Effect of Phytase Level and Form on Broiler Performance, Tibia Characteristics, and Residual Fecal Phytate Phosphorus in Broilers from 1 to 21 Days of Age
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diet Preparation
2.2. Phytase Analysis
2.3. Bird Management and Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Sousa, J.P.; Albino, L.F.; Vaz, R.; Rodrigues, K.F.; Da Silva, G.F.; Renno, L.N.; Barros, V.; Kaneko, I.N. The effect of dietary phytase on broiler performance and digestive, bone, and blood biochemistry characteristics. Rev. Bras. Cienc. Avic. 2015, 17, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Selle, P.H.; Ravindran, V. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 2007, 135, 1–41. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens. Br. Poult. Sci. 2004, 45, 101–108. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Nyachoti, C.M. Review: Supplementation of phytase and carbohydrases to diets for poultry. Can. J. Anim. Sci. 2011, 91, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Woyengo, T.A.; Nyachoti, C.M. Review: Anti-nutritional effects of phytic acid in diets for pigs and poultry–current knowledge and directions for future research. Can. J. Anim. Sci. 2013, 93, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Walk, C.L.; Rama Rao, S.V. Increasing dietary phytate has a significant anti-nutrient effect on apparent ileal amino acid digestibility and digestible amino acid intake requiring increasing doses of phytase as evidenced by prediction equations in broilers. Poult. Sci. 2020, 99, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Dersjant-Li, Y.; Davin, R.; Christensen, T.; Kwakernaak, C. Effect of two phytases at two doses on performance and phytate degradation in broilers during 1-21 days of age. PLoS ONE 2021, 16, e0247420. [Google Scholar] [CrossRef] [PubMed]
- Broch, J.; dos Santos, E.C.; Damasceno, J.L.; Nesello, P.D.O.; de Souza, C.; Eyng, C.; Pesti, G.M.; Nunes, R.V. Phytase and phytate interactions on broilers’ diet at 21 days of age. J. Appl. Poult. Res. 2020, 29, 240–250. [Google Scholar] [CrossRef]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. Phytic acid and phytase: Implications for protein utilization by poultry. Poult. Sci. 2006, 85, 878–885. [Google Scholar] [CrossRef]
- Ayres, V.E.; Jackson, M.E.; Cantley, S.A.; Rochell, S.J.; Crumpacker, C.D.; Lee, D.T.; Bodle, B.C.; Pacheco, W.J.; Rueda, M.S.; Bailey, C.A.; et al. Multiexperiment evaluation of increasing phytase activity from Optiphos® and Optiphos Plus® on 21-day broiler performance and tibia mineralization. J. Appl. Poult. Res. 2021, 30, 100210. [Google Scholar] [CrossRef]
- Yu, S.; Cowieson, A.; Gilbert, C.; Plumstead, P.; Dalsgaard, S. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin. J. Anim. Sci. 2012, 90, 1824–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vats, P.; Banerjee, U.C. Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): An overview. Enzym. Microb. Technol. 2004, 35, 3–14. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. BOARD-INVITED REVIEW: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World’s Poult. Sci. J. 2008, 64, 553–580. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. Supplementation of corn-soy-based diets with an Eschericia coli-derived phytase: Effects on broiler chick performance and the digestibility of amino acids and metabolizability of minerals and energy. Poult. Sci. 2006, 85, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Santos, T.T.; Bedford, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Olukosi, O.A.; Kong, C.; Fru-Nji, F.; Ajuwon, K.M.; Adeola, O. Assessment of a bacterial 6-phytase in the diets of broiler chickens. Poult. Sci. 2013, 92, 2101–2108. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; McElroy, A.P. Influence of limestone and phytase on broiler performance, gastrointestinal pH, and apparent ileal nutrient digestibility. Poult. Sci. 2012, 91, 1371–1378. [Google Scholar] [CrossRef]
- Ptak, A.; Bedford, M.R.; Świątkiewicz, S.; Żyła, K.; Józefiak, D. Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS ONE 2015, 10, e0119770. [Google Scholar] [CrossRef] [Green Version]
- Campasino, A.; York, T.; Wyatt, C.; Bedford, M.R.; Dozier, W.A., III. Effect of increasing supplemental phytase concentration in diets fed to Hubbard × Cobb 500 male broilers from 1 to 42 days of age. J. Appl. Poult. Res. 2014, 23, 705–714. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Slominski, B.A.; Jones, R.O. Growth performance and nutrient utilization of broiler chickens fed diets supplemented with phytase alone or in combination with citric acid and multicarbohydrase. Poult. Sci. 2010, 89, 2221–2229. [Google Scholar] [CrossRef]
- Wu, D.; Wu, S.B.; Choct, M.; Swick, R.A. Comparison of 3 phytases on energy utilization of a nutritionally marginal wheat-soybean meal broiler diet. Poult. Sci. 2015, 94, 2670–2676. [Google Scholar] [CrossRef]
- Sulabo, R.C.; Jones, C.K.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S.; Campbell, D.R.; Ratliff, B.W.; DeRouchey, J.M.; Nelssen, J.L. Factors affecting storage stability of various commercial phytase sources. J. Anim. Sci. 2011, 89, 4262–4271. [Google Scholar] [CrossRef] [Green Version]
- Nováková, J.; Vértesi, A.; Béres, E.; Petkov, S.; Niederberger, K.E.; van Gaver, D.; Hirka, G.; Balázs, Z. Safety assessment of a novel thermostable phytase. Toxicol. Rep. 2021, 8, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Cobb-Vantress, Inc. Cobb 500: Broiler Performance and Nutrition Supplement. 2022. Available online: https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/5502e86566/2022-Cobb500-Broiler-Performance-Nutrition-Supplement.pdf (accessed on 15 February 2020).
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Downs, K.M.; Gulizia, J.P.; Stafford, E.K.; Pacheco, W.J. Influence of varying dietary kudzu leaf meal particle size on performance, breast weight, and organ weight of broiler chickens from 1 to 21 days of age. Poultry 2022, 1, 30–39. [Google Scholar] [CrossRef]
- ASAS/ADSA/PSA. Husbandry, housing, and biosecurity. In Guide for the Care and Use of Agricultural Animal in Agricultural Research and Teaching; American Society of Animal Science/American Dairy Science Association/Poultry Science Association: Champaign, IL, USA, 2020; pp. 17–19. [Google Scholar]
- ASAS/ADSA/PSA. Environmental enrichment. In Guide for the Care and Use of Agricultural Animal in Agricultural Research and Teaching; American Society of Animal Science/American Dairy Science Association/Poultry Science Association: Champaign, IL, USA, 2020; pp. 30–53. [Google Scholar]
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals; American Veterinary Medical Association: Schaumberg, IL, USA, 2020. [Google Scholar]
- ASABE. Shear and Three-Point Bending Test of Animal Bone; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017. [Google Scholar]
- Hall, L.E.; Shirley, R.B.; Bakalli, R.I.; Aggrey, S.E.; Pesti, G.M.; Edwards, H.M., Jr. Power of two methods for the estimation of bone ash of broilers. Poult. Sci. 2003, 82, 414–418. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT® User’s Guide Version 14.3; SAS Institute, Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Babatunde, O.O.; Cowieson, A.J.; Wilson, J.W.; Adeola, O. Influence of age and duration of feeding low-phosphorus diet on phytase efficacy in broiler chickens during the starter phase. Poult. Sci. 2019, 98, 2588–2597. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Cowieson, A.J.; Wilson, J.W.; Adeola, O. The impact of age and feeding length on phytase efficacy during the starter phase of broiler chickens. Poult. Sci. 2019, 98, 6742–6750. [Google Scholar] [CrossRef]
- Batal, A.B.; Parsons, C.M. Effects of Age on Nutrient Digestibility in Chicks fed Different Diets. Poult. Sci. 2002, 81, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Jimenez, H.; Alsadwi, A.M.; Gardner, K.; Voltura, E.; Bailey, C.A. Evaluation of high dietary phytase supplementation on performance, bone mineralization, and apparent ileal digestible energy of growing broilers. Poult. Sci. 2019, 98, 811–819. [Google Scholar] [CrossRef]
- Kozlowski, K.; Nollet, L.; Lanckriet, A.; Vanderbeke, E.; Mielnik, P.; Outchkourov, N.; Petkov, S. Effect of different phytases derived from E. coli AppA gene on the performance, bone mineralisation and nutrient digestibility of broiler chicken. J. Appl. Anim. Nutr. 2019, 7, 1–9. [Google Scholar] [CrossRef]
- Sens, R.F.; Bassi, L.S.; Almeida, L.M.; Rosso, D.F.; Teixeira, L.V.; Maiorka, A. Effect of different doses of phytase and protein content of soybean meal on growth performance, nutrient digestibility, and bone characteristics of broilers. Poult. Sci. 2021, 100, 100917. [Google Scholar] [CrossRef] [PubMed]
- Beeson, L.A.; Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poult. Sci. 2017, 96, 2243–2253. [Google Scholar] [CrossRef]
- Kriseldi, R.; Walk, C.L.; Bedford, M.R.; Dozier, W.A., III. Inositol and gradient phytase supplementation in broiler diets during a 6-week production period: 1. effects on growth performance and meat yield. Poult. Sci. 2021, 100, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, T.T.; Srinongkote, S.; Bedford, M.R.; Walk, C.L. Effect of high phytase inclusion rates on performance of broilers fed diets not severely limited in available phosphorus. Asian-Aust. J. Anim. Sci. 2013, 26, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dersjant-Li, Y.; Evans, C.; Kumar, A. Effect of phytase dose and reduction in dietary calcium on performance, nutrient digestibility, bone ash and mineralization in broilers fed corn-soybean meal-based diets with reduced nutrient density. Anim. Feed Sci. Technol. 2018, 242, 95–110. [Google Scholar] [CrossRef]
- Broch, J.; Nunes, R.V.; Eyng, C.; Pesti, G.M.; de Souza, C.; Sangalli, G.G.; Fascina, V.; Teixeira, L. High levels of dietary phytase improves broiler performance. Anim. Feed Sci. Technol. 2018, 244, 56–65. [Google Scholar] [CrossRef]
- Campbell, G.L.; Bedford, M.R. Enzyme applications for monogastric feeds: A review. Can. J. Anim. Sci. 1992, 72, 449–466. [Google Scholar] [CrossRef]
- Cardoso Júnior, A.; Rodrigues, P.B.; Bertechini, A.G.; de Freitas, R.T.F.; de Lima, R.R.; Lima, G.F.R. Levels of available phosphorus and calcium for broilers from 8 to 35 days of age fed rations containing phytase. R. Bras. Zootec. 2010, 39, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Menten, J.; Romano, G.G.; Silva, C.; Zavarize, K.C.; Barbosa, N. Efficiency of a bacterial phytase to release phytate phosphorus in broiler chicken diets. Arq. Bras. Med. Vet. Zootec. 2012, 64, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Bougouin, A.; Appuhamy, J.A.D.R.N.; Kebreab, E.; Dijkstra, J.; Kwakkel, R.P.; France, J. Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis. Poult. Sci. 2014, 93, 1981–1992. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.K.; Rutherfurd, S.M.; Thomas, D.V.; Moughan, P.J. Effect of two microbial phytases on mineral availability and retention and bone mineral density in low-phosphorus diets for broilers. Br. Poult. Sci. 2013, 54, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. II. Grower phase (day 12-23 post hatching). Poult. Sci. 2022, 101, 101616. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.A.B.; Borgatti, L.M.D.O.; Souza, L.W.D.O.; Robassini, S.L.D.A.; de Albuquerque, R. Bioavailability and poultry fecal excretion of phosphorus from soybean-based diets supplemented with phytase. R. Bras. Zootec. 2013, 42, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Kriseldi, R.; Johnson, J.A.; Walk, C.L.; Bedford, M.R.; Dozier, W.A., III. Influence of exogenous phytase supplementation on phytate degradation, plasma inositol, alkaline phosphatase, and glucose concentrations of broilers at 28 days of age. Poult. Sci. 2021, 100, 224–234. [Google Scholar] [CrossRef]
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Effects of a high level of phytase on broiler performance, bone ash, phosphorus utilization, and phytate dephosphorylation to inositol. Poult. Sci. 2018, 97, 211–218. [Google Scholar] [CrossRef]
- Kriseldi, R.; Walk, C.L.; Bedford, M.R.; Dozier, W.A., III. Inositol and gradient phytase supplementation in broiler diets during a 6-week production period: 2. Effects on phytate degradation and inositol liberation in gizzard and ileal digesta contents. Poult. Sci. 2021, 100, 100899. [Google Scholar] [CrossRef]
- Abbasi, F.; Fakhur-un-Nisa, T.; Liu, J.; Luo, X.; Abbasi, I.H.R. Low digestibility of phytate phosphorus, their impacts on the environment, and phytase opportunity in the poultry industry. Environ. Sci. Pollut. Res. 2019, 26, 9469–9479. [Google Scholar] [CrossRef]
Ingredient, % of Diet (Unless Otherwise Noted) | NC |
Corn | 51.60 |
Soybean meal, 46% crude protein | 37.94 |
Corn oil | 3.31 |
Distillers dried grains with solubles | 4.00 |
Dicalcium phosphate | 0.55 |
Ground limestone | 1.45 |
Salt (NaCl) | 0.38 |
DL-Methionine | 0.33 |
L-Lysine | 0.18 |
Trace mineral premix A | 0.10 |
Vitamin premix B | 0.10 |
Choline chloride | 0.07 |
Phytase, g supplement/kg diet | 0.00 C |
Calculated Nutrients, % (Unless Otherwise Noted) | |
AMEn, kcal/kg | 3000 |
Crude protein | 23.17 |
Calcium | 0.80 |
Available phosphorus | 0.20 |
Digestible methionine | 0.64 |
Digestible methionine + cysteine | 0.93 |
Digestible lysine | 1.23 |
Digestible threonine | 0.73 |
Digestible valine | 0.96 |
Digestible tryptophan | 0.25 |
Item | NC | NC + Coated A | NC + Uncoated B | NC + Combined C |
---|---|---|---|---|
Expected value, FTU/kg | 0 | 1000 | 1000 | 1000 |
Analyzed value, FTU/kg D | <13 | 1180 | 1090 | 1150 |
Item | NC | NC + Coated B | NC + Uncoated C | NC + Combined D | Pr > F E | Pooled SEM E |
---|---|---|---|---|---|---|
Body weight, g/bird | ||||||
Day 1 | 43.1 | 43.4 | 43.3 | 43.0 | 0.614 | 0.25 |
Day 14 | 451 b | 487 a | 488 a | 480 ab | 0.019 | 17.4 |
Day 21 | 909 b | 993 a | 995 a | 1002 a | <0.001 | 27.2 |
Feed consumption, g/bird | ||||||
Day 1 to 14 | 524 | 548 | 548 | 543 | 0.225 | 18.0 |
Day 1 to 21 | 1151 b | 1231 a | 1206 a | 1216 a | 0.002 | 28.1 |
Mortality adjusted FCR, g:g | ||||||
Day 1 to 14 | 1.29 a | 1.24 b | 1.25 ab | 1.24 b | 0.016 | 0.029 |
Day 1 to 21 | 1.34 a | 1.30 ab | 1.28 b | 1.28 b | 0.009 | 0.033 |
Mortality, % | ||||||
Day 1 to 14 | 0.00 | 2.50 | 4.17 | 1.67 | 0.212 | 3.88 |
Day 1 to 21 | 0.83 | 2.50 | 5.00 | 2.50 | 0.400 | 4.82 |
Item | NC | NC + Coated B | NC + Uncoated C | NC + Combined D | Pr > F | Pooled SEM |
---|---|---|---|---|---|---|
Bone Wt., g | 5.0 b | 5.4 a | 5.5 a | 5.6 a | <0.001 | 0.10 |
Shear strength, peak 1 E, N | 246 b | 365 a | 365 a | 343 a | <0.001 | 11.1 |
Shear strength, peak 2 F, N | 261 b | 410 a | 398 a | 384 a | <0.001 | 11.5 |
Tibia ash, % | 47.16 b | 52.38 a | 52.12 a | 52.59 a | 0.003 | 0.310 |
Item | NC | NC + Coated B | NC + Uncoated C | NC + Combined D | Pr > F | Pooled SEM |
---|---|---|---|---|---|---|
Fecal phytate P, mg/kg | 2.423 a | 630 b | 510 b | 552 b | < 0.001 | 94.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez, J.R.; Gulizia, J.P.; Adkins, J.B.; Rueda, M.S.; Haruna, S.I.; Pacheco, W.J.; Downs, K.M. Effect of Phytase Level and Form on Broiler Performance, Tibia Characteristics, and Residual Fecal Phytate Phosphorus in Broilers from 1 to 21 Days of Age. Animals 2022, 12, 1952. https://doi.org/10.3390/ani12151952
Hernandez JR, Gulizia JP, Adkins JB, Rueda MS, Haruna SI, Pacheco WJ, Downs KM. Effect of Phytase Level and Form on Broiler Performance, Tibia Characteristics, and Residual Fecal Phytate Phosphorus in Broilers from 1 to 21 Days of Age. Animals. 2022; 12(15):1952. https://doi.org/10.3390/ani12151952
Chicago/Turabian StyleHernandez, Jose R., Joseph P. Gulizia, John B. Adkins, Martha S. Rueda, Samuel I. Haruna, Wilmer J. Pacheco, and Kevin M. Downs. 2022. "Effect of Phytase Level and Form on Broiler Performance, Tibia Characteristics, and Residual Fecal Phytate Phosphorus in Broilers from 1 to 21 Days of Age" Animals 12, no. 15: 1952. https://doi.org/10.3390/ani12151952