What Can Genetics Do for the Control of Infectious Diseases in Aquaculture?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Conventional Disease Control Methods
3. Breeding for Disease Resistance in Fish
3.1. Conventional Selection
3.2. Candidate Genes and Marker Assisted Selection
AFLP | Amplified Fragment Length Polymorphisms | Restriction enzymes are used for genomic DNA digestion. A subset of the restriction fragments is selected for amplification by primers complementary to the ligation adaptor sequence, the restriction site sequence, and a few nucleotides inside the restriction site fragments. The markers are a cost-effective alternative in species for which economic resources are limited. |
RAPD | Random Amplified Polymorphic DNA | The genome is amplified using several arbitrary short primers (10–12 nucleotides). AFLP markers are usually preferred to RAPD because of their greater reproducibility. |
RFLP | Restriction Fragment Length Polymorphic DNA | Genomic DNA is digested by restriction enzymes; the fragments separate on agarose gel and create different patterns. The markers are poorly polymorphic, however, which is a major drawback. |
SSR/STR/VNTR | Microsatellite Repeats | Specific sequences of DNA containing tandem repeats. The number of repeats differs for alleles at a specific locus; a specific set of primers is used in simplex or multiplex PCR for loci amplification. These markers are commonly used because of their high polymorphic information content and their wide distribution throughout the genome. |
ESTs | Expressed Sequence Tags | ESTs derived from c-DNA libraries, constructed using mRNA expressed in tissues. They are useful tools for marker development in species where the full genome is not yet available. |
SNP | Single Nucleotide Polymorphism | DNA sequence variations at a single nucleotide level are used as genetic markers. They are the most frequent polymorphism in any organism, adaptable to automation, and reveal hidden polymorphisms not detected by other methods. |
ddRAD | Double-Digest Restriction-Site-Associated DNA Sequencing | This method is based on the enzymatic digestion of the whole genomic DNA and the creation of multiplexed libraries, with consequent binding to specific adapters (reduced representation libraries) which are more laborious and less accurate than SNP analysis. |
3.3. Genomic Selection
3.4. Genome Editing
3.5. Novel Approaches
4. Pathogen Characterization
4.1. Conventional Methods
4.2. Molecular Methods
4.3. Whole Genome Sequencing (WGS)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gratacap, R.; Wargelius, A.; Edvardsen, R.B.; Houston, R.D. Potential of Genome Editing to Improve Aquaculture Breeding and Producton. Trends Genet. 2019, 35, 672–684. [Google Scholar] [CrossRef] [PubMed]
- API. Associazione Piscicoltori Italiani—Acquacoltura.Org—Elaborazione Dati. 2022. Available online: https://www.acquacoltura.org (accessed on 20 May 2022).
- Moreira, M.; Schrama, D.; Farinha, A.P.; Cerqueira, M.; de Magalhaes, C.R.; Carrilho, R.; Rodrigues, P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish: A Proteomic Perspective. Animals 2021, 11, 125. [Google Scholar] [CrossRef]
- Altizer, S.; Dobson, A.; Hosseini, P.; Hudson, P.; Pascual, M.; Rohani, P. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 2006, 9, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Cascarano, M.C.; Stavrakidis-Zachou, O.; Mladineo, I.; Thompson, K.D.; Papandroulakis, N.; Katharios, P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021, 10, 1205. [Google Scholar] [CrossRef] [PubMed]
- Sommerset, I.; Krossoy, B.; Biering, E.; Frost, P. Vaccines for fish in aquaculture. Expert Rev. Vaccines 2005, 4, 89–101. [Google Scholar] [CrossRef]
- Adams, A. Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Kurath, G.; Brito, I.L.; Purcell, M.K.; Read, A.F.; Winton, J.R.; Wargo, A.R. Potential drivers of virulence evolution in aquaculture. Evol. Appl. 2015, 9, 344–354. [Google Scholar] [CrossRef]
- Novais, C.; Campos, J.; Freitas, A.R.; Barros, M.; Silveira, E.; Coque, T.M.; Antines, P.; Peixe, L. Water supply and feed as sources of antimicrobial-resistant Enterococcus spp. in aquacultures of rainbow trout (Oncorhyncus mykiss), Portugal. Sci. Total Environ. 2018, 625, 1102–1112. [Google Scholar] [CrossRef]
- Heuer, O.E.; Kruse, H.; Grave, K.; Collignon, P.; Karunasagar, I.; Angulo, F.J. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture. Clin. Infect. Dis. 2009, 49, 1248–1253. [Google Scholar] [CrossRef]
- Gjedrem, T.; Baranski, M. Selective Breeding in Aquaculture: An Introduction; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350–353, 117–129. [Google Scholar] [CrossRef]
- Gjedrem, T.; Rye, M. Selection response in fish and shellfish: A review. Rev. Aquac. 2018, 10, 168–179. [Google Scholar] [CrossRef]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Genetics 2020, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Masri, L.; Branca, A.; Sheppard, A.E.; Papkou, A.; Laehnemann, D.; Guenther, P.S.; Prahl, S.; Saebelfeld, M.; Hollensteiner, J.; Liesegang, H.; et al. Host-Pathogen Coevolution: The selective advantage of Bacillus thuringiensis virulence and its cry toxin genes. PLoS Biol. 2015, 13, e1002169. [Google Scholar] [CrossRef] [PubMed]
- Gjedrem, T. The first family-based breeding program in aquaculture. Rev. Aquac. 2010, 2, 2–15. [Google Scholar] [CrossRef]
- Odegard, J.; Baranski, M.; Gjerde, B.; Gjedrem, T. Methodology for genetic evaluation of disease resistance in aquaculture species: Challenges and future prospects. Aquac. Res. 2011, 42, 103–114. [Google Scholar]
- Guy, D.R. Genetic Resistance to Infectious Pancreatic Necrosis Virus in Pedigreed Atlantic Salmon (Salmo salar); University of Edinburgh: Edinburgh, UK, 2011. [Google Scholar]
- Storset, A.; Strand, C.; Wetten, M.; Kjoglum, S.; Ramstad, A. Response to selection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 2007, 272, 62–68. [Google Scholar] [CrossRef]
- Yanez, J.M.; Houston, R.D.; Newman, S. Genetics and genomics of disease resistance in salmonid species. Front. Genet. 2014, 5, 415. [Google Scholar]
- Houston, R.D. Future directions in breeding for disease resistance in aquaculture species. Braz. J. Anim. Sci. 2017, 46, 545–551. [Google Scholar] [CrossRef]
- Houston, R.D.; Gheyas, A.; Hamilton, A.; Guy, D.R.; Tinch, A.E.; Taggart, J.B.; McAndrew, B.J.; Haley, C.S.; Bishop, S.C. Detection and confirmation of a major QTL affecting resistance to infectious pancreatic necrosis (IPN) in Atlantic salmon (Salmo salar). Dev. Biol. 2008, 132, 199–204. [Google Scholar]
- Moen, T.; Baranski, M.; Sonesson, A.K.; Kjoglum, S. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): Population-level associations between markers and trait. BMC Genom. 2009, 10, 368. [Google Scholar] [CrossRef]
- Verrier, E.R.; Dorson, M.; Mauger, S.; Torhy, C.; Ciobotaru, C.; Hervet, C.; Dechamp, N.; Genet, C.; Boudinot, P.; Quillet, E. Resistance to a rhabdovirus (VHSV) in rainbow trout: Identification of a major QTL related to innate mechanisms. PLoS ONE 2013, 8, e55302. [Google Scholar] [CrossRef] [PubMed]
- Marana, M.H.; Karami, A.M.; Odegard, J.; Zuo, S.; Jaafar, R.M.; Mathiessen, H.; Jorgensen, L.V.G.; Kania, P.W.; Dalsgoard, I.; Nielsen, T.; et al. Whole-genome association study searching for QTL for Aeromonas salmonicida resistance in rainbow trout. Sci. Rep. 2021, 11, 17857. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.M.; Odegard, J.; Marana, M.H.; Zuo, S.; Jaafar, R.; Mathiessen, H.; Jorgensen, L.; Von, G.; Kania, P.W.; Dalsgaard, I.; et al. A major QTL for resistance to Vibrio anguillarum in Rainbow Trout. Front. Genet. 2020, 11, 607558. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, R.L.; Palti, Y.; Lui, S.; Evenhuis, J.P.; Gao, G.; Rexroad, C.E.; Wiens, G.D. Detection of QTL in Rainbow Trout affecting survival when challenged with Flavobacterium psychrophilum. Mar. Biotechnol. 2014, 16, 349–360. [Google Scholar] [CrossRef]
- Evenhius, J.P.; Leeds, T.D.; Marancik, D.P.; Lapatra, S.E.; Wiens, G.D. Rainbow trout (Oncorhynchus mykiss) resistance to columnaris disease is heritable and favorably correlated with bacterial cold water disease resistance. J. Anim. Sci. 2015, 93, 1546–1554. [Google Scholar] [CrossRef]
- Silva, R.M.O.; Evenhuis, J.P.; Vallejo, R.Ç.; Tsuruta, S.; Wiens, G.D.; Martin, K.E.; Parsons, J.E.; Palti, Y.; Lourenco, D.A.L.; Leeds, T.D. Variance and covariance estimates for resistance to bacterial cold water disease and columnaris disease in two rainbow trout breeding populations. J. Anim. Sci. 2019, 97, 1124–1132. [Google Scholar] [CrossRef]
- Robledo, D.; Matika, O.; Hamilton, A.; Houston, R.D. Genome-wide association and genomic selection for resistance to Amoebic Gill Disease in Atlantic salmon. G3 Genes Genomes Genet. 2018, 8, 1195–1203. [Google Scholar] [CrossRef]
- Robledo, D.; Gutierrez, A.P.; Barria, A.; Lhorente, J.P.; Houston, R.D.; Yanez, J.M. Discovery and functional annotation of Quantitative Trait Loci affecting resistance to Sea Lice in Atlantic Salmon. Front. Genet. 2019, 10, 56. [Google Scholar] [CrossRef]
- Jones, S. Mechanisms of resistance among salmon to the parasitic copepod Lepeophtheirus salmonis. J. Aquac. Res. Dev. 2013, s2, 1–6. [Google Scholar] [CrossRef]
- Robinson, N.A.; Gopikrishna, G.; Baranski, M.; Katheni, V.K.; Shekhar, M.S.; Shanmugakarthik, J.; Jothivel, S.; Gopal, C.; Ravichandran, P.; Gitterle, T.; et al. QTL for white spot syndrome virus resistance and the sex-determining locus in the Indian black tiger shrimp (Penaeus Monodon). BMC Genom. 2014, 15, 731. [Google Scholar] [CrossRef]
- Moen, T.; Torgersen, J.; Santi, N.; Davidson, W.S.; Baranski, M.; Odegard, J.; Kjoglum, S.; Velle, B.; Kent, M.; Lubieniecki, K.P.; et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic Salmon. Genetics 2015, 200, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Pavelin, J.; Jin, Y.H.; Gratacap, R.; Taggart, J.B.; Hamilton, A.; Verner-Jeffreys, D.W.; Paley, R.K.; Rubin, C.J.; Bishop, S.C.; Bron, D.E.; et al. The need-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics 2021, 113, 3842–3850. [Google Scholar] [CrossRef] [PubMed]
- Colussi, S.; Prearo, M.; Bertuzzi, A.; Scanzio, T.; Peletto, S.; Favaro, L.; Modesto, P.; Maniaci, M.G.; Ru, G.; Desiato, R.; et al. Association of a specific major histocompatibility complex class IIb single nucleotide polymorphism with resistance to lactococcus in rainbow trout, Oncorhyncus mykiss (Walbaum). J. Fish Dis. 2015, 38, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Vallejo, R.L.; Silverstein, J.T.; Welch, T.J.; Wiens, G.D.; Hallerman, E.M.; Palti, Y. Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold-water disease in rainbow trout (Oncorhynchus mykiss). Mar. Biotechnol. 2008, 10, 429437. [Google Scholar] [CrossRef]
- Kjoglum, S.; Larsen, S.; Bakke, H.G.; Grimholt, U. How specific MHC classI and class II combinations affect disease resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2006, 21, 431–441. [Google Scholar] [CrossRef]
- Kjoglum, S.; Larsen, S.; Bakke, H.G.; Grimholt, U. The effect of specific MHC class I and class II combinations on resistance to furunculosis in Atlantic salmon (Salmo salar). Scand. J. Immunol. 2008, 67, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.C.; Lambert, D.M. Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 2004, 56, 178–191. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yu, H.; Bao, Z.; Zhong, Q.; Guo, X. Mutation promoter region of a serine protease inhibitor confers Perkinsus marinus in the eastern oyster (Crassostrea virginica). Fish Shellfish Immunol. 2012, 33, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.; Hayes, B.J.; Meuwissen, T.H.E. Genomic selection in livestock populations. Genet. Res. 2010, 92, 413–421. [Google Scholar] [CrossRef]
- Tsairidou, S.; Hamilton, A.; Robledo, D.; Bron, J.E.; Houston, R.D. Optimizing low-cost genotyping and imputation strategies for genomic selection in Atlantic salmon. G3 Genes Genomes Genet. 2020, 10, 581–590. [Google Scholar] [CrossRef]
- Vallejo, R.L.; Silva, R.M.O.; Evenhuis, J.P.; Gao, G.; Lui, S.; Parson, J.E.; Martin, K.E.; Wiens, G.D.; Lourenco, D.A.L.; Leeds, T.D.; et al. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels. Evidence that long-range LD is a major contributing factor. J. Anim. Breed. Genet. 2018, 135, 263–274. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.P.P.; MacLead, I.M.; Pryce, J.E.; Goddard, M.E.; Hayes, B.J. Application of a Bayesan non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. BMC Genom. 2017, 18, 618. [Google Scholar] [CrossRef] [PubMed]
- Zenger, K.R.; Khatkar, M.S.; Jones, D.B.; Khalilisamani, N.; Jerry, D.R.; Raadsma, H.W. Genomic selection in aquaculture: Application, limitations and opportunities with special reference to a marine shrimp and pearl oysters. Front. Genet. 2019, 9, 693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griot, R.; Allal, P.; Brard-Fudulea, S.; Morvezen, R.; Haffray, P.; Francois, Y.; Morin, T.; Bestin, A.; Bruant, J.S.; Cariou, S.; et al. Optimization of genomic selection to improve disease resistance in two marine fishes, the European sea bass (Dicentrarchuslabrax) and the gilthead sea bream (Sparus aurata). Front. Genet. 2021, 12, 665920. [Google Scholar] [CrossRef] [PubMed]
- Odegard, J.; Moen TSanti, N.; Koorsvoll, S.A.; Kjoglum, S.; Meuwissen, T.H.E. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front. Genet. 2014, 5, 402. [Google Scholar] [PubMed]
- Tsai, H.Y.; Hamilton, A.; Tinch, A.E.; Guy, D.R.; Bron, J.E.; Taggart, J.B.; Gharbi, K.; Stear, M.; Matika, O.; Pong-Wong, R.; et al. Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet. Sel. Evol. 2016, 48, 47. [Google Scholar] [CrossRef]
- Vu, N.T.; Phuc, T.H.; Oah, K.T.P.; Sang, N.V.; TRang, T.T.; Nguyen, N.H. Accuracies of genomic predictions for disease resistance of striped catfish to Edwardsiellaictaluri using artificial intelligence algorithms. G3 Genes Genomes Genet. 2022, 12, jkab361. [Google Scholar]
- Zhang, Y.; Lui, Z.; Li, H. Genomic prediction of Columnaris disease resistance in catfish. Mar. Biotechnol. 2020, 22, 145–151. [Google Scholar] [CrossRef]
- Lillehamer, M.; Bangera, R.; Salazar, M.; Vela, S.; Erazo, E.C. Genomic selection for white spot syndrome virus resistance in whiteleg shrimp boosts survival under an experimental challenge test. Sci. Rep. 2020, 10, 20571. [Google Scholar] [CrossRef]
- Edvardsen, R.B.; Leininger, S.; Kleppe, L.; Skaftnesmo, K.O.; Wargelius, A. Targeted mutagenesis in Atlantic Salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS ONE 2014, 9, e108622. [Google Scholar] [CrossRef]
- Kishimoto, K.; Washio, Y.; Yoshiura, Y.; Tooda, A.; Ueno, T.; Fukuyama, H.; Kato, K.; Kinoshita, M. Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture 2018, 495, 415–427. [Google Scholar] [CrossRef]
- Khalil, K.; Elayat, M.; Khalifa, E.; Daghash, S.; Elaswad, A.; Muller, M.; Abdelrahman, H.; Ye, Z.; Odin, R.; Drescher, D.; et al. Generation of myostatin gene-edited channel catfish (Ictalurus punctuatus) via zygote injection of CRISPR/Cas9 system. Sci. Rep. 2017, 7, 7301. [Google Scholar] [CrossRef]
- Cleveland, B.M.; Yamaguchi, G.; Radler, L.M.; Shimizu, M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2018, 8, 16054. [Google Scholar] [CrossRef] [PubMed]
- Mandrioli, M. Genome editing among bioethics and regulatory practices. Biomolecules 2022, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, H.; Elhady, M.; Alcivar-Warren, A.; Allen, S.; Al-Tobasei, R.; Bao, L.; Beck, B.; Blackbum, H.; Bosworth, B.; Buchana, J.; et al. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genom. 2017, 18, 191. [Google Scholar]
- Boudry, P.; Allol, F.; Aslam, M.L.; Bargelloni, L.; Bean, T.P.; Brard-Fudulea, S.; Brieuc, M.S.O.; Calboli, F.C.F.; Gilbey, J.; Haffray, P.; et al. Current status and potential of genomic selection to improve selective breeding in the main aquaculture species of International Council for the Exploration. Aquac. Rep. 2021, 20, 10700. [Google Scholar]
- Pepi, M.; Focardi, S. Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. Int. J. Environ. Res. Public Health 2021, 18, 5723. [Google Scholar] [CrossRef]
- Gandon, S.; Mackinnon, M.J.; Nee, S.; Read, A.F. Imperfect vaccines and the evolution of pathogen virulence. Nature 2001, 414, 751–755. [Google Scholar] [CrossRef]
- Dormatey, R.; Sun, C.; Ali, K.; Coulter, J.A.; Bi, Z.; Bai, J. Gene pyramiding for sustainable crop improvement against biotic and abiotic stresses. Agronomy 2020, 10, 1255. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A basic guide to Real Time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef]
- Sheeja, T.E.; Kumar, I.P.V.; Giridhari, A.; Minoo, D.; Rajesh, M.K.; Babu, K.N. Amplified Fragment Length Polymorphism: Application and recent development. Mol. Plant Taxon. 2020, 2222, 187–218. [Google Scholar]
- Babu, K.N.; Sheeja, T.E.; Minoo, D.; Rajesh, M.K.; Samsudeen, K.; Suraby, E.J.; Kumar, I.P.V. Random Amplified Polyorphic DNA (RAPD) and derived techniques. Mol. Plant Taxon. 2021, 2222, 219–247. [Google Scholar]
- Trees, E.H.; Lafon, P.; Vauterin, P.; Ribot, E.M. Multilaboratory validation study of standardized multiple-locus variable-number tandem repeat analysis protocol for Shiga toxin-producing Escherichia coli O157: A novel approach to normalize fragment size data between capillary electrophoresis platforms. Foodborne Pathog. Dis. 2010, 7, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Healy, M.; Huong, J.; Bittner, T.; Lising, M.; Frye, S.; Raza, S.; Schrock, R.; Manry, J.; Renwick, A.; Nieto, R.; et al. Microbial DNA typing by automated repetitive-sequence-based PCR. J. Clin. Microbiol. 2005, 43, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Neoh, H.M.; Tan, X.E.; Sapri, H.F.; Tan, T.L. Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacteria typing and current alternatives. Infect. Genet. Evol. 2019, 74, 103935. [Google Scholar] [CrossRef]
- Dai, S.; Long, Y. Genotyping analysis using an RFLP assay. Plant Genotyping 2015, 1245, 91–99. [Google Scholar]
- Maiden, M.C.; Van Rensburg, M.J.J.; Bray, J.E.; Earle, S.G.; Ford, S.A.; Jolley, K.A.; McCarthy, N.D. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 2013, 11, 728–736. [Google Scholar] [CrossRef]
- Fournier, P.E.; Dubourg, G.; Raoult, D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med. 2014, 6, 114. [Google Scholar] [CrossRef]
- You, X.; Shan, X.; Shi, Q. Research advances in the genomics and applications for molecular breeding of aquaculture animals. Aquaculture 2020, 526, 735357. [Google Scholar] [CrossRef]
- Jerry, D.; Purvis, I.; Piper, L. Opportunities for genetic improvement in crustacean species. Proc. Assoc. Advmt. Anim. Breed. Genet. 2001, 14, 55–58. [Google Scholar]
- Campos-Montes, G.R.; Montaldo, H.H.; Martinez-Ortega, A.; Martinez Jimenez, A.; Castillo-Juarez, H. Genetic parameters for growth and survival traits in Pacific white shrimp Penaeus (Litopenaeus) vannamei from a nucleus population undergoing a two-stage selection program. Aquac. Int. 2013, 21, 299–310. [Google Scholar] [CrossRef]
- Castillo-Juarez, H.; Campos-Montes, G.R.; Caballero-Zamora, A.; Montaldo, H.H. Genetic improvement of Pacific white shrimp [Penaeus (Litopenaeus) vannamei]: Perspectives for genomic selection. Front. Genet. 2015, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Vandeputte, M.; Haffray, P. Parentage assignment with genomic markers: A major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals. Front. Genet. 2014, 5, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genetic Approach | Species | Pathogen/Disease | Reference |
---|---|---|---|
Marker-assisted Selection | Rainbow trout | Rhabdovirus | [24] |
Rainbow trout | Aeromonassalmonicida | [25] | |
Rainbow trout | Vibrioanguillarum | [26] | |
Rainbow trout | Flavobacterium psychrophilum | [27] | |
Rainbow trout | Viral hemorrhagic septicemia virus | [27] | |
Rainbow trout | Flavobacterium columnare | [28] | |
Rainbow trout | Flavobacterium psychrophilum | [29] | |
Atlantic salmon | Infectious Pancreatic Necrosis Virus | [22,23] | |
Atlantic salmon | Caligus rogercresseyi | [31] | |
Atlantic salmon | Neoparamoeba perurans | [30] | |
Atlantic salmon | Lepeophtheirus salmonis | [32] | |
Shrimp | White spot syndrome virus | [33] | |
Gene-assisted Selection | Atlantic salmon | Infectious pancreatic necrosis virus | [34] |
Atlantic salmon | Infectious pancreatic necrosis virus | [35] | |
Rainbow trout | Lactococcus garvieae | [36] | |
Rainbow trout | Flavobacterium psychrophilum | [37] | |
Atlantic salmon | Infectious salmon anaemia | [38] | |
Atlantic salmon | Aeromonas salmonicida | [39] | |
Oyster | Perkinsus marinus | [41] | |
Genomic Selection | Rainbow trout | Flavobacterium psychrophilum | [44] |
Shrimp–Oyster | - | [46] | |
Sea bass–Sea bream | - | [47] | |
Atlantic salmon | Caligus rogercresseyi | [49] | |
Atlantic salmon | - | [48] | |
Atlantic salmon | Lepeophtheirus salmonis | [49] | |
Atlantic salmon | - | [52] | |
Atlantic salmon | Neoparamoeba perurans | [30] | |
Catfish | Edwardsiella ictaluri | [50] | |
Catfish | Flavobacterium columnare | [51] | |
Shrimp | White spot syndrome virus | [52] | |
Genome Editing | Sea bream | - | [54] |
Catfish | - | [55] |
Typing Technique | Repeatability | Reproducibility | Time (Days) | Cost |
---|---|---|---|---|
MLST | high | high | 3+ | medium–high |
PFGE | medium–high | medium–high | 3 | high |
RFLP | medium–high | medium | 1–3 | medium |
AFLP | high | medium–high | 2 | low–medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciuto, S.; Colli, L.; Fabris, A.; Pastorino, P.; Stoppani, N.; Esposito, G.; Prearo, M.; Esposito, G.; Ajmone-Marsan, P.; Acutis, P.L.; et al. What Can Genetics Do for the Control of Infectious Diseases in Aquaculture? Animals 2022, 12, 2176. https://doi.org/10.3390/ani12172176
Sciuto S, Colli L, Fabris A, Pastorino P, Stoppani N, Esposito G, Prearo M, Esposito G, Ajmone-Marsan P, Acutis PL, et al. What Can Genetics Do for the Control of Infectious Diseases in Aquaculture? Animals. 2022; 12(17):2176. https://doi.org/10.3390/ani12172176
Chicago/Turabian StyleSciuto, Simona, Licia Colli, Andrea Fabris, Paolo Pastorino, Nadia Stoppani, Giovanna Esposito, Marino Prearo, Giuseppe Esposito, Paolo Ajmone-Marsan, Pier Luigi Acutis, and et al. 2022. "What Can Genetics Do for the Control of Infectious Diseases in Aquaculture?" Animals 12, no. 17: 2176. https://doi.org/10.3390/ani12172176
APA StyleSciuto, S., Colli, L., Fabris, A., Pastorino, P., Stoppani, N., Esposito, G., Prearo, M., Esposito, G., Ajmone-Marsan, P., Acutis, P. L., & Colussi, S. (2022). What Can Genetics Do for the Control of Infectious Diseases in Aquaculture? Animals, 12(17), 2176. https://doi.org/10.3390/ani12172176