Digestibility of a Lignocellulose Supplemented Diet and Fecal Quality in Beagle Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Chemical Analysis
2.3. Scores for Food Intake and Apparent Digestibility
2.4. Quality of Feces and pH Value
2.5. Fecal Short-Chain Fatty Acids
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of Experimental Diets
3.2. Apparent Fecal Nutrient Digestibility and Body Condition
3.3. Fecal Output, Fecal Consistency, Fecal DM, and Fecal pH
3.4. Fecal Short-Chain Fatty Acid (SCFA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvio, J.; Harmon, D.L.; Gross, K.L.; McLeod, K.R. Influence of fiber fermentability on nutrient digestion in the dog. Nutrition 2000, 16, 289–295. [Google Scholar] [CrossRef]
- German, A.J.; Holden, S.L.; Bissot, T.; Morris, P.J.; Biourge, V. A high protein high fibre diet improves weight loss in obese dogs. Vet. J. 2010, 183, 294–297. [Google Scholar] [CrossRef] [PubMed]
- De Godoy, M.R.; Kerr, K.R.; Fahey, G.C., Jr. Alternative dietary fiber sources in companion animal nutrition. Nutrients 2013, 5, 3099–3117. [Google Scholar] [CrossRef]
- Kröger, S.; Vahjen, W.; Zentek, J. Influence of lignocellulose and low or high levels of sugar beet pulp on nutrient digestibility and the fecal microbiota in dogs. J. Anim. Sci. 2017, 95, 1598–1605. [Google Scholar] [CrossRef]
- Donadelli, R.A.; Aldrich, C.G. The effects on nutrient utilization and stool quality of Beagle dogs fed diets with beet pulp, cellulose, and Miscanthus grass12. J. Anim. Sci. 2019, 97, 4134–4139. [Google Scholar] [CrossRef] [PubMed]
- Verbrugghe, A. Epidemiology of small animal obesity. In Obesity in the Dog and Cat; Cline, M., Murphy, M., Eds.; CRC Press Taylor and France Group: Boca Raton, FL, USA, 2019; pp. 1–15. [Google Scholar]
- Tvarijonaviciute, A.; Muñoz-Prieto, A.; Martinez-Subiela, S. Obesity in humans and dogs: Similarities, links, and differences. In Pets as Sentinels, Forecasters and Promoters of Human health; Pastorinho, R., Sousa, A.C.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 143–172. [Google Scholar]
- APOP (Association for Pet Obesity Preventation). 2018 Pet Obesity Survey Results: U.S. Pet Obesity Rates Plateau and Nutritional Confusion Grows. Available online: https://petobesityprevention.org/2018 (accessed on 15 March 2022).
- Piantedosi, D.; Palatucci, A.T.; Giovazzino, A.; Ruggiero, G.; Rubino, V.; Musco, N.; Carriero, F.; Farina, F.; Attia, Y.A.E.W.; Terrazzano, G.; et al. Effect of a Weight Loss Program on Biochemical and Immunological Profile, Serum Leptin Levels, and Cardiovascular Parameters in Obese Dogs. Front. Vet. Sci. 2020, 7, 398. [Google Scholar] [CrossRef]
- German, A.; Holden, S.; Wiseman-Orr, M.; Reid, J.; Nolan, A.; Biourge, V.; Morris, P.; Scott, E. Quality of life is reduced in obese dogs but improves after successful weight loss. Vet. J. 2012, 192, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Weeth, L.P. Other risks/possible benefits of obesity. Vet. Clin. Small Anim. Pract. 2016, 46, 843–853. [Google Scholar] [CrossRef]
- Cortese, L.; Terrazzano, G.; Pelagalli, A. Leptin and immunological profile in obesity and its associated diseases in dogs. Int. J. Mol. Sci. 2019, 20, 2392. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, J.P.D.S.; He, F.; Mangian, H.F.; Oba, P.M.; De Godoy, M.R.C. Dietary supplementation of a fiber-prebiotic and saccharin-eugenol blend in extruded diets fed to dogs. J. Anim. Sci. 2019, 97, 4519–4531. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.M.; Bastos, T.S.; Kaelle, G.C.B.; de Carvalho, P.G.B.; Bortolo, M.; Oliveira, S.G.d.; Félix, A.P. Effects of different levels of cassava fibre and traditional fibre sources on extrusion, kibble characteristics, and palatability of dog diets. Ital. J. Anim. Sci. 2022, 21, 764–770. [Google Scholar] [CrossRef]
- Koppel, K.; Monti, M.; Gibson, M.; Alavi, S.; Donfrancesco, B.D.; Carciofi, A.C. The effects of fiber inclusion on pet food sensory characteristics and palatability. Animals 2015, 5, 110–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donadelli, R.A.; Titgemeyer, E.C.; Aldrich, C.G. Organic matter disappearance and production of short- and branched-chain fatty acids from selected fiber sources used in pet foods by a canine in vitro fermentation model1. J. Anim. Sci. 2019, 97, 4532–4539. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Hwang, S.W.; Kim, S.; Lee, Y.-S.; Kim, T.-Y.; Lee, S.-H.; Kim, S.J.; Yoo, H.J.; Kim, E.N.; Kweon, M.-N. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota. Gut Microbes 2020, 11, 944–961. [Google Scholar] [CrossRef] [Green Version]
- Muir, H.E.; Murray, S.; Fahey, G., Jr.; Merchen, N.; Reinhart, G. Nutrient digestion by ileal cannulated dogs as affected by dietary fibers with various fermentation characteristics. J. Anim. Sci. 1996, 74, 1641–1648. [Google Scholar] [CrossRef]
- Wichert, B.; Schuster, S.; Hofmann, M.; Dobenecker, B.; Kienzle, E. Influence of different cellulose types on feces quality of dogs. J. Nutr. 2002, 132, 1728S–1729S. [Google Scholar] [CrossRef] [Green Version]
- Duque-Saldarriaga, J.; Posada-Ochoa, S.L.; Agudelo-Trujillo, J.H. Assessment of energy content in dog foods. Arch. Zootec. 2017, 66, 279–286. [Google Scholar]
- Sanderson, K. Lignocellulose: A chewy problem. Nature 2011, 474, S12–S14. [Google Scholar] [CrossRef]
- Rai, A.K.; Al Makishah, N.H.; Wen, Z.; Gupta, G.; Pandit, S.; Prasad, R. Recent developments in lignocellulosic biofuels, a renewable source of bioenergy. Fermentation 2022, 8, 161. [Google Scholar] [CrossRef]
- Standard Commission for Straight Feeding Stuffs at the Central Committee of the German Agriculture. Positive list for straight feeding stuffs. In Positive List for Straight Feeding Stuffs, 11th ed.; Central Committee of the German Agriculture: Berlin, Germany, 2014. [Google Scholar]
- Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef]
- Wagner, A.O.; Lackner, N.; Mutschlechner, M.; Prem, E.M.; Markt, R.; Illmer, P. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies 2018, 11, 1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laflamme, D.P. Development and validation of a body condition score system for dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Naumann, C.; Bassler, R. Methoden der Landwirtschaftlichen Forschungs-und Untersuchungsanstalt, Biochemische Untersuchung von Futtermitteln; VDLUFA: Darmstadt, Germany, 2012. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Gerickend, S.; Kurmies, B. Die kolorimetrische Phosphorsäuerebestimmung mit Ammonium-Vanadat-Molybdat und ihre Nawendung in der Pflanzenanalyse. Pflanzenernähr. Dünger Bodenk. 1952, 59, 235–247. [Google Scholar]
- Abd El-Wahab, A.; Chuppava, B.; Zeiger, A.L.; Visscher, C.; Kamphues, J. Nutrient Digestibility and Fecal Quality in Beagle Dogs Fed Meat and Bone Meal Added to Dry Food. Vet. Sci. 2022, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Wahab, A.; Meyer, L.; Kölln, M.; Chuppava, B.; Wilke, V.; Visscher, C.; Kamphues, J. Insect Larvae Meal (Hermetia illucens) as a Sustainable Protein Source of Canine Food and Its Impacts on Nutrient Digestibility and Fecal Quality. Animals 2021, 11, 2525. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials (AAFCO). Model Regulations for Pet Food and Specialty Pet Food Under the Model Bill; AAFCO Incorporated: Atlanta, GA, USA, 2014. [Google Scholar]
- Kamphues, J.; Wolf, P.; Coenen, M.; Eder, K.; Iben, C.; Kienzle, E.; Liesegang, A.; Männer, K.; Zebeli, Q.; Zentek, J. Supplement zur Tierernährung für Studium und Praxis; Verlag M. & H. Schaper: Hanover, Germany, 2014. [Google Scholar]
- Moxham, G. Waltham feces scoring system-A tool for veterinarians and pet owners: How does your pet rate. Waltham Focus 2001, 11, 24–25. [Google Scholar]
- McNab, J. Factors affecting the digestibility of nutrients. Proc. Nutr. Soc. 1975, 34, 5–11. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nut. 2012, 108, S315–S332. [Google Scholar] [CrossRef]
- Bednar, G.; Murray, S.; Patil, A.; Flickinger, E.; Merchen, N.R.; Fahey, G., Jr. Selected animal and plant protein sources affect nutrient digestibility and fecal characteristics of ileally cannulated dogs. Arch. Anim. Nutr. 2000, 53, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, E.; Opitz, B.; Earle, K.; Smith, P.; Maskell, I. The influence of dietary fibre components on the apparent digestibility of organic matter and energy in prepared dog and cat foods. J. Anim. Physiol. Anim. Nutr. 1998, 79, 46–56. [Google Scholar] [CrossRef]
- Brambillasca, S.; Purtscher, F.; Britos, A.; Repetto, J.L.; Cajarville, C. Digestibility, fecal characteristics, and plasma glucose and urea in dogs fed a commercial dog food once or three times daily. Can. Vet. J. 2010, 51, 190–194. [Google Scholar]
- Kienzle, E.; Dobenecker, B.; Eber, S. Effect of cellulose on the digestibility of high starch versus high fat diets in dogs. J. Anim. Physiol. Anim. Nutr. 2001, 85, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Yamka, R.M.; Frantz, N.Z.; Friesen, K.G. Effects of 3 canine weight loss foods on body composition and obesity markers. Int. J. Appl. Res. Vet. Med. 2007, 5, 125. [Google Scholar]
- Kahraman, O.; İnal, F.; İnanç, Z.S. Effects of Feeding Different Levels on Digestibility Body Weight Body Condition Score and Stool Quality in Dogs. Kocatepe Vet. J. 2022, 15, 106–114. [Google Scholar] [CrossRef]
- Do, S.; Phungviwatnikul, T.; de Godoy, M.R.C.; Swanson, K.S. Nutrient digestibility and fecal characteristics, microbiota, and metabolites in dogs fed human-grade foods. J. Anim. Sci. 2021, 99, skab028. [Google Scholar] [CrossRef] [PubMed]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Lewis, S.M.; Hirakawa, D.A. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4221–4228. [Google Scholar] [CrossRef]
- Burrows, C.F.; Kronfeld, D.S.; Banta, C.A.; Merritt, A.M. Effects of Fiber on Digestibility and Transit Time in Dogs. J. Nutr. 1982, 112, 1726–1732. [Google Scholar] [CrossRef]
- Sunvold, G.; Fahey, G., Jr.; Merchen, N.; Titgemeyer, E.; Bourquin, L.; Bauer, L.; Reinhart, G. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J. Anim. Sci. 1995, 73, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Fahey, G.C., Jr.; Merchen, N.R.; Corbin, J.E.; Hamilton, A.K.; Serbe, K.A.; Hirakawa, D.A. Dietary fiber for dogs: II. Iso-total dietary fiber (TDF) additions of divergent fiber sources to dog diets and their effects on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J. Anim. Sci. 1990, 68, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Lappin, M.R.; Zug, A.; Hovenga, C.; Gagne, J.; Cross, E. Efficacy of feeding a diet containing a high concentration of mixed fiber sources for management of acute large bowel diarrhea in dogs in shelters. J. Vet. Intern. Med. 2022, 36, 488–492. [Google Scholar] [CrossRef]
- Weber, L.W.; Boll, M.; Stampfl, A. Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins. World J. Gastroenterol. 2004, 10, 3081. [Google Scholar] [CrossRef]
- Bosch, G.; Verbrugghe, A.; Hesta, M.; Holst, J.J.; van der Poel, A.F.B.; Janssens, G.P.J.; Hendriks, W.H. The effects of dietary fibre type on satiety-related hormones and voluntary food intake in dogs. Br. J. Nutr. 2009, 102, 318–325. [Google Scholar] [CrossRef]
- Swanson, K.S.; Grieshop, C.M.; Flickinger, E.A.; Bauer, L.L.; Chow, J.; Wolf, B.W.; Garleb, K.A.; Fahey, G.C., Jr. Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs. J. Nutr. 2002, 132, 3721–3731. [Google Scholar] [CrossRef] [Green Version]
- Kieler, I.N.; Shamzir Kamal, S.; Vitger, A.D.; Nielsen, D.S.; Lauridsen, C.; Bjornvad, C.R. Gut microbiota composition may relate to weight loss rate in obese pet dogs. Vet. Med. Sci. 2017, 3, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, K.A.; Boobis, A.R.; Chiodini, A.; Edwards, C.A.; Franck, A.; Kleerebezem, M.; Nauta, A.; Raes, J.; Van Tol, E.A.; Tuohy, K.M. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 2015, 28, 42–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, J.; Hoebler, C.; Macfarlane, G.; Macfarlane, S.; Mathers, J.; Reed, K.; Mortensen, P.; Nordgaard, I.; Rowland, I.; Rumney, C. Estimation of the fermentability of dietary fibre in vitro: A European interlaboratory study. Br. J. Nutr. 1995, 74, 303–322. [Google Scholar] [CrossRef] [Green Version]
- De Godoy, M.R.C.; Mitsuhashi, Y.; Bauer, L.L.; Fahey, G.C., Jr.; Buff, P.R.; Swanson, K.S. In vitro fermentation characteristics of novel fibers, coconut endosperm fiber and chicory pulp, using canine fecal inoculum1. J. Anim. Sci. 2015, 93, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Bosch, G.; Pellikaan, W.F.; Rutten, P.G.P.; Poel, A.F.B.v.d.; Verstegen, M.W.A.; Hendriks, W.H. Comparative in vitro fermentation activity in the canine distal gastrointestinal tract and fermentation kinetics of fiber sources. J. Anim. Sci. 2008, 86, 2979–2989. [Google Scholar] [CrossRef] [Green Version]
- McNeil, N.I.; Cummings, J.; James, W. Short chain fatty acid absorption by the human large intestine. Gut 1978, 19, 819–822. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.C.; Morrison, D.J.; Edwards, C.A. Impact of the source of fermentable carbohydrate on SCFA production by human gut microbiota in vitro—A systematic scoping review and secondary analysis. Crit. Rev. Food Sci. Nutr. 2021, 61, 3892–3903. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Control Diet |
---|---|---|
DM | g/kg as fed | 923 |
Crude ash | g/kg DM | 70.4 |
Crude protein | 302 | |
Ether extract | 140 | |
Crude fiber | 24.5 | |
NFE | 386 | |
Calcium | 16.2 | |
Phosphorus | 10.8 | |
ME | MJ/100 g DM | 12.1 |
Item | Unit | Ingredient | Experimental Diets | |||
---|---|---|---|---|---|---|
Lignocellulose | LC0 | LC1 | LC2 | LC4 | ||
Control diet | % | - | 100 | 99 | 98 | 96 |
LC | 0 | 1 | 2 | 4 | ||
DM | g/kg as fed | 913 | 923 | 922.9 | 922.8 | 922.6 |
Crude ash | g/kg DM | 43.8 | 70.4 | 70.1 | 69.9 | 69.3 |
Crude protein | 16.5 | 302 | 299 | 296 | 291 | |
Ether extract | 6.24 | 140 | 139 | 137 | 135 | |
Crude fiber | 585 | 24.5 | 30.1 | 35.7 | 46.9 | |
NFE | 262 | 386 | 385 | 384 | 381 | |
Calcium | 4.32 | 16.2 | 16.1 | 16.0 | 15.7 | |
Phosphorus | 0.33 | 10.8 | 10.7 | 10.6 | 10.4 | |
ME | MJ/100 g DM | 4.69 | 12.1 | 12.0 | 11.9 | 11.8 |
Parameters | LC0 | LC1 | LC2 | LC4 | p-Value |
---|---|---|---|---|---|
Organic matter | 83.4 a ± 1.13 | 81.9 ab ± 2.42 | 81.2 b ± 0.97 | 80.0 b ± 1.29 | 0.011 |
Crude protein | 77.1 ± 1.28 | 76.5 ± 2.82 | 76.3 ± 1.72 | 77.1 ± 1.73 | 0.626 |
Crude fiber | 19.5 ± 9.58 | 17.8 ± 11.5 | 11.1 ± 5.71 | 15.7 ± 7.33 | 0.403 |
Crude fat | 94.2 ± 1.87 | 93.6 ± 1.18 | 93.8 ± 1.09 | 94.4 ± 0.46 | 0.709 |
NFE | 86.3 a ± 1.56 | 84.4 ab ± 3.33 | 85.5 a ± 1.78 | 82.2 b ± 1.39 | 0.009 |
BW at start, kg | 17.4 ± 1.46 | 17.5 ± 1.54 | 17.3 ± 1.21 | 17.3 ± 1.50 | 0.141 |
BW at final, kg | 17.4 ± 1.38 | 17.6 ± 1.67 | 17.5 ± 1.35 | 17.5 ± 1.50 | 0.709 |
BCS * at start | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 4.5 (4.0–5.0) | 4.5 (4.0–5.0) | 0.192 |
BCS * at final | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 0.216 |
Parameters | LC0 | LC1 | LC2 | LC4 | p-Value |
---|---|---|---|---|---|
Fecal consistency score (1–5) 1 | 2.69 a ± 0.60 | 2.54 ab ± 0.53 | 2.39 b ± 0.55 | 2.18 b ± 0.39 | 0.047 |
Fecal DM (%) | 28.0 b ± 2.00 | 28.4 b ± 2.61 | 28.6 b ± 2.00 | 29.1 a ± 1.96 | 0.024 |
Fecal output (g DM/d) | 57.0 b ± 3.78 | 62.0 ab ± 7.76 | 65.0 ab ± 3.12 | 68.0 a ± 3.98 | 0.037 |
Fecal pH | 6.39 c ± 0.42 | 6.87 a ± 0.34 | 6.42 c ± 0.39 | 6.66 b ± 0.37 | <0.001 |
Parameters | LC0 | LC1 | LC2 | LC4 | p-Value |
---|---|---|---|---|---|
acetic acid | 61.1 ± 2.17 | 62.8 ± 3.49 | 63.3 ± 3.39 | 63.1 ± 3.20 | 0.812 |
propionic acid | 19.3 ± 4.31 | 18.3 ± 5.35 | 21.7 ± 2.62 | 20.3 ± 4.01 | 0.899 |
iso-butyric acid | 1.40 ± 0.32 | 1.10 ± 0.42 | 1.50 ± 0.29 | 1.40 ± 0.37 | 0.555 |
n-butyric acid | 16.1 ± 5.09 | 16.0 ± 5.41 | 11.5 ± 1.77 | 13.3 ± 4.25 | 0.121 |
iso-valeric acid | 2.10 ± 0.42 | 1.60 ± 0.24 | 2.00 ± 0.32 | 1.80 ± 0.47 | 0.197 |
n-valeric acid | 0.00 ± 0.00 | 0.10 ± 0.20 | 0.00 ± 0.00 | 0.10 ± 0.10 | 0.218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Wahab, A.; Chuppava, B.; Siebert, D.-C.; Visscher, C.; Kamphues, J. Digestibility of a Lignocellulose Supplemented Diet and Fecal Quality in Beagle Dogs. Animals 2022, 12, 1965. https://doi.org/10.3390/ani12151965
Abd El-Wahab A, Chuppava B, Siebert D-C, Visscher C, Kamphues J. Digestibility of a Lignocellulose Supplemented Diet and Fecal Quality in Beagle Dogs. Animals. 2022; 12(15):1965. https://doi.org/10.3390/ani12151965
Chicago/Turabian StyleAbd El-Wahab, Amr, Bussarakam Chuppava, Diana-Christin Siebert, Christian Visscher, and Josef Kamphues. 2022. "Digestibility of a Lignocellulose Supplemented Diet and Fecal Quality in Beagle Dogs" Animals 12, no. 15: 1965. https://doi.org/10.3390/ani12151965