Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data of Morphological Traits and Age Estimation
2.2. Environmental Predictors
2.3. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.G.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.; Seguin, B.; et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008, 453, 353–357. [Google Scholar] [CrossRef]
- Hua, F.Y.; Hu, J.H.; Liu, Y.; Giam, X.L.; Lee, T.M.; Luo, H.; Wu, J.; Liang, Q.Y.; Zhao, J.; Long, X.Y.; et al. Community-wide changes in intertaxonomic temporal co-occurrence resulting from phenological shifts. Glob. Chang. Biol. 2016, 22, 1746–1754. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Yang, Z.Y.; Shen, M.G.; Wu, X.X.; Hu, J.H. Limited increase in asynchrony between the onset of spring green-up and the arrival of a long-distance migratory bird. Sci. Total Environ. 2021, 795, 148823. [Google Scholar] [CrossRef] [PubMed]
- Ficetola, G.F.; Colleoni, E.; Renaud, J.; Scali, S.; Padoa-Schioppa, E.; Thuiller, W. Morphological variation in salamanders and their potential response to climate change. Glob. Chang. Biol. 2016, 22, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Oromi, N.; Pujol-Buxo, E.; San Sebastian, O.; Llorente, G.A.; Hammou, M.A.; Sanuy, D. Geographical variations in adult body size and reproductive life history traits in an invasive anuran, Discoglossus pictus. Zoology 2016, 119, 216–223. [Google Scholar] [CrossRef]
- Leung, K.W.; Yang, S.N.; Wang, X.Y.; Tang, K.; Hu, J.H. Ecogeographical adaptation revisited: Morphological variations in the Plateau Brown Frog along an elevation gradient on the Qinghai-Tibetan Plateau. Biology 2021, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Moritz, C.; Agudo, R. The future of species under climate change: Resilience or decline? Science 2013, 341, 504–508. [Google Scholar] [CrossRef]
- MacNally, R.; Horrocks, G.F.B.; Lada, H. Anuran responses to pressures from high-amplitude drought–flood–drought sequences under climate change. Clim. Chang. 2017, 141, 243–257. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Kiesecker, J.M. Complexity in conservation: Lessons from the global decline of amphibian populations. Ecol. Lett. 2002, 5, 597–608. [Google Scholar] [CrossRef] [Green Version]
- Davies, S.J.; Hill, M.P.; McGeoch, M.A.; Clusella-Trullas, S. Niche shift and resource supplementation facilitate an amphibian range expansion. Divers. Distrib. 2019, 25, 154–165. [Google Scholar] [CrossRef]
- Liang, D.; Yang, S.N.; Pagani-Nuez, E.; He, C.; Hu, J.H. How to become a generalist species? Individual niche variation across habitat transformation gradients. Front. Ecol. Evol. 2020, 8, 597450. [Google Scholar] [CrossRef]
- Yang, S.N.; Zhang, C.L.; Liao, W.B.; Li, N.; Hu, J.H. Trophic niche shifts in mountain Feirana frogs under human-mediated habitat transformations. Asian Herpetol. Res. 2021, 12, 234. [Google Scholar]
- Klaus, S.P.; Lougheed, S.C. Changes in breeding phenology of eastern Ontario frogs over four decades. Ecol. Evol. 2013, 3, 835–845. [Google Scholar] [CrossRef]
- Wang, X.Y.; Huang, Y.; Zhong, M.J.; Yang, S.N.; Yang, X.; Jiang, J.P.; Hu, J.H. Environmental stress shapes life-history variation in the swelled-vented frog (Feirana quadranus). Evol. Ecol. 2019, 33, 435–448. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, X.Y.; Yang, X.; Jiang, J.P.; Hu, J.H. Unveiling the roles of interspecific competition and local adaptation in phenotypic differentiation of parapatric frogs. Curr. Zool. 2020, 66, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Sanchez, A.; Cunningham, A.A.; Soto-Azat, C. Geographic body size variation in ectotherms: Effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 2015, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.C.; Church, J.R. Amphibians do not follow Bergmann’s rule. Evolution 2008, 62, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gott. Stud. 1848, 1, 595–708. [Google Scholar]
- Hu, J.H.; Xie, F.; Li, C.; Jiang, J.P. Elevational patterns of species richness, range and body size for spiny frogs. PLoS ONE 2011, 6, e19817. [Google Scholar] [CrossRef]
- Reniers, J.; Brendonck, L.; Roberts, J.D.; Verlinden, W.; Vanschoenwinkel, B. Environmental harshness shapes life-history variation in an Australian temporary pool breeding frog: A skeletochronological approach. Oecologia 2015, 178, 931–941. [Google Scholar] [CrossRef]
- Wells, K.D. The Ecology and Behavior of Amphibians; University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar]
- Hakkinen, J.; Pasanen, S.; Kukkonen, J.V.K. The effects of solar UV-B radiation on embryonic mortality and development in three boreal anurans (Rana temporaria, Rana arvalis and Bufo bufo). Chemosphere 2001, 44, 441–446. [Google Scholar] [CrossRef]
- Verschooren, E.; Brown, R.K.; Vercammen, F.; Pereboom, J. Ultraviolet B radiation (UV-B) and the growth and skeletal development of the Amazonian milk frog (Trachycephalus resinifictrix) from metamorphsis. J. Physiol. Pathophysiol. 2011, 2, 34–42. [Google Scholar]
- Wang, B.; Jiang, J.P.; Xie, F.; Li, C. Phylogeographic patterns of mtDNA variation revealed multiple glacial refugia for the frog species Feirana taihangnica endemic to the Qinling Mountains. J. Mol. Evol. 2013, 76, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.H.; Jiang, J.P. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecol. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Yang, J.; Qiao, L.; Zhang, L.X.; Lu, X. Reproductive ecology of the stream-dwelling frog Feirana taihangnicus in central China. Herpetol. J. 2011, 21, 135–140. [Google Scholar]
- Jiang, J.P.; Xie, F.; Li, C.; Wang, B. China’s Red List of Biodiversity: Vertebrates, Volume IV, Amphibian (II); Science Press: Beijing, China, 2021. [Google Scholar]
- Feng, X.Y.; Chen, W.; Hu, J.H.; Jiang, J.P. Variation and sexual dimorphism of body Size in the plateau brown frog along an altitudinal gradient. Asian Herpetol. Res. 2015, 6, 291–297. [Google Scholar]
- Emerson, S.B. Skull shape in frogs: Correlations with diet. Herpetologica 1985, 41, 177–188. [Google Scholar]
- Kohmatsu, Y.; Nakano, S.; Yamamura, N. Effects of head shape variation on growth, metamorphosis and survivorship in larval salamanders (Hynobius retardatus). Ecol. Res. 2010, 16, 73–83. [Google Scholar] [CrossRef]
- Emerson, S.B. Allometry and jumping in frogs: Helping the twain to meet. Evolution 1978, 32, 551–564. [Google Scholar] [CrossRef]
- Liao, W.B.; Luo, Y.; Lou, S.L.; Lu, D.; Jehle, R. Geographic variation in life-history traits: Growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi). Front. Zool. 2016, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, M.; Vaclavik, T.; Manceur, A.M.; Sprtova, L.; von Wehrden, H.; Welk, E.; Cord, A.F. glUV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 2014, 5, 372–383. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hu, J.H.; Huang, Y.; Jiang, J.P.; Guisan, A. Genetic diversity in frogs linked to past and future climate changes on the roof of the world. J. Anim. Ecol. 2019, 88, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.B.; Jetz, W. Environmental and historical constraints on global patterns of amphibian richness. Proc. R. Soc. B Biol. Sci. 2007, 274, 1167. [Google Scholar] [CrossRef] [PubMed]
- MacNally, R.; Walsh, C.J. Hierarchical partitioning public-domain software. Biodivers Conserv. 2004, 13, 659–660. [Google Scholar]
- Wood, S. Mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. [R Package Version 1.8-40]. 2017. Available online: https://CRAN.R-project.org/package=mgcv (accessed on 29 March 2022).
- Yom-Tov, Y.; Geffen, E. Geographic variation in body size: The effects of ambient temperature and precipitation. Oecologia 2006, 148, 213–218. [Google Scholar] [CrossRef]
- Ashton, K.G.; Feldman, C.R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 2003, 57, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, M.A.; Crump, M.L. Potential effects of climate change on two neotropical amphibian assemblages. Clim. Chang. 1998, 39, 541–561. [Google Scholar] [CrossRef]
- Newman, R.A.; Dunham, A.E. Size at metamorphosis and water loss in a desert anuran (Scaphiopus couchii). Copeia 1994, 1994, 372–381. [Google Scholar] [CrossRef]
- Arnett, A.E.; Gotelli, N.J. Bergmann’s rule in larval ant lions: Testing the starvation resistance hypothesis. Ecol. Entomol. 2003, 28, 645–650. [Google Scholar] [CrossRef]
- Citadini, J.M.; Brandt, R.; Williams, C.R.; Gomes, F.R. Evolution of morphology and locomotor performance in anurans: Relationships with microhabitat diversification. J. Evolution. Biol. 2018, 31, 371–381. [Google Scholar] [CrossRef]
- Green, D.M. Implications of female body-size variation for the reproductive ecology of an anuran amphibian. Ethol. Ecol. Evol. 2015, 27, 173–184. [Google Scholar] [CrossRef]
- Belden, L.K.; Wildy, E.L.; Blaustein, A.R. Growth, survival and behaviour of larval long-toed salamanders (Ambystoma macrodactylum) exposed to ambient levels of UV-B radiation. J. Zool. 2000, 251, 473–479. [Google Scholar] [CrossRef]
- Welsh, H.H.; Ollivier, L.M. Stream amphibians as indicators of ecosystem stress: A case study from California’s redwoods. Ecol. Appl. 1998, 8, 1118–1132. [Google Scholar] [CrossRef]
- Green, D.M.; Middleton, J. Body size varies with abundance, not climate, in an amphibian population. Ecography 2013, 36, 947–955. [Google Scholar] [CrossRef]
- Luo, Z.H.; Wang, X.Y.; Yang, S.F.; Cheng, X.; Liu, Y.; Hu, J.H. Combining the responses of habitat suitability and connectivity to climate change for an East Asian endemic frog. Front. Zool. 2021, 18, 14. [Google Scholar] [CrossRef]
- Yang, S.N.; Wang, X.Y.; Hu, J.H. Mountain frog species losing out to climate change around the Sichuan Basin. Sci. Total Environ. 2022, 806, 150605. [Google Scholar] [CrossRef]
Traits | Factors | Random Effect | Fixed Effect | ||
---|---|---|---|---|---|
LRT | p | SE | F | ||
Snout-vent length | Population | 1.87 | 0.17 | ||
Sex | 2.37 | 6.51 * | |||
Age | 0.88 | 14.93 *** | |||
PC1 | 0.64 | 6.63 * | |||
PC2 | 1.44 | <0.01 | |||
Head width | Population | 0.16 | 0.69 | ||
Sex | 0.98 | 4.72 * | |||
Age | 0.35 | 12.71 *** | |||
PC1 | 0.21 | 13.20 * | |||
PC2 | 0.47 | 0.29 | |||
Thigh length | Population | 0.90 | 0.34 | ||
Sex | 1.31 | 2.69 | |||
Age | 0.48 | 10.77 ** | |||
PC1 | 0.32 | 11.58 * | |||
PC2 | 0.73 | 0.89 | |||
Tibia width | Population | 1.96 | 0.16 | ||
Sex | 0.50 | 0.76 | |||
Age | 0.19 | 14.47 *** | |||
PC1 | 0.13 | 8.35 * | |||
PC2 | 0.30 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Wang, X.; Yang, S.; Li, C.; Hu, J. Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains. Animals 2022, 12, 2328. https://doi.org/10.3390/ani12182328
Fu L, Wang X, Yang S, Li C, Hu J. Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains. Animals. 2022; 12(18):2328. https://doi.org/10.3390/ani12182328
Chicago/Turabian StyleFu, Lei, Xiaoyi Wang, Shengnan Yang, Chunlin Li, and Junhua Hu. 2022. "Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains" Animals 12, no. 18: 2328. https://doi.org/10.3390/ani12182328
APA StyleFu, L., Wang, X., Yang, S., Li, C., & Hu, J. (2022). Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains. Animals, 12(18), 2328. https://doi.org/10.3390/ani12182328