Comparison of Jugular vs. Saphenous Blood Samples, Intrarater and In-Between Device Reliability of Clinically Used ROTEM S Parameters in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Population
3.2. Comparison of Jugular and Saphenous Blood Samples
3.3. Intrarater Variability
3.4. Inter-Device Variability
4. Discussion
4.1. Comparison of Jugular and Venous Blood Collection Site
4.2. Intrarater Variability
4.3. Inter-Device Variability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartert, H. Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klin. Wochenschr. 1948, 26, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Ganter, M.T.; Hofer, C.K. Coagulation Monitoring: Current Techniques and Clinical Use of Viscoelastic Point-of-Care Coagulation Devices. Anesth. Analg. 2008, 106, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.; DiNardo, J.A. TEG and ROTEM: Technology and clinical applications. Am. J. Hematol. 2014, 89, 228–232. [Google Scholar] [CrossRef] [PubMed]
- McMichael, M.A.; Smith, S.A. Viscoelastic coagulation testing: Technology, applications, and limitations. Vet. Clin. Pathol. 2011, 40, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A. The cell-based model of coagulation. J. Vet. Emerg. Crit. Care 2009, 19, 3–10. [Google Scholar] [CrossRef]
- Paltrinieri, S.; Meazza, C.; Giordano, A.; Tunesi, C. Validation of thromboelastometry in horses. Vet. Clin. Pathol. 2008, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Junge, H.K.; Ringer, S.; Mayer, N.; Schwarzwald, C.C. Assessment of method reliability and determination of reference intervals for rotational thromboelastometry in horses. J. Vet. Emerg. Crit. Care 2016, 26, 691–703. [Google Scholar] [CrossRef]
- Pereira, J.M.; Rohn, K.; Mischke, R. Reference intervals for rotational thromboelastometry measurements using the ROTEM® delta device in dogs. Res. Vet. Sci. 2020, 130, 26–32. [Google Scholar] [CrossRef]
- Schefer, R.J.; Heimgartner, L.; Stirn, M.; Sigrist, N.E. Determination of reference intervals for single vial rotational throm-boelastometry (ROTEM) parameters and correlation with plasmatic coagulation times in 49 clinically healthy dogs. Res. Vet. Sci. 2020, 129, 129–136. [Google Scholar] [CrossRef]
- Marly-Voquer, C.; Riond, B.; Schefer, R.J.; Kutter, A.P.N. Reference values for rotational thromboelastometry (ROTEM) in clinically healthy cats. J. Vet. Emerg. Crit. Care 2017, 27, 185–192. [Google Scholar] [CrossRef]
- Döderlein, E.; Mischke, R. Reference intervals for thromboelastometry with the ROTEM® delta in cats. Res. Vet. Sci. 2015, 100, 271–276. [Google Scholar] [CrossRef]
- A Smith, S.; McMichael, M.; Galligan, A.; Gilor, S.; Hoh, C.M. Clot formation in canine whole blood as measured by rotational thromboelastometry is influenced by sample handling and coagulation activator. Blood Coagul. Fibrinolysis 2010, 21, 692–702. [Google Scholar] [CrossRef]
- Flatland, B.; Koenigshof, A.M.; Rozanski, E.A.; Goggs, R.; Wiinberg, B. Systematic evaulation of evidence on vet-erinary viscoelastic testing part 2: Sample acquisition and handling. J. Vet. Emerg. Crit. Care 2014, 24, 30–36. [Google Scholar] [CrossRef]
- Goggs, R.; Brainard, B.; De Laforcade, A.M.; Flatland, B.; Hanel, R.; McMichael, M.; Wiinberg, B. Partnership on Rotational ViscoElastic Test Standardization (PROVETS): Evidence-based guidelines on rotational viscoelastic assays in veterinary medicine. J. Vet. Emerg. Crit. Care 2014, 24, 1–22. [Google Scholar] [CrossRef]
- Luddington, R.J. Thrombelastography/thromboelastometry. Int. J. Lab. Hematol. 2005, 27, 81–90. [Google Scholar] [CrossRef]
- Solomon, C.; Sørensen, B.; Hochleitner, G.; Kashuk, J.; Ranucci, M.; Schöchl, H. Comparison of Whole Blood Fibrin-Based Clot Tests in Thrombelastography and Thromboelastometry. Anesth. Analg. 2012, 114, 721–730. [Google Scholar] [CrossRef]
- Anderson, L.; Quasim, I.; Steven, M.; Moise, S.F.; Shelley, B.; Schraag, S.; Sinclair, A. Interoperator and in-traoperator variability of whole blood coagulation assays: A comparison of thromboelastography and rota-tional thromboelastometry. J. Cardiothorac. Vasc. Anesth. 2014, 28, 1550–1557. [Google Scholar] [CrossRef]
- Goggs, R.; Borrelli, A.; Brainard, B.M.; Chan, D.L.; de Laforcade, A.; Goy-Thollot, I.; Jandrey, K.E.; Kristensen, A.T.; Kutter, A.; Marschner, C.B.; et al. Multicenter in vitro thromboelastography and thromboelas-tometry standardization. J. Vet. Emerg. Crit. Care 2018, 28, 201–212. [Google Scholar] [CrossRef]
- Fudge, J.M.; Cano, K.S.; Page, B.; Jeffery, U. Comparison of viscoelastic test results from blood collected near sim-ultaneously from the jugular and saphenous veins in cats. J. Feline Med. Surg. 2021, 23, 598–603. [Google Scholar] [CrossRef]
- Weingand, N.; Vuille-Dit-Bille, J.; Schefer, R.J.; Kutter, A.P.N.; Stirn, M.; Adamik, K.-N.; Sigrist, N.E. Evaluation of the Effect of Storage Time on ROTEM S® Parameters in Healthy and Ill Dogs. Animals 2022, 12, 1996. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Bartko, J. On various intraclass correlation reliability coefficients. Psychol. Bull. 1976, 83, 762–765. [Google Scholar] [CrossRef]
- Theusinger, O.M.; Nürnberg, J.; Asmis, L.M.; Seifert, B.; Spahn, D.R. Rotation thromboelastometry (ROTEM) stability and repro-ducibility over time. Eur. J. Cardiothorac. Surg. 2010, 37, 677–683. [Google Scholar] [CrossRef]
- Carraro, P.; Plebani, M. Errors in a Stat Laboratory: Types and Frequencies 10 Years Later. Clin. Chem. 2007, 53, 1338–1342. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.M.; Hanel, R.M.; Hansen, B.D.; Motsinger-Reif, A.A. Comparison of venous sampling methods for thromboelastography in clinically normal dogs. Am. J. Vet. Res. 2012, 73, 1864–1870. [Google Scholar] [CrossRef]
- Bauer, N.B.; Er, E.; Moritz, A. Influence of blood collection technique on platelet function and coagulation variables in dogs. Am. J. Vet. Res. 2011, 72, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Holme, P.A.; Ørvim, U.; Hamers, M.J.A.G.; Solum, N.O.; Brosstad, F.R.; Barstad, R.M.; Sakariassen, K.S. Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries with a Severe Stenosis. Arter. Thromb. Vasc. Biol. 1997, 17, 646–653. [Google Scholar] [CrossRef]
- Sakariassen, K.S.; Holme, P.A.; Ørvim, U.; Barstad, R.M.; Solum, N.O.; Brosstad, F.R. Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 1998, 92, S33–S41. [Google Scholar] [CrossRef]
- Mauch, J.; Spielmann, N.; Hartnack, S.; Madjdpour, C.; Kutter, A.P.; Bettschart-Wolfensberger, R.; Weiss, M.; Haas, T. Intrarater and interrater variability of point of care coagulation testing using the ROTEM delta. Blood Coagul. Fibrinolysis 2011, 22, 662–666. [Google Scholar] [CrossRef]
- Slack, J.; Durando, M.M.; Belcher, C.N.; Collins, N.; Palmer, L.; Ousey, J.; Birks, E.K.; Marr, C.M. Intraoperator, intraob-server and interoperator variability of echocardiographic measurements in healthy foals. Equine Vet. J. Suppl. 2012, 41, 69–75. [Google Scholar] [CrossRef]
- Eggensperger, B.H.; Schwarzwald, C.C. Influence of 2nd-degree AV blocks, ECG recording length, and record-ing time on heart rate variability analyses in horses. J. Vet. Cardiol. 2017, 19, 160–174. [Google Scholar] [CrossRef]
- Albrecht, N.A.; Howard, J.; Kovacevic, A.; Adamik, K.-N. In vitro effects of 6% hydroxyethyl starch 130/0.42 solution on feline whole blood coagulation measured by rotational thromboelastometry. BMC Vet. Res. 2016, 12, 155. [Google Scholar] [CrossRef]
- Zambruni, A.; Thalheimer, U.; Leandro, G.; Perry, D.; Burroughs, A.K. Thromboelastography with citrated blood: Comparability with native blood, stability of citrate storage and effect of repeated sampling. Blood Coagul. Fibrinolysis 2004, 15, 103–107. [Google Scholar] [CrossRef]
Parameter | Jugular | Saphenous | Jugular-Saphenous | Intraclass Correlation Coefficient (ICC) | CoV | t-test | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | n | Mean | SD | Mean | SD | Mean Difference * | ICC | Lower CI | Upper CI | p | % | p | |
Ex-TEM | |||||||||||||
CT | s | 36 | 53✓ | 31 | 41✓ | 21 | 21 | 0.290 | −0.014 | 0.552 | 0.030 | 27 | <0.001 |
CFT | s | 36 | 433 | 783 | 234✓ | 123 | 219 | 0.198 | −0.117 | 0.484 | 0.108 | 20 | 0.069 |
α | ° | 36 | 50✓ | 11 | 55✓ | 10 | 7 | 0.545 | 0.200 | 0.755 | 0.002 | 11 | <0.001 |
MCF | mm | 36 | 42✓ | 8 | 45✓ | 7 | 5 | 0.646 | 0.287 | 0.825 | 0.001 | 8 | <0.001 |
MCE | 36 | 74✓ | 23 | 85✓ | 24 | 13 | 0.712 | 0.359 | 0.865 | <0.001 | 13 | <0.001 | |
G | 36 | 3711✓ | 1162 | 4242✓ | 1191 | 675 | 0.712 | 0.351 | 0.866 | 0.001 | 13 | <0.001 | |
ML | % | 35 | 4✓ | 2 | 4✓ | 2 | 1 | 0.290 | −0.014 | 0.552 | 0.030 | 21 | <0.001 |
In-TEM | |||||||||||||
CT | s | 18 | 202✓ | 20 | 188✓ | 17 | 26 | 0 | −0.383 | 0.369 | 0.588 | 9 | <0.001 |
CFT | s | 18 | 127✓ | 48 | 132✓ | 43 | 22 | 0.814 | 0.574 | 0.926 | <0.001 | 12 | <0.001 |
α | ° | 18 | 67✓ | 7 | 66✓ | 6 | 4 | 0.789 | 0.527 | 0.915 | <0.001 | 4 | <0.001 |
MCF | mm | 18 | 57✓ | 7 | 57✓ | 7 | 2 | 0.934 | 0.832 | 0.975 | <0.001 | 2 | <0.001 |
MCE | 18 | 139✓ | 42 | 140✓ | 49 | 11 | 0.941 | 0.850 | 0.978 | <0.001 | 5 | 0.001 | |
G | 18 | 6966✓ | 2114 | 7012✓ | 2430 | 539 | 0.941 | 0.850 | 0.978 | <0.001 | 5 | 0.001 | |
ML | % | 18 | 0.2✓ | 0.4 | 0.2✓ | 0.6 | 0.2 | 0.361 | −0.130 | 0.704 | 0.070 | 71 | 0.187 |
Fib-TEM | |||||||||||||
CT | s | 19 | 106✓ | 266 | 120 | 269 | 21 | 0.982 | 0.954 | 0.993 | <0.001 | 18 | 0.066 |
MCF | mm | 19 | 4✓ | 2 | 6✓ | 4 | 2 | 0.246 | −0.189 | 0.613 | 0.133 | 21 | 0.027 |
MCE | 19 | 5✓ | 2 | 6✓ | 5 | 2 | 0.168 | −0.269 | 0.561 | 0.227 | 21 | 0.053 | |
G | 19 | 237✓ | 87 | 313✓ | 242 | 105 | 0.167 | −0.267 | 0.558 | 0.228 | 20 | 0.054 |
Change of Coagulation Status Based on Collection Site | |||
---|---|---|---|
TEST | Coagulation Status | V. Jugularis | V. Saphena |
Ex-TEM | normocoagulable | 33/36 (92%) | 32/36 (89%) |
hypocoagulable | 2/36 (5%) | 1/36 (3%) | |
hypercoagulable | 1/36 (3%) | 3/36 (8%) | |
In-TEM | normocoagulable | 16/18 (89%) | 15/18 (83%) |
hypocoagulable | 2/18 (11%) | 2/18 (11%) | |
hypercoagulable | 0/18 (0%) | 1/18 (6%) | |
Fib-TEM | normocoagulable | 18/19 (95%) | 17/19 (89%) |
hypocoagulable | 1/19 (5%) | 1/19 (5%) | |
hypercoagulable | 0/19 (0%) | 1/19 (5%) | |
Change of coagulation status between duplicates | |||
TEST | Coagulation status | Measurement 1 | Measurement 2 |
Ex-TEM | normocoagulable | 16/23 (70%) | 15/23 (65%) |
hypocoagulable | 6/23 (26%) | 6/23 (26%) | |
hypercoagulable | 1/23 (4%) | 2/23 (9%) | |
In-TEM | normocoagulable | 13/17 (76%) | 13/17 (76%) |
hypocoagulable | 4/17 (24%) | 4/17 (24%) | |
hypercoagulable | 0/17 (0%) | 0/17 (0%) | |
Fib-TEM | normocoagulable | 18/21 (86%) | 17/21 (81%) |
hypocoagulable | 2/21 (9%) | 2/21 (10%) | |
hypercoagulable | 1/21 (5%) | 2/21 (10%) | |
Change in coagulation status between 2 devices | |||
TEST | Mean coagulation status | Device 1 | Device 2 |
Ex-TEM | normocoagulable | 4/7 (57%) | 3/7 (43%) |
hypocoagulable | 3/7 (43%) | 4/7 (57%) | |
hypercoagulable | 0/7 (0%) | 0/7 (0%) | |
In-TEM | normocoagulable | 4/6 (67%) | 4/6 (67%) |
hypocoagulable | 2/6 (33%) | 2/6 (33%) | |
hypercoagulable | 0/6 (0%) | 0/6 (0%) | |
FibTEM- | normocoagulable | 4/4 (100%) | 3/4 (75%) |
hypocoagulable | 0/4 (0%) | 1/4 (25%) | |
hypercoagulable | 0/4 (0%) | 0/4 (0%) |
Parameter | Measurement 1 | Measurement 2 | Measurement 1–Measurement 2 | Intraclass Correlation Coefficient (ICC) | CoV | t-test | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | n | Mean | SD | Mean | SD | Mean Difference * | ICC | Lower CI | Upper CI | p | % | p | |
Ex-TEM | |||||||||||||
CT | s | 23 | 79✓ | 56 | 50✓ | 23 | 39 | 0.098 | −0.229 | 0.445 | 0.290 | 34 | 0.001 |
CFT | s | 23 | 558 | 713 | 616 | 759 | 429 | 0.225 | −0.214 | 0.582 | 0.153 | 32 | 0.018 |
α | ° | 23 | 45✓ | 12 | 43✓ | 14 | 7 | 0.674 | 0.378 | 0.847 | <0.001 | 13 | <0.001 |
MCF | mm | 23 | 37✓ | 10 | 37✓ | 11 | 6 | 0.711 | 0.427 | 0.867 | <0.001 | 13 | <0.001 |
MCE | 23 | 62✓ | 27 | 63✓ | 31 | 15 | 0.801 | 0.586 | 0.911 | <0.001 | 19 | <0.001 | |
G | 23 | 3124✓ | 1328 | 3164✓ | 1552 | 733 | 0.801 | 0.585 | 0.911 | <0.001 | 19 | <0.001 | |
ML | % | 22 | 3✓ | 2 | 3✓ | 2 | 1 | 0.761 | 0.513 | 0.893 | <0.001 | 40 | <0.001 |
In-TEM | |||||||||||||
CT | s | 18 | 189✓ | 35 | 179✓ | 20 | 14 | 0.779 | 0.433 | 0.916 | <0.001 | 5 | <0.001 |
CFT | s | 18 | 139✓ | 56 | 129✓ | 40 | 23 | 0.787 | 0.525 | 0.914 | <0.001 | 12 | <0.001 |
α | ° | 18 | 66✓ | 8 | 67✓ | 6 | 4 | 0.793 | 0.538 | 0.917 | <0.001 | 4 | <0.001 |
MCF | mm | 17 | 55✓ | 6 | 56✓ | 6 | 1 | 0.970 | 0.917 | 0.989 | <0.001 | 1 | 0.001 |
MCE | 17 | 129✓ | 35 | 133✓ | 34 | 6 | 0.973 | 0.927 | 0.990 | <0.001 | 3 | <0.001 | |
G | 17 | 6437✓ | 1768 | 6662✓ | 1676 | 302 | 0.973 | 0.928 | 0.990 | <0.001 | 3 | <0.001 | |
ML | % | 16 | 0.1✓ | 0.2 | 0.1✓ | 0.5 | 0.2 | 0 | −0.566 | 0.453 | 0.581 | 141 | 0.188 |
Fib-TEM | |||||||||||||
CT | s | 21 | 107✓ | 258 | 212 | 573 | 111.95 | 0.720 | 0.436 | 0.875 | <0.001 | 21 | 0.128 |
MCF | mm | 21 | 5✓ | 2 | 5✓ | 2 | 1 | 0.870 | 0.706 | 0.945 | <0.001 | 12 | 0.008 |
MCE | 21 | 5✓ | 2 | 5✓ | 3 | 1 | 0.861 | 0.690 | 0.941 | <0.001 | 12 | 0.006 | |
G | 21 | 237✓ | 113 | 246✓ | 137 | 37 | 0.870 | 0.709 | 0.945 | <0.001 | 13 | 0.004 |
Parameter | Device 1 | Device 2 | Device 1–Device 2 | Intraclass Correlation Coefficient (ICC) | CoV | t-test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | n Duplicate Measurments | Δ Mean | SD | n Duplicate Measurments | Δ Mean | SD | Mean Difference * | ICC | Lower CI | Upper CI | p | % | p | |
Ex-TEM | ||||||||||||||
CT | s | 7 | 88 | 38 | 7 | 68✓ | 26 | 34 | 0.132 | −0.535 | 0.754 | 0.362 | 33 | 0.031 |
CFT | s | 7 | 648 | 297 | 7 | 944 | 890 | 656 | 0 | −0.772 | 0.711 | 0.511 | 46 | 0.048 |
α | ° | 7 | 40 | 8 | 7 | 38 | 11 | 7 | 0.565 | −0.299 | 0.911 | 0.081 | 15 | 0.026 |
MCF | mm | 7 | 32✓ | 6 | 7 | 32✓ | 8 | 5 | 0.710 | −0.059 | 0.945 | 0.032 | 12 | <0.001 |
MCE | 7 | 48✓ | 14 | 7 | 50✓ | 20 | 10 | 0.782 | 0.139 | 0.959 | 0.014 | 16 | 0.001 | |
G | 7 | 2415✓ | 713 | 7 | 2498✓ | 990 | 518 | 0.784 | 0.149 | 0.960 | 0.013 | 16 | <0.001 | |
ML | % | 7 | 3 | 1 | 7 | 3 | 2 | 1 | 0.676 | 0.030 | 0.934 | 0.021 | 45 | <0.001 |
In-TEM | ||||||||||||||
CT | s | 6 | 192✓ | 28 | 6 | 187✓ | 32 | 7 | 0.956 | 0.744 | 0.994 | <0.001 | 2 | 0.057 |
CFT | sec | 6 | 143✓ | 33 | 6 | 138✓ | 26 | 14 | 0.877 | 0.412 | 0.982 | 0.003 | 8 | 0.001 |
α | ° | 6 | 64✓ | 5 | 6 | 66✓ | 4 | 3 | 0.789 | 0.170 | 0.967 | 0.011 | 3 | 0.002 |
MCF | mm | 5 | 56✓ | 7 | 6 | 53✓ | 4 | 3 | 0.698 | 0.011 | 0.949 | 0.024 | 3 | 0.154 |
MCE | 5 | 136✓ | 51 | 6 | 117✓ | 17 | 20 | 0.472 | −0.300 | 0.900 | 0.110 | 8 | 0.255 | |
G | 5 | 6826✓ | 2581 | 6 | 5831✓ | 837 | 1020 | 0.469 | −0.302 | 0.899 | 0.111 | 9 | 0.249 | |
ML | % | 4 | 0✓ | 0 | 6 | 0.1✓ | 0.2 | 0.1 | 0.000 | −0.755 | 0.755 | 0.500 | 141 | 0.363 |
Fib-TEM | ||||||||||||||
CT | s | 4 | 40✓ | 8 | 4 | 226 | 361 | 187 | 0.040 | −0.819 | 0.884 | 0.471 | 45 | 0.366 |
MCF | mm | 4 | 4✓ | 1 | 4 | 3✓ | 1 | 1 | 0.500 | −0.606 | 0.958 | 0.170 | 23 | 0.016 |
MCE | 4 | 4✓ | 1 | 4 | 3✓ | 1 | 1 | 0.572 | −0.522 | 0.965 | 0.130 | 24 | 0.016 | |
G | 4 | 188✓ | 51 | 4 | 160✓ | 63 | 39 | 0.761 | −0.069 | 0.982 | 0.034 | 19 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuille-dit-Bille, J.; Weingand, N.; Jud Schefer, R.; Stirn, M.; Adamik, K.-N.; Rathmann, J.M.K.; Sigrist, N.E. Comparison of Jugular vs. Saphenous Blood Samples, Intrarater and In-Between Device Reliability of Clinically Used ROTEM S Parameters in Dogs. Animals 2022, 12, 2101. https://doi.org/10.3390/ani12162101
Vuille-dit-Bille J, Weingand N, Jud Schefer R, Stirn M, Adamik K-N, Rathmann JMK, Sigrist NE. Comparison of Jugular vs. Saphenous Blood Samples, Intrarater and In-Between Device Reliability of Clinically Used ROTEM S Parameters in Dogs. Animals. 2022; 12(16):2101. https://doi.org/10.3390/ani12162101
Chicago/Turabian StyleVuille-dit-Bille, Johanna, Nicole Weingand, Rahel Jud Schefer, Martina Stirn, Katja-Nicole Adamik, Justus M. K. Rathmann, and Nadja E. Sigrist. 2022. "Comparison of Jugular vs. Saphenous Blood Samples, Intrarater and In-Between Device Reliability of Clinically Used ROTEM S Parameters in Dogs" Animals 12, no. 16: 2101. https://doi.org/10.3390/ani12162101
APA StyleVuille-dit-Bille, J., Weingand, N., Jud Schefer, R., Stirn, M., Adamik, K. -N., Rathmann, J. M. K., & Sigrist, N. E. (2022). Comparison of Jugular vs. Saphenous Blood Samples, Intrarater and In-Between Device Reliability of Clinically Used ROTEM S Parameters in Dogs. Animals, 12(16), 2101. https://doi.org/10.3390/ani12162101