.88 | 10.51 | 11.01 | 11.83 | 0.66 | 0.29 | 0.03 | <0.01 | 0.04 | 0.18 | 0.65 | 0.38 |
Breeding | 11.48 | 11.04 | 10.74 | 11.99 | ||||||||
Surgery | 9.94 | 9.86 | 8.46 | 10.85 | ||||||||
Cobalt | ||||||||||||
Prior to VMSUP | 0.14 | 0.15 | 0.17 | 0.19 | 0.02 | <0.01 | 0.91 | <0.01 | 0.92 | 0.01 | 0.36 | 0.32 |
Breeding | 0.17 | 0.16 | 0.22 | 0.23 | ||||||||
Surgery | 0.2 | 0.19 | 0.24 | 0.21 |
Mineral Concentration, μg/g Dry | NoVTM 1 | VTM 2 | SEM 4 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
LG | MG 3 | LG | MG 3 | VMSUP | GAIN | VMSUP × GAIN | ||
Fetal Liver | ||||||||
Selenium | 4.23 | 4.25 | 6.25 | 6.39 | 0.46 | <0.01 | 0.86 | 0.89 |
Copper | 246.01 | 277.84 | 298.21 | 348.91 | 22.75 | 0.01 | 0.08 | 0.68 |
Zinc | 440.61 | 448.24 | 541.2 | 563.76 | 85.35 | 0.21 | 0.85 | 0.93 |
Molybdenum | 0.37 | 0.33 | 0.36 | 0.33 | 0.02 | 0.79 | 0.04 | 0.81 |
Manganese | 5.09 | 4.78 | 5.19 | 6.03 | 0.32 | 0.04 | 0.39 | 0.07 |
Cobalt | 0.07 | 0.05 | 0.09 | 0.06 | 0.01 | 0.01 | <0.01 | 0.27 |
Fetal Muscle | ||||||||
Selenium | 0.62 | 0.67 | 0.73 | 0.73 | 0.03 | 0.02 | 0.55 | 0.41 |
Copper | 5.75 | 7.15 | 6.35 | 5.94 | 0.49 | 0.54 | 0.32 | 0.07 |
Zinc | 75.23 | 75.10 | 85.04 | 83.78 | 61.36 | <0.01 | <0.01 | 0.99 |
Molybdenum | 0.13 | 0.15 | 0.13 | 0.11 | 0.01 | 0.21 | 0.86 | 0.07 |
Manganese | 1.00 | 1.00 | 1.00 | 1.31 | 0.15 | 0.28 | 0.28 | 0.28 |
Cobalt | 0.06 | 0.08 | 0.08 | 0.06 | 0.01 | 0.78 | 0.77 | 0.12 |
Mineral Concentration, ng/mL | NoVTM 1 | VTM 2 | SEM 4 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
LG | MG 3 | LG | MG 3 | VMSUP | GAIN | VMSUP × GAIN | ||
Allantoic Fluid | ||||||||
Selenium | 12.03 | 10.39 | 15.03 | 18.22 | 1.29 | <0.01 | 0.53 | 0.06 |
Copper | 24.74 | 25.31 | 30.21 | 31.94 | 0.01 | 0.09 | 0.74 | 0.87 |
Zinc | 50.00 | 50.00 | 62.33 | 50.00 | 5.19 | 0.22 | 0.22 | 0.22 |
Molybdenum | 50.86 | 38.31 | 42.42 | 57.37 | 6.23 | 0.38 | 0.84 | 0.03 |
Manganese | 1.00 | 1.00 | 1.02 | 1.00 | 0.01 | 0.34 | 0.34 | 0.34 |
Cobalt | 0.19 | 0.12 | 0.30 | 0.29 | 0.03 | <0.01 | 0.18 | 0.30 |
Amniotic Fluid | ||||||||
Selenium | 1.49 | 1.48 | 1.61 | 1.61 | 0.09 | 0.16 | 0.93 | 0.93 |
Copper | 20.00 | 20.00 | 20.00 | 32.23 | 5.81 | 0.28 | 0.28 | 0.28 |
Zinc | 50.49 | 53.74 | 50.82 | 50.00 | 2.08 | 0.39 | 0.55 | 0.31 |
Molybdenum | 6.72 | 6.47 | 6.15 | 5.43 | 0.53 | 0.13 | 0.35 | 0.65 |
Manganese | 1.53 | 1.00 | 1.64 | 1.00 | 0.37 | 0.88 | 0.13 | 0.88 |
Cobalt | nd | nd | nd | nd | - | - | - | - |
Trace Minerals | Mliver vs. Fliver | Mliver vs. Fmuscle | Mliver vs. ALF | Mliver vs. AMF | Fliver vs. Fmuscle | Fliver vs. ALF | Fliver vs. AMF | Fmuscle vs. ALF | Fmuscle vs. AMF | ALF vs. AMF |
---|---|---|---|---|---|---|---|---|---|---|
Selenium | 0.60 * | 0.40 * | 0.34 * | 0.23 | 0.55 * | 0.49 * | 0.39 * | 0.34 * | 0.18 | 0.22 |
Copper | 0.56 * | −0.003 | 0.31 | 0.19 | 0.31 | 0.38 * | 0.07 | 0.09 | −0.06 | 0.01 |
Zinc | −0.34 * | −0.19 | 0.14 | −0.19 | 0.19 | −0.02 | 0.11 | 0.2 | −0.26 | 0.01 |
Molybdenum | −0.12 | 0.09 | −0.01 | −0.16 | 0.12 | −0.02 | −0.01 | 0.21 | 0.37 * | 0.15 |
Manganese | 0.35 * | 0.35 * | −0.01 | 0.18 | 0.18 | 0.06 | −0.22 | −0.03 | −0.05 | −0.04 |
Cobalt | 0.39 * | 0.06 | 0.52 * | nd | 0.11 | 0.54 * | nd | −0.06 | nd | nd |
Tissues | Fluids | ||||||
---|---|---|---|---|---|---|---|
Trace Minerals | Maternal Liver, μg/g Dry | Fetal Liver, μg/g Dry | Fetal Muscle, μg/g Dry | p-Value | Allantoic Fluid, ng/mL | Amniotic Fluid, ng/mL | p-Value |
Selenium | 2.07 a | 5.25 b | 0.69 c | <0.01 | 13.79 d | 1.55 e | <0.01 |
Copper | 109.73 a | 291.14 b | 6.31 c | <0.01 | 27.94 d | 22.79 d | 0.12 |
Zinc | 121.46 a | 496.59 b | 79.67 a | <0.01 | 53.17 d | 51.30 d | 0.49 |
Molybdenum | 3.68 a | 0.35 b | 0.13 c | <0.01 | 46.95 d | 6.22 e | <0.01 |
Manganese | 9.75 a | 5.25 b | 1.07 c | <0.01 | 1.01 d | 1.30 d | 0.12 |
Cobalt | 0.21 a | 0.07 b | 0.07 b | <0.01 | 0.22 d | 0.10 e | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCarthy, K.L.; B. Menezes, A.C.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; Neville, T.L.; Ward, A.K.; Borowicz, P.P.; Reynolds, L.P.; et al. Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation. Animals 2022, 12, 1925. https://doi.org/10.3390/ani12151925
McCarthy KL, B. Menezes AC, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Ward AK, Borowicz PP, Reynolds LP, et al. Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation. Animals. 2022; 12(15):1925. https://doi.org/10.3390/ani12151925
Chicago/Turabian StyleMcCarthy, Kacie L., Ana Clara B. Menezes, Cierrah J. Kassetas, Friederike Baumgaertner, James D. Kirsch, Sheri T. Dorsam, Tammi L. Neville, Alison K. Ward, Pawel P. Borowicz, Lawrence P. Reynolds, and et al. 2022. "Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation" Animals 12, no. 15: 1925. https://doi.org/10.3390/ani12151925
APA StyleMcCarthy, K. L., B. Menezes, A. C., Kassetas, C. J., Baumgaertner, F., Kirsch, J. D., Dorsam, S. T., Neville, T. L., Ward, A. K., Borowicz, P. P., Reynolds, L. P., Sedivec, K. K., Forcherio, J. C., Scott, R., Caton, J. S., & Dahlen, C. R. (2022). Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation. Animals, 12(15), 1925. https://doi.org/10.3390/ani12151925