Palm Kernel Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production, and Nitrogen Metabolism
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Committee and Experiment Location
2.2. Animals, Experimental Design and Management
2.3. Intake and Apparent Digestibility of Nutritional Components
2.4. Feeding Behavior
2.5. Chemical Analysis
2.6. Production, Composition, and Quality of the Milk
2.7. Blood Metabolites
2.8. Nitrogen Balance
2.9. Statistical Analysis
3. Results
3.1. Intake and Apparent Digestibility
3.2. Feeding Behavior
3.3. Milk Production and Composition
3.4. Blood Metabolites
3.5. Nitrogen Balance
4. Discussion
4.1. Intake and Apparent Digestibility
4.2. Feeding Behavior
4.3. Milk Production and Composition
4.4. Blood Metabolites
4.5. Nitrogen Balance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of United Nation: Rome, Italy, 2017. [Google Scholar]
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol. Sustain. Food Syst. 2020, 44, 1089–1110. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Vieira, J.F.; Barbosa, A.M.; Silva, T.M.; Bezerra, L.R.; Nascimento, N.G.; Freitas, J.E.; Jaeger, S.M.P.L.; Oliveira, P.; Oliveira, R.L. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows. Animal 2017, 11, 1957–1965. [Google Scholar] [CrossRef] [PubMed]
- Lisboa, M.D.M.; Silva, R.R.; da Silva, F.F.; Pereira, M.; Costa, G.D.; Mendes, F.B.; de Souza, S.O.; Santos, M.C.; Rodrigues, L.B.O.; Alba, H.D.R.; et al. Feeding behavior of feedlot-finished crossbred bulls fed palm kernel cake. Trop. Anim. Health Prod. 2021, 53, 186. [Google Scholar] [CrossRef] [PubMed]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High fiber cakes from mediterranean multipurpose oilseeds as protein sources for ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef]
- Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A.G. Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. Crit. Rev. Environ. Sci. Technol. 2019, 50, 384–436. [Google Scholar] [CrossRef]
- Silva, L.O.; Carvalho, G.G.P.; Tosto, M.S.L.; Lima, V.G.O.; Cirne, L.G.A.; Pina, D.S.; Santos, S.A.; Rodrigues, C.S.; Ayres, M.C.; Azevedo, J.A.G. Digestibility, nitrogen metabolism, ingestive behavior and performance of feedlot goats fed high-concentrate diets with palm kernel cake. Livest. Sci. 2020, 241, 104226. [Google Scholar] [CrossRef]
- Silva, L.O.; Carvalho, G.G.P.; Tosto, M.S.L.; Lima, V.G.O.; Cirne, L.G.A.; Pina, D.S.; Leite, V.M.; Rodrigues, C.S.; Mesquita, B.M.A.C. Effects of palm kernel cake in high-concentrate diets on carcass traits and meat quality of feedlot goats. Livest. Sci. 2021, 246, 104456. [Google Scholar] [CrossRef]
- Oliveira, R.L.; de Carvalho, G.G.P.; Oliveira, R.L.; Tosto, M.S.L.; Santos, E.M.; Ribeiro, R.D.X.; Silva, T.M.; Correia, B.R.; de Rufino, L.M.A. Palm kernel cake obtained from biodiesel production in diets for goats: Feeding behavior and physiological parameters. Trop. Anim. Health Prod. 2017, 49, 1401–1407. [Google Scholar] [CrossRef]
- Lisboa, M.M.; Silva, R.R.; Silva, F.F.; Carvalho, G.G.P.; Silva, J.W.D.; Paixão, T.R.; Silva, A.P.G.; Carvalho, V.M.; Santos, L.V.; Santos, M.C.; et al. Replacing sorghum with palm kernel cake in the diet decreased intake without altering crossbred cattle performance. Trop. Anim. Health Prod. 2021, 53, 45. [Google Scholar] [CrossRef]
- Neave, H.W.; Weary, D.M.; Von Keyserlingk, M.A.G. Review: Individual variability in feeding behaviour of domesticated ruminants. Animal 2018, 12, s419–s430. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Mesquita, B.M.C.; Santos, S.A.; Tosto, M.S.; Costa, M.P.; Pina, D.S.; Gordiano, L.A.; Garcia, A.O.; et al. Palm Kernel Cake in Diets for Lactating Goats: Qualitative Aspects of Milk and Cheese. Animals 2021, 11, 3501. [Google Scholar] [CrossRef] [PubMed]
- NRC—National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- Lazzarini, Í.; Detmann, E.; Valadares Filho, S.C.; Paulino, M.F.; Batista, E.D.; Rufino, L.M.A.; Franco, M.O. Nutritional performance of cattle grazing during rainy season with nitrogen and starch supplementation. Asian Australas. J. Anim. Sci. 2016, 29, 1120. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.J.; Santos, S.A.; Prates, L.L.; Detmann, E.; Carvalho, G.G.P.; Santos, A.C.S.; Rufino, L.M.; Mariz, L.D.; Neri, F.; Costa, E. Comparing sheep and cattle to quantify internal markers in tropical feeds using in situ ruminal incubation. Anim. Feed Sci. Technol. 2017, 232, 139–147. [Google Scholar] [CrossRef]
- Berchielli, T.T.; Pires, A.V.; Oliveira, S.G. Nutrição de Ruminantes, 2nd ed.; Funep: São Paulo, Brazil, 2011. [Google Scholar]
- Johnson, T.R.; Combs, D.K. Effects of prepartum diet, inert rumen bulk, and dietary polyethylene glycol on dry matter intake of lactating dairy cows. J. Dairy Sci. 1991, 74, 933–944. [Google Scholar] [CrossRef]
- Bürger, P.J.; Pereira, J.C.; Queiroz, A.D.; Silva, J.D.; Valadares Filho, S.D.C.; Cecon, P.R.; Casali, A.D.P. Ingestive behavior in Holstein calves fed diets with different concentrate levels. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; Association of Official Analytical Chemists Inc.: Washington, DC, USA, 2002. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A.E. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standartization of procedures for nitrogen fractionation of ruminants feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Valente, T.N.P.; Detmann, E.; Valadares Filho, S.C.; Cunha, M.; Queiroz, A.C.; Sampaio, C.B. In situ estimation of indigestible compounds contents in cattle feed and feces using bags made from different textiles. Braz. J. Anim. Sci. 2011, 40, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.B. Challenges with nonfiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, C.H.; Santos, S.A.; de Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; de Campos Valadares Filho, S.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [Google Scholar] [CrossRef]
- NRC—National Research Council. Nutrient Requirements of DAIRY Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Valadares, R.F.D.; Broderick, G.A.; Valadares Filho, S.C.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Fonseca, C.E.M.D.; Valadares, R.F.D.; Valadares Filho, S.D.C.; Leão, M.I.; Cecon, P.R.; Rodrigues, M.T.; Pina, D.S.; Marcondes, M.I.; Paixão, M.L.; Araújo, A.M. Microbial protein synthesis in lactating goats fed diets with increasing levels of dietary protein. Rev. Bras. Zootec. 2006, 35, 1169–1177. [Google Scholar] [CrossRef]
- Zeoula, L.; Fereli, F.; Prado, I.; Geron, L.; Caldas Neto, S.F.; Prado, O.; Maeda, E. Digestibility and nitrogen balance of sheep diets containing different levels of ruminal degradable protein and ground corn. Rev. Bras. Zootec. 2006, 35, 2179–2186. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT®Users Guide, Version 9.3; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Hoffmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef]
- Nocek, J.E.; Russell, J.B. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 1988, 71, 2070–2107. [Google Scholar] [CrossRef]
- Song, S.D.; Chen, G.J.; Guo, C.H.; Rao, K.Q.; Gao, Y.H.; Peng, Z.L.; Zhang, Z.F.; Bai, X.; Wang, Y.; Wang, B.X.; et al. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats. Anim. Feed Sci. Technol. 2018, 236, 170–177. [Google Scholar] [CrossRef]
- Rodrigues, T.C.G.C.; Santos, S.A.; Cirne, L.G.A.; Pina, D.S.; Alba, H.D.R.; de Araújo, M.L.G.M.L.; Silva, W.P.; Nascimento, C.O.; Rodrigues, C.S.; Tosto, M.S.L.; et al. Palm kernel cake in high-concentrate diets for feedlot goat kids: Nutrient intake, digestibility, feeding behavior, nitrogen balance, blood metabolites, and performance. Trop. Anim. Health Prod. 2021, 53, 454. [Google Scholar] [CrossRef] [PubMed]
- Schultz, E.B.; Amaral, R.M.D.; Glória, L.S.; Silva, F.F.; Rodrigues, M.T.; Vieira, R.A.M. Ingestive behavior of dairy goats fed diets containing increasing levels of neutral detergent fiber and particle size using multivariate analysis. Acta Sci. Anim. Sci. 2019, 41, 45870. [Google Scholar] [CrossRef]
- Arowolo, M.A.; Yang, S.; Wang, M.; He, J.H.; Wang, C.; Wang, R.; Wen, J.N.; Mac, Z.Y.; Tan, Z.L. The effect of forage theoretical cut lengths on chewing activity, rumen fermentation, dissolved gases, and methane emissions in goats. Anim. Feed Sci. Technol. 2020, 263, 114454. [Google Scholar] [CrossRef]
- Cantalapiedra-Hijar, G.; Yáñez-Ruiz, D.R.; Martín-García, A.I.; Molina-Alcaide, E. Effects of forage: Concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. Sci. J. Anim. Sci. 2009, 87, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.M.; Donkin, S.S.; Allen, M.S. Effects of propionate concentration on short-term metabolism in liver explants from dairy cows in the postpartum period. J. Dairy Sci. 2020, 103, 11449–11460. [Google Scholar] [CrossRef] [PubMed]
- Kozloski, G.V. Bioquímica dos Ruminantes, 3rd ed.; Federal University of Santa Maria: Santa Maria, Brazil, 2011. [Google Scholar]
- Haile-Mariam, M.; Pryce, J.E. Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems. J. Dairy Sci. 2007, 100, 3754–3766. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F.; Uniacke-Lowe, T.; Mcsweeney, P.L.H.; O’Mahony, J.A. Chemistry and biochemistry of fermented milk products. Dairy Chem. Bioch. 2015, 1, 547–567. [Google Scholar] [CrossRef]
- Li, C.; Beauchemin, K.A.; Yang, W. Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. J. Dairy Sci. 2020, 103, 4340–4354. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.C.L.; Neto, S.G.; Bezerra, L.R.; Medeiros, A.N.; Cavalcante, E.O.; Signoretti, R.D. Palm oil cake in milk production and quality of dairy cows: Systematic review, meta-analysis and principal component analysis. Livest. Sci. 2021, 254, 104760. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Serrapica, F.; Masucci, F.; Romano, R.; Napolitano, F.; Sabia, E.; Aiello, A.; Di Francia, A. Effects of chickpea in substitution of Soybean meal on milk production, blood profile and reproductive response of primiparous buffaloes in early lactation. Animals 2020, 10, 515. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Razzaque, M.A.; Omar, A.E.; Albert, S.; Al-Gallaf, W.M. Biochemical and hematological profile of different breeds of goat maintained under intensive production system. Afr. J. Biotechnol. 2016, 15, 1253–1257. [Google Scholar] [CrossRef]
- Danes, M.A.C.; Hanigan, M.D.; Apelo, S.A.; Dias, J.D.L.; Wattiaux, M.A.; Broderick, G.A. Post-ruminal supplies of glucose and casein, but not acetate, stimulate milk protein synthesis in dairy cows through differential effects on mammary metabolism. J. Dairy Sci. 2020, 103, 6218–6232. [Google Scholar] [CrossRef] [PubMed]
- Santa Rosa, C.E.A. Análise Econômica da Utilização de Silagem de Casca de Mandioca com Torta de Dendê para uso na Alimentação Animal; Universidade Rural Federal da Amazônia: Belém, Brazil, 2022. [Google Scholar]
Variable | Palm Kernel Cake (g kg−1) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | Linear | Quadratic | ||
Final body weight (kg) | 45.85 | 46.82 | 46.76 | 44.90 | 1.42 | 0.208 | 0.009 |
Intake (g day−1) | |||||||
Dry matter | 1677.9 | 1682.6 | 1251.0 | 842.1 | 78.33 | <0.001 | 0.618 |
Organic matter | 1597.4 | 1584.1 | 1170.1 | 782.5 | 75.86 | <0.001 | 0.618 |
Crude protein | 316.2 | 268.9 | 200.9 | 130.6 | 13.57 | <0.001 | 0.430 |
Ether extract | 102.3 | 107.8 | 88.76 | 67.2 | 4.49 | <0.001 | 0.015 |
Neutral detergent fiber | 577.2 | 576.7 | 423.0 | 247.6 | 25.92 | <0.001 | 0.216 |
Potentially digestible neutral detergent fiber | 281.3 | 255.9 | 193.0 | 62.2 | 16.00 | <0.001 | 0.225 |
Non-fiber carbohydrates | 633.8 | 546.3 | 332.3 | 207.8 | 35.38 | <0.001 | 0.523 |
Total digestible nutrients | 1390.0 | 1245.3 | 884.3 | 619.5 | 62.19 | <0.001 | 0.491 |
Apparent digestibility (g Kg DM−1) | |||||||
Dry matter | 675.0 | 652.0 | 646.0 | 634.0 | 5.20 | 0.031 | 0.290 |
Organic matter | 645.8 | 645.8 | 647.4 | 633.6 | 5.89 | 0.528 | 0.577 |
Crude protein | 686.0 | 672.0 | 681.0 | 629.0 | 4.17 | 0.771 | 0.459 |
Ether extract | 920.0 | 929.0 | 927.0 | 894.0 | 3.86 | 0.314 | 0.734 |
Neutral detergent fiber | 400.0 | 361.0 | 430.0 | 462.0 | 9.69 | 0.113 | 0.131 |
Non-fiber carbohydrates | 876.0 | 921.0 | 889.0 | 906.0 | 6.44 | 0.150 | 0.224 |
Total digestible nutrients | 771.0 | 742.0 | 748.0 | 735.0 | 7.30 | 0.026 | 0.407 |
Variable | Palm Kernel Cake (g kg−1) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | Linear | Quadratic | ||
Time per activity (min day−1) | |||||||
Feeding | 242 | 258 | 304 | 255 | 9.14 | 0.284 | 0.061 |
Rumination | 394 | 394 | 376 | 371 | 9.50 | 0.282 | 0.874 |
Idling | 803 | 789 | 761 | 815 | 14.18 | 0.938 | 0.183 |
Feeding efficiency (g h−1) | |||||||
Dry matter | 476.3 | 404.7 | 250.3 | 229.8 | 23.86 | <0.001 | 0.358 |
Neutral detergent fiber | 160.3 | 152.8 | 105.3 | 107.0 | 8.33 | 0.001 | 0.636 |
Rumination efficiency (g h−1) | |||||||
Dry matter | 290.5 | 250.4 | 202.1 | 153.1 | 12.22 | <0.001 | 0.680 |
Neutral detergent fiber | 97.2 | 94.3 | 84.7 | 71.0 | 4.12 | 0.001 | 0.229 |
Periods per activity (N° of episodes day−1) | |||||||
Feeding | 16.0 | 15.0 | 16.0 | 13.0 | 0.59 | 0.208 | 0.409 |
Rumination | 26.0 | 26.0 | 25.0 | 26.0 | 0.60 | 0.658 | 0.448 |
Idling | 37.0 | 36.0 | 34.0 | 34.0 | 0.72 | 0.099 | 0.681 |
Variable | Palm Kernel Cake (g kg−1) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | Linear | Quadratic | ||
Performance (g day−1) | |||||||
Milk production | 933.5 | 862.2 | 763.8 | 532.5 | 69.70 | <0.001 | 0.087 |
Fat-corrected milk production | 906.4 | 946.0 | 774.5 | 509.4 | 63.40 | <0.001 | 0.004 |
Milk composition (%) | |||||||
Defatted dry extract | 8.99 | 9.14 | 8.70 | 8.44 | 0.10 | 0.001 | 0.152 |
Ureic nitrogen (mg dL−1) | 26.4 | 26.9 | 26.2 | 25.9 | 0.43 | 0.229 | 0.750 |
Milk production efficiency (L kg−1DMI) | |||||||
Milk production | 0.48 | 0.51 | 0.53 | 0.54 | 0.08 | 0.125 | 0.696 |
Fat-corrected milk production | 0.47 | 0.57 | 0.53 | 0.54 | 0.06 | 0.266 | 0.225 |
Variable | Palm Kernel Cake (g kg−1) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | Linear | Quadratic | ||
Albumin (g dL−1) | 1.51 | 1.61 | 1.61 | 1.49 | 0.07 | 0.946 | 0.137 |
Total proteins (g dL−1) | 5.09 | 4.58 | 4.73 | 5.50 | 0.21 | 0.460 | 0.175 |
Globulin (g dL−1) | 3.56 | 2.89 | 3.12 | 4.02 | 0.22 | 0.510 | 0.098 |
Albumin:globulin ratio | 0.46 | 0.49 | 0.49 | 0.44 | 0.23 | 0.352 | 0.151 |
Urea (mg dL−1)1 | 59.3 | 64.2 | 52.6 | 52.1 | 1.62 | <0.001 | 0.320 |
Variable | Palm Kernel Cake (g kg−1) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | Linear | Quadratic | ||
Nitrogen (g d−1) | |||||||
Ingested | 50.6 | 43.2 | 32.1 | 20.9 | 2.22 | 0.001 | <0.430 |
Excreted in feces | 10.5 | 9.51 | 6.46 | 4.58 | 0.51 | 0.001 | 0.505 |
Excreted in milk | 5.02 | 4.73 | 3.84 | 2.62 | 0.35 | 0.001 | 0.169 |
Excreted in urine | 16.3 | 21.1 | 20.3 | 17.7 | 1.59 | 0.727 | 0.103 |
Retained | 18.8 | 7.89 | 1.54 | −4.02 | 2.16 | 0.001 | 0.431 |
Digested | 40.1 | 33.7 | 25.6 | 16.3 | 1.78 | 0.001 | 0.453 |
Variable (Y) | Type | Equation | Determination Coefficient (R2) |
---|---|---|---|
Final body weight (kg) | Quadratic | Y = 45.81 + 0.02292PKC + 0.00011PKC2 | 0.82 |
Intake (g day−1) | |||
Dry matter | Linear | Y = 1919.29 − 4.1961PKC | 0.99 |
Organic matter | Linear | Y = 1852.28 − 4.0757PKC | 0.99 |
Crude protein | Linear | Y = 322.86 − 0.7809PKC | 0.99 |
Ether extract | Quadratic | Y = 103.02 + 0.08788PKC − 0.00102PKC² | 0.82 |
Neutral detergent fiber | Linear | Y = 659.94 − 0.9367PKC | 0.94 |
NDFpd 1 | Linear | Y = 399.56 − 0.5442PKC | 0.93 |
Non-fiber carbohydrates | Linear | Y = 764.61 − 2.2499PKC | 0.99 |
Total digestible nutrients | Linear | Y = 1431.45 − 3.30PKC | 0.98 |
Apparent digestibility (g Kg DM−1) | |||
Dry matter | Linear | Y = 669.1 − 0.133PKC | 0.79 |
Total digestible nutrients | Linear | Y = 76.53 − 0.1317PKC | 0.73 |
Feeding efficiency (g h−1) | |||
Dry matter | Linear | Y = 475.25 − 1.1157PKC | 0.92 |
Neutral detergent fiber | Linear | Y = 162.27 − 0.2555PKC | 0.81 |
Rumination efficiency (g h−1) | |||
Dry matter | Linear | Y = 293.34 − 0.5809PKC | 0.99 |
Neutral detergent fiber | Linear | Y = 100.14 − 0.1121PKC | 0.92 |
Performance (g day−1) | |||
Milk production | Linear | Y = 969.20 − 1.6263PKC | 0.92 |
Fat-corrected milk production | Quadratic | Y = 912.31 + 1.1524PKC − 0.01190PKC2 | 0.80 |
Milk composition (%) | |||
Defatted dry extract | Linear | Y = 9.1745 − 0.00285PKC | 0.80 |
Blood Urea (mg dL−1) | Linear | Y = 63.06 − 0.4710PKC | 0.63 |
Nitrogen (g d−1) | |||
Ingested | Linear | Y = 51.6571 − 0.1249PKC | 0.99 |
Excreted in feces | Linear | Y = 10.87 − 0.0259PKC | 0.97 |
Excreted in milk | Linear | Y = 5.456 − 0.0111PKC | 0.97 |
Retained | Linear | Y = 16.8965 − 0.09321PKC | 0.98 |
Digested | Linear | Y = 40.79 − 0.09902PKC | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Pina, D.d.S.; Santos, S.A.; Tosto, M.S.L.; Rodrigues, C.S.; de Lima Júnior, D.M.; de Oliveira, J.S.; de Freitas Júnior, J.E.; et al. Palm Kernel Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production, and Nitrogen Metabolism. Animals 2022, 12, 2323. https://doi.org/10.3390/ani12182323
Ferreira FG, Leite LC, Alba HDR, Pina DdS, Santos SA, Tosto MSL, Rodrigues CS, de Lima Júnior DM, de Oliveira JS, de Freitas Júnior JE, et al. Palm Kernel Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production, and Nitrogen Metabolism. Animals. 2022; 12(18):2323. https://doi.org/10.3390/ani12182323
Chicago/Turabian StyleFerreira, Fernanda G., Laudí C. Leite, Henry D. R. Alba, Douglas dos S. Pina, Stefanie A. Santos, Manuela S. L. Tosto, Carlindo S. Rodrigues, Dorgival M. de Lima Júnior, Juliana S. de Oliveira, José E. de Freitas Júnior, and et al. 2022. "Palm Kernel Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production, and Nitrogen Metabolism" Animals 12, no. 18: 2323. https://doi.org/10.3390/ani12182323
APA StyleFerreira, F. G., Leite, L. C., Alba, H. D. R., Pina, D. d. S., Santos, S. A., Tosto, M. S. L., Rodrigues, C. S., de Lima Júnior, D. M., de Oliveira, J. S., de Freitas Júnior, J. E., de C. Mesquita, B. M. A., & de Carvalho, G. G. P. (2022). Palm Kernel Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production, and Nitrogen Metabolism. Animals, 12(18), 2323. https://doi.org/10.3390/ani12182323