Apicomplexans in Goat: Prevalence of Neospora caninum, Toxoplasma gondii, Cryptosporidium spp., Eimeria spp. and Risk Factors in Farms from Ecuador
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Questionnaire
2.4. Serological Assays
(X OD positive control − X OD negative control))
2.5. Parasitological Tests
2.5.1. Flotation Technique
2.5.2. McMaster Technique for Eimeria Oocyst Counting
2.5.3. Identification of Cryptosporidium spp. in Fecal Samples
2.6. Detection of Cryptosporidium spp. in Fecal Samples by a Rapid Test
2.7. Data Analyses
3. Results
3.1. Seroprevalence of Neospora caninum and Toxoplasma gondii
3.2. Prevalence of Cryptosporidium spp. and Eimeria spp.
3.3. Prevalence of Cryptosporidium spp. Using the Rapid Test
3.4. Mixed Infections
4. Analysis of Risk Factors
4.1. Risk Factors for Neospora caninum and Toxoplasma gondii Infections
4.2. Risk Factors for Cryptosporidium spp. and Eimeria spp.
4.3. Risk Factors for Mixed Infection
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Farm (n) | Feces (n) | Sera (n) | N. caninum | T. gondii | Cryptosporidium spp. | Eimeria spp. |
---|---|---|---|---|---|---|
1 | 25 | 11 | 9.09 | 9.09 | 16.00 | 96.00 |
2 | 17 | 19 | 10.53 | 10.52 | 5.88 | 58.82 |
3 | 26 | 18 | 22.22 | 61.11 | 3.85 | 100.00 |
4 | 25 | 12 | 0.00 | 0.00 | 8.00 | 72.00 |
5 | 17 | 16 | 81.25 | 0.00 | 5.88 | 100.00 |
6 | 15 | 15 | 64.29 | 13.33 | 20.00 | 100.00 |
7 | 15 | 18 | 33.33 | 27.77 | 12.33 | 86.67 |
8 | 18 | 16 | 43.75 | 18.75 | 16.67 | 94.44 |
9 | 19 | 16 | 12.50 | 0.00 | 5.26 | 89.47 |
10 | 15 | 16 | 0.00 | 12.50 | 0.00 | 80.00 |
11 | 16 | 15 | 0.00 | 26.66 | 12.50 | 100.00 |
12 | 15 | 14 | 0.00 | 14.29 | 13.33 | 100.00 |
13 | 17 | 14 | 0.00 | 14.29 | 5.88 | 100.00 |
14 | 14 | 13 | 0.00 | 0.00 | 14.29 | 92.86 |
15 | 15 | 14 | 0.00 | 14.29 | 6.67 | 93.33 |
16 | 15 | 15 | 0.00 | 33.33 | 6.67 | 100.00 |
17 | 18 | 16 | 0.00 | 50.00 | 16.67 | 88.89 |
18 | 17 | 17 | 0.00 | 29.41 | 35.29 | 94.12 |
19 | 18 | 18 | 0.00 | 6.25 | 5.56 | 83.33 |
20 | 18 | 19 | 10.53 | 10.53 | 16.67 | 66.67 |
21 | 18 | 19 | 0.00 | 10.53 | 5.56 | 94.44 |
22 | 18 | 19 | 0.00 | 16.66 | 0.00 | 83.33 |
23 | N/A | 20 | 5.00 | 18.18 | N/A | N/A |
24 | N/A | 18 | 0.00 | 25.00 | N/A | N/A |
Variable | Category | Neospora caninum | Toxoplasma gondii | ||||||
---|---|---|---|---|---|---|---|---|---|
Pos (n) | Neg (n) | Chi2 | p-Value | Pos (n) | Neg (n) | Chi2 | p-Value | ||
Main activity | Agriculture | 1 | 74 | 10.15 | 0.001 | -- | -- | -- | -- |
Cattle raising | 30 | 140 | Ref | -- | -- | -- | |||
Total area | <15 ha | 17 | 201 | 8.70 | 0.003 | 19 | 133 | 4.75 | 0.029 |
>15 ha | 32 | 157 | Ref | 46 | 170 | Ref | |||
Grazing area | <15 ha | 15 | 184 | 8.03 | 0.005 | 21 | 150 | 6.36 | 0.012 |
>15 ha | 43 | 225 | Ref | 44 | 153 | Ref | |||
Grazing area | Known | 4 | 116 | 12.58 | <0.001 | -- | -- | -- | -- |
Unknown | 20 | 97 | Ref | -- | -- | -- | |||
Management | Intensive | 27 | 244 | 3.9 | 0.048 | -- | -- | -- | -- |
Extensive | 1 | 74 | Ref | -- | -- | -- | |||
Body condition | Good | 45 | 278 | 5.99 | 0.014 | -- | -- | -- | -- |
Regular | 2 | 63 | Ref | -- | -- | -- | |||
Dairy farm | Yes | -- | -- | -- | -- | 12 | 25 | 6.17 | 0.013 |
No | -- | -- | -- | 53 | 278 | Ref | |||
Dual purpose | Yes | -- | -- | -- | -- | 52 | 268 | 3.37 | 0.066 |
No | -- | -- | -- | 13 | 35 | Ref | |||
% of kids/total | <22% | -- | -- | -- | -- | 40 | 137 | 5.71 | 0.017 |
>22% | -- | -- | -- | 25 | 166 | Ref | |||
Irrigation | Yes | 6 | 93 | 4.57 | 0.032 | 20 | 63 | 3.05 | 0.081 |
No | 41 | 248 | Ref | 45 | 240 | Ref | |||
Presence of artiodactyls | Yes | 3 | 113 | 14.11 | <0.001 | 23 | 82 | 1.82 | 0.178 |
No | 44 | 228 | Ref | 42 | 221 | Ref | |||
Presence of cattle | Yes | 1 | 89 | 13.32 | <0.001 | -- | -- | -- | -- |
No | 46 | 252 | Ref | -- | -- | -- | |||
Presence of cats | Yes | 13 | 152 | 4.84 | 0.028 | -- | -- | -- | -- |
No | 34 | 189 | Ref | -- | -- | -- | |||
Domestic fowl | Yes | 43 | 209 | 16.55 | <0.001 | 48 | 197 | 1.88 | 0.171 |
No | 4 | 132 | Ref | 17 | 106 | Ref | |||
Facilities | Yes | 46 | 271 | 9.35 | 0.002 | -- | -- | -- | -- |
No | 1 | 70 | Ref | -- | -- | -- | |||
Ventilation | Yes | 47 | 308 | 4.97 | 0.026 | -- | -- | -- | -- |
No | 0 | 33 | Ref | -- | -- | -- | |||
Frequency of cleaning | <3 months | 36 | 156 | 15.73 | <0.001 | -- | -- | -- | -- |
>3 months | 11 | 185 | Ref | -- | -- | -- | |||
Water troughs | Yes | 18 | 223 | 12.88 | <0.001 | 47 | 192 | 1.88 | 0.170 |
No | 29 | 118 | Ref | 18 | 111 | Ref | |||
Type of water | Puddled | 14 | 111 | 25.10 | <0.001 | -- | -- | -- | -- |
Running | 33 | 230 | Ref | -- | -- | -- | |||
Origin of water | Natural | 29 | 97 | 20.83 | <0.001 | 14 | 101 | 3.47 | 0.063 |
Catchment | 18 | 244 | Ref | 51 | 202 | Ref | |||
Type of water troughs | Plastic | 4 | 88 | 6.83 | 0.009 | -- | -- | -- | -- |
Cement | 43 | 253 | Ref | -- | -- | -- | |||
Food supplementation | Yes | 10 | 113 | 2.68 | 0.101 | 27 | 94 | 2.68 | 0.102 |
No | 37 | 228 | Ref | 38 | 209 | Ref | |||
Supplementation with minerals/vitamins | Yes | 44 | 165 | 34.00 | <0.001 | -- | -- | -- | -- |
No | 3 | 176 | Ref | -- | -- | -- | |||
Troughs | Yes | -- | -- | -- | -- | 35 | 107 | 7.76 | 0.005 |
No | -- | -- | -- | 30 | 196 | Ref | |||
Tire troughs | Yes | 0 | 30 | 4.48 | 0.034 | 9 | 21 | 3.42 | 0.064 |
No | 47 | 311 | Ref | 56 | 282 | Ref | |||
Cement troughs | Yes | 34 | 91 | 39.43 | < 0.001 | -- | -- | -- | -- |
No | 13 | 250 | Ref | -- | -- | -- | |||
Type of pasture | Natural | -- | -- | -- | -- | 54 | 285 | 8.89 | 0.003 |
Cultivated | -- | -- | -- | 11 | 18 | Ref | |||
Pasture fertilization | Yes | 11 | 36 | 6.40 | 0.011 | 16 | 31 | 9.94 | 0.002 |
No | 36 | 305 | Ref | 49 | 272 | Ref | |||
Ectoparasites | Yes | 11 | 170 | 11.61 | 0.001 | -- | -- | -- | -- |
No | 36 | 171 | Ref | -- | -- | -- | |||
Infection with louses | Yes | 0 | 82 | 14.33 | <0.001 | 24 | 58 | 9.77 | 0.002 |
No | 47 | 259 | Ref | 41 | 245 | Ref | |||
Application of sulfas | Yes | -- | -- | -- | -- | 30 | 81 | 9.58 | 0.002 |
No | -- | -- | -- | 35 | 222 | Ref | |||
Deworming | Yes | 23 | 118 | 3.67 | 0.055 | 32 | 109 | 3.98 | 0.046 |
No | 24 | 223 | Ref | 33 | 194 | Ref | |||
Frequency of deworming | Regular | 42 | 106 | 59.46 | <0.001 | -- | -- | -- | -- |
Irregular | 5 | 235 | Ref | -- | -- | -- | |||
Duration of diarrhoea | <3 days | 25 | 239 | 5.42 | 0.020 | 49 | 199 | 2.30 | 0.130 |
>3 days | 22 | 102 | Ref | 16 | 104 | Ref | |||
Age of diarrhoea | <30 days | 24 | 294 | 34.52 | <0.001 | 60 | 254 | 3.073 | 0.080 |
>30 days | 23 | 47 | Ref | 5 | 49 | Ref | |||
Vaccination | Yes | -- | -- | -- | -- | 13 | 35 | 3.37 | 0.066 |
No | -- | -- | -- | 52 | 268 | Ref | |||
Milk production | <770 mL | 7 | 184 | 25.22 | <0.001 | -- | -- | -- | -- |
>770 mL | 40 | 157 | Ref | -- | -- | -- | |||
Abortions | Yes | 40 | 319 | 4.26 | 0.039 | -- | -- | -- | -- |
No | 7 | 22 | Ref | -- | -- | -- | |||
Dogs’ consumption of abortion products | Yes | 0 | 43 | 6.67 | 0.010 | -- | -- | -- | -- |
No | 47 | 298 | Ref | -- | -- | -- | -- | ||
Abortions kept in the pasture | Yes | 9 | 214 | 32.14 | <0.001 | 42 | 161 | 2.85 | 0.091 |
No | 98 | 127 | Ref | 23 | 142 | Ref | |||
Eimeria spp. prevalence | Yes | 26 | 181 | 2.47 | 0.116 | -- | -- | -- | -- |
No | 1 | 1 | Ref | -- | -- | -- | |||
Technical Visits | Yes | 38 | 187 | 11.47 | 0.001 | -- | -- | -- | -- |
No | 9 | 154 | Ref | -- | -- | -- |
Variable | Category | Cryptosporidium spp. | Eimeria spp. | ||||||
---|---|---|---|---|---|---|---|---|---|
Pos (n) | Neg (n) | Chi2 | p-value | Pos (n) | Neg (n) | Chi2 | p-Value | ||
Age group | <6 m | 27 | 133 | 11.78 | 0.001 | 152 | 8 | 8.68 | 0.003 |
>6 m | 14 | 217 | Ref | 198 | 33 | Ref | |||
Body condition | Good | 28 | 297 | 7.18 | 0.007 | -- | -- | -- | -- |
Regular | 13 | 53 | Ref | -- | -- | -- | |||
Famacha | No dose | -- | -- | -- | -- | 81 | 14 | 2.42 | 0.120 |
Dose | -- | -- | -- | 269 | 27 | Ref | |||
Dairy farm | Yes | 2 | 41 | 1.75 | 0.186 | 36 | 7 | 1.73 | 0.189 |
No | 39 | 309 | Ref | 314 | 34 | Ref | |||
Irrigation | Yes | 7 | 93 | 1.75 | 0.187 | 93 | 7 | 1.74 | 0.187 |
No | 34 | 257 | Ref | 257 | 34 | Ref | |||
Presence of cattle | Yes | -- | -- | -- | -- | 87 | 14 | 1.65 | 0.199 |
No | -- | -- | -- | 263 | 27 | Ref | |||
Presence of cats | Yes | 10 | 137 | 3.41 | 0.065 | 126 | 21 | 3.62 | 0.057 |
No | 31 | 213 | Ref | 224 | 20 | Ref | |||
Facilities | Yes | 40 | 318 | 2.13 | 0.144 | -- | -- | -- | -- |
No | 1 | 32 | Ref | -- | -- | -- | |||
Ventilation | Yes | 40 | 318 | 2.84 | 0.092 | -- | -- | -- | -- |
No | 1 | 32 | Ref | -- | -- | -- | |||
Frequency of cleaning | <3 m | -- | -- | -- | -- | 152 | 8 | 8.68 | 0.003 |
>3 m | -- | -- | -- | 198 | 33 | Ref | |||
Water troughs | Yes | -- | -- | -- | -- | 246 | 34 | 2.89 | 0.089 |
No | -- | -- | -- | 104 | 7 | Ref | |||
Type of water troughs | Plastic | -- | -- | -- | -- | 70 | 18 | 12.02 | 0.001 |
Cement | -- | -- | -- | 280 | 23 | Ref | |||
Food supplementation | Yes | -- | -- | -- | -- | 117 | 9 | 2.21 | 0.137 |
No | -- | -- | -- | 233 | 32 | Ref | |||
Tire troughs | Yes | -- | -- | -- | -- | 31 | 0 | 3.94 | 0.047 |
No | -- | -- | -- | 319 | 41 | Ref | |||
Type of pasture | Natural | -- | -- | -- | -- | 300 | 40 | 4.54 | 0.033 |
Cultivated | -- | -- | -- | 50 | 1 | Ref | |||
Pasture fertilization | Yes | -- | -- | -- | -- | 63 | 3 | 2.96 | 0.084 |
No | -- | -- | -- | 287 | 38 | Ref | |||
Infection with louses | Yes | 13 | 71 | 2.84 | 0.092 | 80 | 4 | 3.73 | 0.053 |
No | 28 | 279 | Ref | 270 | 37 | Ref | |||
Application of sulfas | Yes | -- | -- | -- | -- | 128 | 8 | 4.71 | 0.030 |
No | -- | -- | -- | 222 | 33 | Ref | |||
Milk production | <770 mL | -- | -- | -- | -- | 191 | 30 | 5.17 | 0.023 |
>770 mL | -- | -- | -- | 159 | 11 | Ref | |||
% of abortions/total females | <10% | -- | -- | -- | -- | 316 | 25 | 28.27 | < 0.001 |
>10% | -- | -- | -- | 34 | 16 | Ref | |||
Dogs consumption of abortion products | Yes | -- | -- | -- | -- | 45 | 1 | 3.84 | 0.050 |
No | -- | -- | -- | 305 | 40 | Ref | |||
Abortions kept in the pasture | Yes | 17 | 189 | 2.31 | 0.128 | 177 | 29 | 5.98 | 0.014 |
No | 24 | 161 | Ref | 173 | 12 | Ref | |||
Technical Visits | Yes | 18 | 206 | 3.35 | 0.067 | -- | -- | -- | -- |
No | 23 | 144 | Ref | -- | -- | -- |
References
- Votýpka, J.; Modrý, D.; Oborník, M.; Šlapeta, J.; Lukeš, J. Apicomplexa. In Handbook of the Protists; Archibald, J.M., Simpson, A.G.B., Slamovits, C.H., Margulis, L., Melkonian, M., Chapman, D.J., Corliss, J.O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–58. [Google Scholar]
- Rojas-Pirela, M.; Medina, L.; Rojas, M.V.; Liempi, A.I.; Castillo, C.; Pérez-Pérez, E.; Guerrero-Muñoz, J.; Araneda, S.; Kemmerling, U. Congenital Transmission of Apicomplexan Parasites: A Review. Front. Microbiol. 2021, 12, 751648. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. Biology of Toxoplasma gondii. In Toxoplasmosis in Animals and Humans, 3rd ed.; CRC Press-Taylor & Francis Group: Boca Ratón, FL, USA, 2022; pp. 7–89. [Google Scholar]
- Dubey, J.P.; Hemphill, A.; Calero-Bernal, R.; Schares, G. General Biology. In Neosporosis in Animals, 1st ed.; CRC Press: Boca Ratón, FL, USA, 2017; pp. 7–108. [Google Scholar] [CrossRef]
- Dubey, J.P.; Schares, G. Neosporosis in animals—The last five years. Vet. Parasitol. 2011, 180, 90–108. [Google Scholar] [CrossRef]
- Rodrigues, A.A.; Reis, S.S.; de Sousa, M.L.; da Silva Moraes, E.; Garcia, J.L.; Nascimento, T.V.C.; da Cunha, I.A.L. A systematic literature review and meta-analysis of risk factors for Neospora caninum seroprevalence in goats. Prev. Vet. Med. 2020, 185, 105176. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.S.; Dubey, J.P. Neosporosis, Toxoplasmosis, and Sarcocystosis in ruminants: An Update. Vet. Clin. Food Anim. 2020, 36, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Velásquez Serra, G.C.; Piloso Urgiles, L.I.; Guerrero Cabredo, B.P.; Chico Caballero, M.J.; Zambrano Zambrano, S.L.; Yaguar Gutierrez, E.M.; Barrera Reyes, C.G. Current situation of congenital toxoplasmosis in Ecuador. J. Community Health 2020, 45, 170–175. [Google Scholar] [CrossRef]
- Jacobson, C.; Al-Habsi, K.; Ryan, U.; Williams, A.; Anderson, F.; Yang, R.; Abraham, S.; Miller, D. Cryptosporidium infection is associated with reduced growth and diarrhoea in goats beyond weaning. Vet. Parasitol. 2018, 260, 30–37. [Google Scholar] [CrossRef]
- Bangoura, B.; Bardsley, K.D. Ruminant Coccidiosis. Vet. Clin. Food Anim. 2020, 36, 187–203. [Google Scholar] [CrossRef]
- Ryan, U.N.A.; Fayer, R.; Xiao, L. Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology 2014, 141, 1667–1685. [Google Scholar] [CrossRef]
- Paul, S.; Sharma, D.K.; Boral, R.; Mishra, A.K.; Shivsharanappa, N.; Banerjee, P.S.; Pawaiya, R.V.S. Cryptosporidiosis in goats; a review. Adv. Anim. Vet. Sci. 2014, 2, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Bangoura, B.; Bhuiya, M.A.I.; Kilpatrick, M. Eimeria infections in domestic and wild ruminants with reference to control options in domestic ruminants. Parasitol. Res. 2022, 121, 2207–2232. [Google Scholar] [CrossRef] [PubMed]
- Chartier, C.; Paraud, C. Coccidiosis due to Eimeria in sheep and goats, a review. Small Rumi. Res. 2012, 103, 84–92. [Google Scholar] [CrossRef]
- Utaaker, K.S.; Chaudhary, S.; Kifleyohannes, T.; Robertson, L.J. Global goat! Is the expanding goat population an important reservoir of Cryptosporidium? Front Vet. Sci. 2021, 8, 648500. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Riofrio, L.; Maza-Tandazo, T.; Quezada-Padilla, M.; Albito-Balcazar, O.; Flores-Gonzalez, A.; Camacho-Enriquez, O.; Martinez-Martinez, A.; Consortium, B.; Delgado-Bermejo, J.V. Genetic characterization of the “Chusca Lojana”, a creole goat reared in Ecuador, and its relationship with other goat breeds. Animals 2020, 10, 1026. [Google Scholar] [CrossRef]
- Plan de Desarrollo y Ordenamiento Territorial del Cantón Zapotillo 2019–2023. Available online: https://gobiernodezapotillo.gob.ec/wp-content/uploads/2020/05/Resumen-Zapotillo.pdf (accessed on 14 June 2022).
- Cobos, E. Caracterización de la Administración y la Estructura del Costo de Producción en Cabras en la Parroquia Limones del cantón Zapotillo, Para diseñar un Plan Crediticio que Desarrolle Sosteniblemente esta Explotación. 2012. Available online: https://dspace.unl.edu.ec/jspui/bitstream/123456789/5492/1/CobosCobosEladio.pdf (accessed on 14 June 2022).
- Agricultural Public Information System. Ministry of Agriculture and Livestock of Ecuador. Available online: http://sipa.agricultura.gob.ec/ (accessed on 14 June 2022).
- Espinosa, C.I.; Reyes, C.; Jara-Guerrero, A. Las cabras como dispersores de semillas: Aportes y limitaciones para la regeneración del bosque tropical estacionalmente seco de Ecuador. Rev. Biol. Trop 2021, 69, 557–572. [Google Scholar] [CrossRef]
- Mekibib, B.; Abdisa, D.; Denbarga, Y.; Abebe, R. Muscular Sarcocystis infection in ruminants slaughtered at Municipality abattoir and selected hotels in Hawassa city, Southern Ethiopia: Prevalence and associated risk factors. Vet. Parasitol. Reg. Stud. Rep. 2019, 18, 100333. [Google Scholar] [CrossRef]
- Jaramillo, A.; Guzmán, L.; Castillo, L.; Saa, L.R.; Rey-Valeirón, C. Gastrointestinal parasitism and usefulness of FAMACHA© in goats from Loja Province, Southern Ecuador. Rev. Cient. 2017, 27, 180–186. [Google Scholar]
- Hansen, J.; Perry, B. Techniques for parasite assays and identification in faecal samples. In Epidemiology, Diagnosis and Control of Helminth Parasites of Ruminants, 2nd ed.; ILRAD: Nairobi, Kenya, 1994; pp. 53–94. [Google Scholar]
- Bangoura, B.; Daugschies, A. Parasitological and clinical parameters of experimental Eimeria zuernii infection in calves and influence on weight gain and haemogram. Parasitol. Res. 2007, 100, 1331–1340. [Google Scholar] [CrossRef]
- Weber, R.; Bryan, R.T.; Juranek, D.D. Improved stool concentration procedure for detection of Cryptosporidium oocysts in fecal specimens. J. Clin. Microbiol. 1992, 30, 2869–2873. [Google Scholar] [CrossRef]
- Romero-Salas, D.; Alvarado-Esquivel, C.; Cruz-Romero, A.; Aguilar-Domínguez, M.; Ibarra-Priego, N.; Merino-Charrez, J.O.; Pérez de León, A.A.; Hernández-Tinoco, J. Prevalence of Cryptosporidium in small ruminants from Veracruz, Mexico. BMC Vet. Res. 2016, 12, 10–15. [Google Scholar] [CrossRef]
- Manfredi, M.T.; Di Cerbo, A.R.; Zanzani, S.; Stradiotto, K. Breeding management in goat farms of Lombardy, northern Italy: Risk factors connected to gastrointestinal parasites. Small Rumin. Res. 2010, 88, 113–118. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Klein, M. Computing the Odds Ratio in Logistic Regression. In Logistic Regression; Springer: New York, NY, USA, 2010; pp. 73–101. [Google Scholar]
- Duarte, P.O.; Oshiro, L.M.; Zimmermann, N.P.; Csordas, B.G.; Dourado, D.M.; Barros, J.C.; Andreotti, R. Serological and molecular detection of Neospora caninum and Toxoplasma gondii in human umbilical cord blood and placental tissue samples. Sci. Rep. 2020, 10, 9043. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.H.; Huang, H.H.; Chou, C.C.; Chu, C.S.; Shih, W.L.; Lai, J.M.; Su, Y.C. Epidemiological survey of Toxoplasma gondii and Neospora caninum infections in dairy goats in Central-Southern Taiwan. J. Vet. Med. Sci. 2020, 82, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Changoluisa, D.; Rivera-Olivero, I.A.; Echeverria, G.; Garcia-Bereguiain, M.A.; De Waard, J.H.; Abad-Sojos, S.; Aldáz-Villao, M.J.; Benavides, E.; Brito, C.M.; Changuan, A.; et al. Serology for neosporosis, Q fever and brucellosis to assess the cause of abortion in two dairy cattle herds in Ecuador. BMC Vet. Res. 2019, 15, 194. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.M.; Vallecillo, A.J.; Pérez, C.L.; Cirone, K.M.; Dorsch, M.A.; Morrell, E.L.; Scioli, V.; Hecker, Y.P.; Fiorani, F.F.; Cantón, G.J.; et al. Bovine neosporosis in dairy cattle from the Southern highlands of Ecuador. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100377. [Google Scholar] [CrossRef]
- Gazzonis, A.L.; Alvarez Garcia, G.; Zanzani, S.A.; Ortega Mora, L.M.; Invernizzi, A.; Manfredi, M.T. Neospora caninum infection in sheep and goats from north-eastern Italy and associated risk factors. Small Rumin. Res. 2016, 140, 7–12. [Google Scholar] [CrossRef]
- Sun, L.-X.; Liang, Q.-L.; Nie, L.-B.; Hu, X.-H.; Li, Z.; Yang, J.-F.; Zou, F.-C.; Zhu, X.-Q. Serological evidence of Toxoplasma gondii and Neospora caninum infection in black-boned sheep and goats in Southwest China. Parasitol. Int. 2020, 75, 102041. [Google Scholar] [CrossRef]
- Iovu, A.; Györke, A.; Mircean, V.; Gavrea, R.; Cozma, V. Seroprevalence of Toxoplasma gondii and Neospora caninum in dairy goats from Romania. Vet. Parasitol. 2012, 186, 470–474. [Google Scholar] [CrossRef]
- Braz, B.M.A.; Valente, J.D.M.; Villalobos, E.M.C.; Lara, M.C.C.S.H.; Machado, C.A.L.; Barbosa, I.C.; Melo, V.S.P.; Stipp, D.T.; Barros-Filho, I.R.; Biondo, A.W.; et al. Seroepidemiology of Neospora caninum among goats (Capra hircus) in the state of Paraíba, Northeastern Brazil. Arq. Bras. Med. Vet. Zootec. 2018, 70, 147–152. [Google Scholar] [CrossRef]
- Arreola-Camberos, S.; Garcia-Marquez, L.J.; Macedo-Barragan, R.; Morales-Salinas, E.; Figueroa-Chavez, D. Risk factors and seroprevalence against Neospora caninum in dual-purpose and beef cattle in Colima, Mexico. J. Anim. Vet. Adv. 2012, 11, 2440–2444. [Google Scholar] [CrossRef]
- Barling, K.; McNeill, J.; Paschal, J.; McCollum, F.; Craig, T.; Adams, L.; Thompson, J. Ranch-management factors associated with antibody seropositivity for Neospora caninum in consignments of beef calves in Texas, USA. Prev. Vet. Med. 2001, 52, 53–61. [Google Scholar] [CrossRef]
- de Melo, C.; Leite, R.; Lobato, Z.I.; Leite, R. Infection by Neospora caninum associated with bovine herpesvirus 1 and bovine viral diarrhea virus in cattle from Minas Gerais State, Brazil. Vet. Parasitol. 2004, 119, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Underwood, W.J.; Blauwiekel, R.; Delano, M.L.; Gillesby, R.; Mischler, S.A.; Schoell, A. Biology and diseases of ruminants (Sheep, Goats, and Cattle). In Laboratory Animal Medicine, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 623–694. [Google Scholar] [CrossRef]
- Nayeri, T.; Sarvi, S.; Moosazadeh, M.; Daryani, A. The global prevalence of Neospora caninum infection in sheep and goats that had an abortion and aborted fetuses: A systematic review and meta-analysis. Front. Vet. Sci. 2022, 9, 870904. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.A.; Reis, S.S.; Moraes, E.D.S.; do Nascimento Araújo, E.M.A.; Zanine, A.M.; Nascimento, T.V.C.; Garcia, J.L.; da Cunha, I.A.L. A systematic literature review and meta-analysis of Toxoplasma gondii seroprevalence in goats. Acta Trop. 2022, 230, 106411. [Google Scholar] [CrossRef]
- Khan, M.F.U.; Ashfaq, F. Meat production potential of small ruminants under the arid and semi-arid conditions of Pakistan. J. Agric. Mar. Sci. 2010, 15, 33. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, R.; Vázquez, P.; Ferre, I.; Ortega-Mora, L.M. Treatment of toxoplasmosis and neosporosis in farm ruminants: State of knowledge and future trends. Curr. Top Med. Chem. 2018, 18, 1304–1323. [Google Scholar] [CrossRef] [PubMed]
- Aspinall, T.V.; Joynson, D.H.; Guy, E.; Hyde, J.E.; Sims, P.F. The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. J. Infect. Dis. 2002, 185, 1637–1643. [Google Scholar] [CrossRef]
- Aston, E.J.; Mayor, P.; Bowman, D.D.; Mohammed, H.O.; Liotta, J.L.; Kwok, O.; Dubey, J.P. Use of filter papers to determine seroprevalence of Toxoplasma gondii among hunted ungulates in remote Peruvian Amazon. Int. J. Parasitol. Parasites Wildl. 2014, 3, 15–19. [Google Scholar] [CrossRef]
- Castro-Scholten, S.; Cano-Terriza, D.; Jiménez-Ruiz, S.; Almería, S.; Risalde, M.A.; Vicente, J.; Acevedo, P.; Arnal, M.C.; Balseiro, A.; Gómez-Guillamón, F.; et al. Seroepidemiology of Toxoplasma gondii in wild ruminants in Spain. Zoonoses Public Health 2021, 68, 884–895. [Google Scholar] [CrossRef]
- Wang, R.; Li, G.; Cui, B.; Huang, J.; Cui, Z.; Zhang, S.; Dong, H.; Yue, D.; Zhang, L.; Ning, C.; et al. Prevalence, molecular characterization and zoonotic potential of Cryptosporidium spp. in goats in Henan and Chongqing, China. Exp. Parasitol. 2014, 142, 11–16. [Google Scholar] [CrossRef]
- Delafosse, A.; Castro-Hermida, J.A.; Baudry, C.; Ares-Mazás, E.; Chartier, C. Herd-level risk factors for Cryptosporidium infection in dairy-goat kids in western France. Prev. Vet. Med. 2006, 77, 109–121. [Google Scholar] [CrossRef]
- Maurya, P.S.; Rakesh, R.L.; Pradeep, B.; Kumar, S.; Kundu, K.; Garg, R.; Ram, H.; Kumar, A.; Banerjee, P.S. Prevalence and risk factors associated with Cryptosporidium spp. infection in young domestic livestock in India. Trop Anim. Health Prod. 2013, 45, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Bomfim, T.C.B.; Huber, F.; Gomes, R.S.; Alves, L.L. Natural infection by Giardia sp. and Cryptosporidium sp. in dairy goats, associated with possible risk factors of the studied properties. Vet. Parasitol. 2005, 134, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.; Navarro, E.; Prieto, A.; Pérez-Creo, A.; Viña, M.; Díaz-Cao, J.M.; López, C.M.; Panadero, R.; Fernández, G.; Díez-Baños, P.; et al. Cryptosporidium species in post-weaned and adult sheep and goats from N.W. Spain: Public and animal health significance. Vet. Parasitol. 2018, 254, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Giles, M.; Chalmers, R.; Pritchard, G.; Elwin, K.; Mueller-Doblies, D.; Clifton-Hadley, F. Cryptosporidium hominis in a goat and a sheep in the UK. Vet. Rec. 2009, 164, 24–25. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cisneros, M.J.; Martínez-Ruiz, R.; Subirats, M.; Merino, F.J.; Millán, R.; Fuentes, I. Evaluación de dos métodos inmunocromatográficos comerciales para el diagnóstico rápido de Giardia duodenalis y Cryptosporidium spp. en muestras de heces. Enferm. Infecc. Microbiol. Clin. 2011, 29, 201–203. [Google Scholar] [CrossRef]
- Ezzaty Mirhashemi, M.; Zintl, A.; Grant, T.; Lucy, F.E.; Mulcahy, G.; De Waal, T. Comparison of diagnostic techniques for the detection of Cryptosporidium oocysts in animal samples. Exp. Parasitol. 2015, 151–152, 14–20. [Google Scholar] [CrossRef]
- Chalmers, R.M.; Campbell, B.M.; Crouch, N.; Charlett, A.; Davies, A.P. Comparison of diagnostic sensitivity and specificity of seven Cryptosporidium assays used in the UK. J. Med. Microbiol. 2011, 60, 1598–1604. [Google Scholar] [CrossRef]
- Majeed, Q.A.H.; El-Azazy, O.M.E.; Abdou, N.-E.M.I.; Al-Aal, Z.A.; El-Kabbany, A.I.; Tahrani, L.M.A.; AlAzemi, M.S.; Wang, Y.; Feng, Y.; Xiao, L. Epidemiological observations on cryptosporidiosis and molecular characterization of Cryptosporidium spp. in sheep and goats in Kuwait. Parasitol. Res. 2018, 117, 1631–1636. [Google Scholar] [CrossRef]
- Diao, N.-C.; Zhao, B.; Chen, Y.; Wang, Q.; Chen, Z.-Y.; Yang, Y.; Sun, Y.-H.; Shi, J.-F.; Li, J.-M.; Shi, K.; et al. Prevalence of Eimeria spp. among goats in China: A systematic review and meta-analysis. Front. Cell Infect. Microbiol. 2022, 12, 806085. [Google Scholar] [CrossRef]
- Lu, C.; Yan, Y.; Jian, F.; Ning, C. Coccidia-microbiota interactions and their effects on the host. Front. Cell Infect. Microbiol. 2021, 11, 751481. [Google Scholar] [CrossRef]
- Zvinorova, P.I.; Halimani, T.E.; Muchadeyi, F.C.; Matika, O.; Riggio, V.; Dzama, K. Prevalence and risk factors of gastrointestinal parasitic infections in goats in low-input low-output farming systems in Zimbabwe. Small Rumin. Res 2016, 143, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Carrau, T.; Silva, L.M.R.; Pérez, D.; Failing, K.; Martínez-Carrasco, C.; Macías, J.; Taubert, A.; Hermosilla, C.; de Ybáñez, R.R. Associated risk factors influencing ovine Eimeria infections in southern Spain. Vet. Parasitol. 2018, 263, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Nunes, D.M.; Cruz, J.F.; Teixeira, M.R. Dynamic of “Eimeria” oocyst excretion during pregnancy and early lactation in native goats raised extensively in semiarid region. Rev. Bras. Saude Prod. Anim. 2015, 16, 190–198. [Google Scholar] [CrossRef]
- Mohammed, A.S.; Animut, G.; Urge, M.; Assefa, G. Grazing behavior, dietary value and performance of sheep, goats, cattle and camels co-grazing range with mixed species of grazing and browsing plants. Vet. Anim. Sci. 2020, 10, 100154. [Google Scholar] [CrossRef] [PubMed]
- Hässig, M.; Sager, H.; Reitt, K.; Ziegler, D.; Strabel, D.; Gottstein, B. Neospora caninum in sheep: A herd case report. Vet. Parasitol. 2003, 117, 213–220. [Google Scholar] [CrossRef]
- Ciuca, L.; Borriello, G.; Bosco, A.; D’Andrea, L.; Cringoli, G.; Ciaramella, P.; Maurelli, M.P.; Di Loria, A.; Rinaldi, L.; Guccione, J. Seroprevalence and Clinical Outcomes of Neospora caninum, Toxoplasma gondii and Besnoitia besnoiti Infections in Water Buffaloes (Bubalus bubalis). Animals 2020, 10, 532. [Google Scholar] [CrossRef]
- Romanelli, P.R.; Matos, A.M.R.N.; Pinto-Ferreira, F.; Caldart, E.T.; Oliveira, J.S.; Anteveli, G.; Jeanfelice, B.; Stolf, R.L.; Sanches, T.F.; Silva, M.; et al. Toxoplasma gondii and Neospora caninum infections and factors associated in goats in the Parana state, Southern Brazil. Braz. J. Vet. Parasitol. 2020, 29, e003620. [Google Scholar] [CrossRef]
- Delling, C.; Daugschies, A. Literature review: Coinfection in young ruminant livestock—Cryptosporidium spp. and its companions. Pathogens 2022, 11, 103. [Google Scholar] [CrossRef]
Parish | Seroprevalence | Prevalence | ||
---|---|---|---|---|
N. caninum1,2 | T. gondii1,2 | Cryptosporidium spp. 1,2 | Eimeria spp. 1,2 | |
Garza Real | 17.78 (16/90) | 16.67 (15/90) | 12.96 (14/108) | 94.43 (102/108) |
Zapotillo | 4.79 (8/167) | 23.03 (38/165) | 10.70 (20/187) | 85.03 (159/187) |
Limones | 2.78 (1/36) | 14.81 (4/27) | 0.00 (0/15) | 80.0 (12/15) |
Paletillas | 0 (0/14) | 14.29 (2/14) | 5.88 (1/17) | 100.0 (17/17) |
Cazaderos | 27.16 (22/81) | 11.11 (8/72) | 9.38 (6/64) | 93.75 (60/64) |
Total | 12.11 (47/388) | 18.20 (67/368) | 10.49 (41/391) | 89.51(350/391) |
Mixed Infections | Prevalence (%) | Animals/Farms |
---|---|---|
Cryptosporidium spp. and Eimeria spp. | 38.62 | 151/22 |
T. gondii and Eimeria spp. | 7.88 | 29/13 |
N. caninum and Eimeria spp. | 5.93 | 23/8 |
T. gondii and Cryptosporidium spp. | 4.35 | 16/9 |
N. caninum and Cryptosporidium spp. | 3.87 | 15/8 |
T. gondii and N. caninum | 2.72 | 10/6 |
T. gondii, Cryptosporidium spp. and Eimeria spp. | 4.62 | 17/10 |
N. caninum, T. gondii and Eimeria spp. | 1.90 | 7/5 |
N. caninum, T. gondii and Cryptosporidium spp. | 1.63 | 6/5 |
N. caninum, T.gondii, Cryptosporidium spp. and Eimeria spp. | 1.63 | 6/5 |
Variable | Category | N. caninum | T. gondii | ||||
---|---|---|---|---|---|---|---|
p a | OR b | CI c 95% | p a | OR b | CI c 95% | ||
Supplementation with vitamins | Yes | 0.001 | 40.96 | 2.4–700.6 | -- | -- | -- |
No | * | * | * | -- | -- | -- | |
Age of diarrhoea | >30 days | <0.0001 | 11.83 | 2.9–46.8 | -- | -- | -- |
<30 days | * | * | * | -- | -- | -- | |
Frequency of deworming | Regular | 0.001 | 42.31 | 4.6–392.8 | -- | -- | -- |
Irregular | * | * | * | -- | -- | -- | |
Known pasture area | Yes | 0.021 | 25.16 | 1.6–390.4 | -- | -- | -- |
No | * | * | * | -- | -- | -- | |
Presence of artiodactyls | Yes | -- | -- | -- | 0.001 | 2.943 | 1.5–5.7 |
No | -- | -- | -- | * | * | * | |
Domestic fowl | Yes | -- | -- | -- | 0.009 | 2.428 | 1.3–4.7 |
No | -- | -- | -- | * | * | * | |
Administration of sulfas | Yes | -- | -- | -- | <0.001 | 4.608 | 2.4–8.8 |
No | -- | -- | -- | * | * | * |
Variable | Category | Cryptosporidium spp. | Eimeria spp. | ||||
---|---|---|---|---|---|---|---|
pa | OR b | CI c 95% | p a | ORb | CI c 95% | ||
Age group | <6 m | 0.001 | 3.06 | 1.5–6.1 | 0.013 | 2.87 | 1.3–6.6 |
>6 m | * | * | * | * | * | * | |
Body condition | Regular | 0.016 | 2.48 | 1.2–5.2 | -- | -- | -- |
Good | * | * | * | -- | -- | -- | |
% of abortions/total females | <10% | -- | -- | -- | <0.0001 | 6.98 | 2.9–16.6 |
>10% | -- | -- | -- | * | * | * | |
Type of pasture | Cultivated | -- | -- | -- | 0.039 | 8.76 | 1.1–68.4 |
Natural | -- | -- | -- | * | * | * | |
Presence of cattle | No | -- | -- | -- | 0.002 | 3.98 | 1.7–9.4 |
Yes | -- | -- | -- | * | * | * |
Mixed Infections | Variable | Category | p a | OR b | CI c 95% |
---|---|---|---|---|---|
N. caninum and Eimeria spp. | Management | Intensive Extensive | 0.005 * | 3.546 * | 0.12–0.68 * |
N. caninum and Cryptosporidium spp. | Management | Intensive Extensive | 0.013 * | 3.891 * | 0.09–0.75 * |
T. gondii and Cryptosporidium spp. | Administration of sulfas | Yes No | 0.003 * | 4.713 * | 1.69–13.13 * |
T. gondii and Eimeria spp. | Frequency of cleaning | >3 months <3 months | 0.015 * | 5.912 * | 1.20–5.54 * |
Cryptosporidium spp. and Eimeria spp. | Management | Intensive Extensive | 0.042 * | 1.845 * | 0.30–0.98 * |
Frequency of cleaning | <3 months >3 months | 0.037 * | 1.901 * | 0.29–0.96 * | |
T. gondii. Cryptosporidium spp. and Eimeria spp. | Administration of sulfas | Yes No | 0.010 * | 4.375 * | 1.42–13.51 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celi, K.; Guzmán, L.; Rey-Valeirón, C. Apicomplexans in Goat: Prevalence of Neospora caninum, Toxoplasma gondii, Cryptosporidium spp., Eimeria spp. and Risk Factors in Farms from Ecuador. Animals 2022, 12, 2224. https://doi.org/10.3390/ani12172224
Celi K, Guzmán L, Rey-Valeirón C. Apicomplexans in Goat: Prevalence of Neospora caninum, Toxoplasma gondii, Cryptosporidium spp., Eimeria spp. and Risk Factors in Farms from Ecuador. Animals. 2022; 12(17):2224. https://doi.org/10.3390/ani12172224
Chicago/Turabian StyleCeli, Kevin, Lucía Guzmán, and Catalina Rey-Valeirón. 2022. "Apicomplexans in Goat: Prevalence of Neospora caninum, Toxoplasma gondii, Cryptosporidium spp., Eimeria spp. and Risk Factors in Farms from Ecuador" Animals 12, no. 17: 2224. https://doi.org/10.3390/ani12172224
APA StyleCeli, K., Guzmán, L., & Rey-Valeirón, C. (2022). Apicomplexans in Goat: Prevalence of Neospora caninum, Toxoplasma gondii, Cryptosporidium spp., Eimeria spp. and Risk Factors in Farms from Ecuador. Animals, 12(17), 2224. https://doi.org/10.3390/ani12172224