Utilization of the Viscum Species for Diet and Medicinal Purposes in Ruminants: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Description of the Viscum Species
3. Adaptation of the Species
4. Negative Impact and Control of the Viscum Species
5. Crude Protein and Fiber Fraction of Viscum Species
6. Potential of Viscum Species as a Source of Minerals for Ruminants
7. Antinutritional Factors Associated with Viscum ssp.
8. Health Benefits of Viscum Species in Livestock
9. The Use of Viscum Species in Ruminant Diets
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teodoro, G.S.; van den Berg, E.; Arruda, R. Metapopulation dynamics of the mistletoe and its host in savanna areas with different fire occurrence. PLoS ONE 2013, 8, 65836. [Google Scholar] [CrossRef]
- Ramantsi, R.; Mnisi, C.M.; Ravhuhali, K.E. Chemical composition and in vitro dry matter degradability of mistletoe (Viscum verrucosum (Harv.)) on Vachellia nilotica (L.) in North West Province of South Africa. Trop. Agric. 2019, 96, 53–60. [Google Scholar]
- Öztürk, Y.E.; Gülümser, E.; MUT, H.; Başaran, U.; Doğrusöz, M.Ç. A preliminary study on change of mistletoe (Viscum albüm L.) silage quality according to collection time and host tree species. Turk. J. Agric. Forest. 2022, 46, 104–112. [Google Scholar] [CrossRef]
- Kleszken, E.; Timar, A.V.; Memete, A.R.; Miere, F.; Vicas, S.I. On Overview of Bioactive Compounds, Biological And Pharmacological Effects Of Mistletoe (Viscum Album L.). Pharmacophore 2022, 13, 10–26. [Google Scholar] [CrossRef]
- Okubamichael, D.Y.; Griffiths, M.E.; Ward, D. Host specificity, nutrient and water dynamics of the mistletoe Viscum rotundifolium and its potential host species in the Kalahari of South Africa. J. Arid Environ. 2011, 75, 898–902. [Google Scholar] [CrossRef]
- Ndagurwa, H.G.T.; Dube, J.S. Evaluation of potential and effective rumen digestion of mistletoe species and woody species browsed by goats in a semi-arid savanna, southwest Zimbabwe. Anim. Feed Sci. Technol. 2013, 186, 106–111. [Google Scholar] [CrossRef]
- Oosthuizen, D.; Balkwill, K. Viscum songimveloensis, a new species of mistletoe from South Africa. S. Afr. J. Bot. 2018, 115, 194–198. [Google Scholar] [CrossRef]
- Majeed, M.; Rehman, R.U. Phytochemistry, Pharmacology, and Toxicity of an Epiphytic Medicinal Shrub Viscum album L. (White Berry Mistletoe). In Medicinal and Aromatic Plants; Aftab, T., Hakeem, K.R., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 287–301. [Google Scholar] [CrossRef]
- Abubakar, A.D.; Abubakar, M.; Yerima, J. Response of Red Sokoto Bucks Fed Graded Levels of Mistletoe Leaf Meal. Niger. J. Anim. Sci. Technol. 2021, 4, 74–80. [Google Scholar]
- Kim, C.W.; An, C.H.; Lee, H.S.; Yi, J.S.; Cheong, E.J.; Lim, S.H.; Kim, H.Y. Proximate and mineral components of Viscum album var. coloratum grown on eight different host tree species. J. Forest. Res. 2019, 30, 1245–1253. [Google Scholar] [CrossRef]
- Maul, K.; Krug, M.; Nickrent, D.L.; Müller, K.F.; Quandt, D.; Wicke, S. Morphology, geographic distribution, and host preferences are poor predictors of phylogenetic relatedness in the mistletoe genus Viscum L. Mol. Phylogenet. Evol. 2019, 131, 106–115. [Google Scholar] [CrossRef]
- Muche, M.; Muasya, A.M.; Tsegay, B.A. Biology and resource acquisition of mistletoes, and the defense responses of host plants. Ecol. Process 2022, 11, 24. [Google Scholar] [CrossRef]
- Patel, B.P.; Singh, P.K. Viscum articulatum Burm. f.: A review on its phytochemistry, pharmacology and traditional uses. J. Pharm. Pharmacol. 2018, 70, 159–177. [Google Scholar] [CrossRef]
- Adeneye, A.A. Subchronic and chronic toxicities of African medicinal plants. In Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 99–133. [Google Scholar] [CrossRef]
- Aparicio Martínez, A.; Gallego Cidoncha, M.J.; Vázquez, C. Reproductive biology of Viscum cruciatum (viscaceae) in southern Spain. Int. J. Plant Sci. 1995, 156, 42–49. [Google Scholar] [CrossRef]
- Smith, D.; Barkman, T.J.; de Pamphilis, C.W. Hemiparasitism. In Encyclopedia of Biodiversity, 2nd ed.; Scheiner, M.S., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2001; pp. 70–78. [Google Scholar] [CrossRef]
- Besri, M. Viscum cruciatum: A threat to the olive production in the Moroccan Rif Mountains. IOBC WPRS Bull. 2005, 28, 169. [Google Scholar]
- Sunil Kumar, K.N.; Puneeth, V.S.; Tamizh, M.M.; Rubeena, M. Monograph on quality standards of Viscum angulatum B. Heyne ex DC. Indian J. Nat. Prod. Resour. 2021, 11, 320–332. [Google Scholar] [CrossRef]
- Wiens, D.; Tölken, H.R. Viscaceae. In Flora of Southern Africa; Leistner, O.A., Ed.; Botanical Research Institute: Pretoria, South Africa, 1979; Volume 10, pp. 43–56. [Google Scholar]
- Sosnovsky, Y.; Krasylenko, Y.; Nachychko, V. Viscum meyeri (Viscaceae)—A new name for Viscum anceps, an old-established mistletoe species endemic to southern Africa. Phytotaxa 2021, 523, 284–290. [Google Scholar] [CrossRef]
- Wiens, D.; Barlow, B.A. Translocation heterozygosity in southern African species of Viscum. Bothalia 1980, 13, 161–169. [Google Scholar] [CrossRef]
- Anselmo-Moreira, F.; Teixeira-Costa, L.; Ceccantini, G.; Furlan, C.M. Mistletoe effects on the host tree Tapirira guianensis: Insights from primary and secondary metabolites. Chemoecology 2019, 29, 11–24. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Al-Nomari, G.S.; Assaeed, A.M.; Facelli, J.M.; Dar, B.M.; El-Bana, M.I.; Abd-ElGawad, A.M. Infection by Plicosepalus curviflorus mistletoe affects the nutritional elements of Acacia species and soil nutrient recycling in an arid rangeland. Plant Ecol. 2020, 221, 1017–1028. [Google Scholar] [CrossRef]
- Ahmad, S.; Mir, N.; Sultan, S. White-berry mistletoe (Viscum album L.): A hemiparasitic plant: Occurrence and ethnobotanical use in Kashmir. J. Pharmacog. Phytochem. 2018, 7, 1831–1833. [Google Scholar]
- Türe, C.; Böcük, H.; Aşan, Z. Nutritional relationships between hemi-parasitic mistletoe and some of its deciduous hosts in different habitats. Biologia 2010, 65, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Okubamichael, D.Y.; Griffiths, M.E.; Ward, D. Host specificity in parasitic plants—Perspectives from mistletoes. AoB Plants 2016, 8, plw069. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.F.; McComb, J.A.; Taylor-Robinson, A.W. Host species of mistletoes (Loranthaceae and Viscaceae) in Australia. Aust. J. Bot. 2020, 68, 1–13. [Google Scholar] [CrossRef]
- Szmidla, H.; Tkaczyk, M.; Plewa, R.; Tarwacki, G.; Sierota, Z. Impact of common mistletoe (Viscum album L.) on Scots pine forests—A call for action. Forests 2019, 10, 847. [Google Scholar] [CrossRef]
- Griebel, A.; Watson, D.; Pendall, E. Mistletoe, friend and foe: Synthesizing ecosystem implications of mistletoe infection. Environ. Res. Letters 2017, 12, 115012. [Google Scholar] [CrossRef]
- Griebel, A.; Metzen, D.; Pendall, E.; Nolan, R.H.; Clarke, H.; Renchon, A.A.; Boer, M.M. Recovery from Severe Mistletoe Infection After Heat- and Drought-Induced Mistletoe Death. Ecosystems 2022, 25, 1–16. [Google Scholar] [CrossRef]
- Bhat, K.A.; Akhtar, S.; Dar, N.A.; Bhat, M.I.; Bhat, F.A.; Rizwan, R.; Horielov, O.; Krasylenko, Y. Mistletoe Eradicator-A Novel Tool for Simultaneous Mechanical and Chemical Control of Mistletoe. J. Vis. Exp. 2022, 181, e63455. [Google Scholar] [CrossRef]
- Ndagurwa, H.G.T.; Dube, J.S. Nutritive value and digestibility of mistletoes and woody species browsed by goats in a semi-arid savanna, southwest Zimbabwe. Livest. Sci. 2013, 151, 163–170. [Google Scholar] [CrossRef]
- Jibril, J.A.; Gazali, Y.M.; Dantani, M.; Alamin, H.; Zannah, B.B. Performance of Balami Rams Fed Graded Levels of Mistletoe Leaves (Viscum album) and Sorghum Stover in Semi-Arid Zone of Borno State, Nigeria. Niger. J. Anim. Sci. Technol. 2020, 3, 25–31. [Google Scholar]
- Hawu, O.; Ravhuhali, K.E.; Mokoboki, H.K.; Lebopa, C.K.; Sipango, N. Proximate analysis, in vitro dry matter degradability and palatability index of legume residues and maize straws for ruminants. Legume Res. 2022, 45, 601–607. [Google Scholar] [CrossRef]
- Watson, L.H.; Owen-Smith, N. Phenological influences on the utilization of woody plants by eland in semi-arid shrubland. Afr. J. Ecol. 2002, 40, 65–75. [Google Scholar] [CrossRef]
- Atalay, A.İ. Determination of nutritive value and anti-methanogenic potential of mistletoe leaves (Viscum album) grown on different host. Int. J. Agric. Forest. Life Sci. 2020, 4, 120–123. [Google Scholar]
- Madibela, O.R.; Boitumelo, W.S.; Letso, M. Chemical composition and in vitro dry matter digestibility of four parasitic plants (Tapinanthus lugardii, Erianthenum ngamicum, Viscum rotundifolium and Viscum verrucosum) in Botswana. Anim Feed Sci Technol. 2000, 84, 97–106. [Google Scholar] [CrossRef]
- Madibela, O.R.; Mabutho, S.; Sebolai, B. Dry matter and crude protein degradability of four parasitic plants (Mistletoes) associated with browse trees in Botswana. Trop. Anim. Health Prod. 2003, 35, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Mani, V.; Pal, R.P. Vanadium in biosphere and its role in biological processes. Biol.l Trace Elem. Res. 2018, 186, 52–67. [Google Scholar] [CrossRef]
- Diniz, W.J.; Reynolds, L.P.; Borowicz, P.P.; Ward, A.K.; Sedivec, K.K.; McCarthy, K.L.; Kassetas, C.J.; Baumgaertner, F.; Kirsch, J.D.; Dorsam, S.T.; et al. Maternal vitamin and mineral supplementation and rate of maternal weight gain affects placental expression of energy metabolism and transport-related genes. Genes 2021, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Umucalılar, H.D.; Gülşen, N.; Coşkun, B.E.H.İ.Ç.; Hayirli, A.; Dural, H.Ü.S.E.Y.İ.N. Nutrient composition of mistletoe (Viscum album) and its nutritive value for ruminant animals. Agroforest. Syst. 2007, 71, 77–87. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Hernandez, L.L.; Bruckmaier, R.M. Endocrine pathways to regulate calcium homeostasis around parturition and the prevention of hypocalcemia in periparturient dairy cows. Animal 2020, 14, 330–338. [Google Scholar] [CrossRef]
- Gałęska, E.; Wrzecińska, M.; Kowalczyk, A.; Araujo, J.P. Reproductive Consequences of Electrolyte Disturbances in Domestic Animals. Biology 2022, 11, 1006. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle; National Academy Press: Washington, DC, USA, 1996.
- Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; Okoh, A.I. Fossil shell flour in livestock production: A Review. Animals 2019, 9, 70. [Google Scholar] [CrossRef]
- Bhalakiya, N.; Haque, N.; Patel, P.; Joshi, P. Role of trace minerals in animal production and reproduction. IntJ. Livest. Res. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Hill, G.M.; Shannon, M.C. Copper and zinc nutritional issues for agricultural animal production. Biol. Trace Elem. Res. 2019, 188, 148–159. [Google Scholar] [CrossRef]
- Bakhshizadeh, S.; Aghjehgheshlagh, F.M.; Taghizadeh, A.; Seifdavati, J.; Navidshad, B. Effect of zinc sources on milk yield, milk composition and plasma concentration of metabolites in dairy cows. S. Afr. J. Anim. Sci. 2019, 49, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Angeles-Hernandez, J.C.; Miranda, M.; Muñoz-Benitez, A.L.; Vieyra-Alberto, R.; Morales-Aguilar, N.; Paz, E.A.; Gonzalez-Ronquillo, M. Zinc supplementation improves growth performance in small ruminants: A systematic review and meta-regression analysis. Anim. Prod. Sci. 2021, 61, 621–629. [Google Scholar] [CrossRef]
- Fadl, A.M.; Abdelnaby, E.A.; El-Sherbiny, H.R. Supplemental dietary zinc sulphate and folic acid combination improves testicular volume and haemodynamics, testosterone levels and semen quality in rams under heat stress conditions. Reprod. Domest. Anim. 2022, 57, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Cortinhas, C.S.; Freitas Júnior, J.E.D.; Naves, J.D.R.; Porcionato, M.A.D.F.; Silva, L.F.P.; Rennó, F.P.; Santos, M.V.D. Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: Intake, blood metabolic profile, milk yield and composition. Rev. Bras. de Zootec. 2012, 41, 1477–1483. [Google Scholar] [CrossRef]
- Wysocka, D.; Snarska, A.; Sobiech, P. Copper-an essential micronutrient for calves and adult cattle. J. Elementol. 2019, 24, 101–110. [Google Scholar] [CrossRef]
- Pugh, D.G. Feeding Practices in Sheep. In MSD and the MSD Veterinary Manual; Merck & Co., Inc.: Rahway, NJ, USA, 2020. [Google Scholar]
- MacPherson, A. Trace-mineral status of forages. In Forage Evaluation in Ruminant Nutrition; Givens, D.I., Owen, E., Axford, R.F.E., Amed, H.M., Eds.; CAB International: Wallingford, UK, 2000; pp. 345–370. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001.
- Mutlu, S.; Osma, E.; Ilhan, V.; Turkoglu, H.I.; Atici, O. Mistletoe (Viscum album) reduces the growth of the Scots pine by accumulating essential nutrient elements in its structure as a trap. Trees 2016, 30, 815–824. [Google Scholar] [CrossRef]
- García-García, J.D.; Anguiano-Cabello, J.C.; Arredondo-Valdés, R.; Candido del Toro, C.A.; Martínez-Hernández, J.L.; Segura-Ceniceros, E.P.; Govea-Salas, M.; González-Chávez, M.L.; Ramos-González, R.; Esparza-González, S.C.; et al. Phytochemical characterization of Phoradendron bollanum and Viscum album subs. austriacum as Mexican mistletoe plants with antimicrobial activity. Plants 2021, 10, 1299. [Google Scholar] [CrossRef]
- Djmouai, D.; Saidi, M.; Rahmani, Z.; Djmouai, A. Qualitative phytochemical analysis and estimation of antioxidant activities, phenolics, flavonoids and tannins. J. Fundam. Appl. Sci. 2016, 8, 1–4. [Google Scholar]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm.l Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Egbuna, C.; Ifemeje, J.C. Biological functions and anti-nutritional effects of phytochemicals in living system. IOSR J. Pharm. Biol. Sci. 2015, 10, 10–19. [Google Scholar]
- Ohikhena, F.U.; Wintola, O.A.; Afolayan, A.J. Proximate composition and mineral analysis of Phragmanthera capitata (Sprengel) Balle, a mistletoe growing on rubber tree. Res. J. Bot. 2017, 12, 23–31. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, D.; Cardoso, A.D.S.; Corrêa, D.C.D.C.; Ferreira, M.R.; Andrade, M.E.B.; da Cruz, L.H.G.; Ruggieri, A.C.; Reis, R.A. Effects of condensed tannins on greenhouse gas emissions and nitrogen dynamics from urine-treated grassland soil. Environ. Sci. Pollut. Res. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- van Cleef, F.O.S.; Dubeux, J.C.B.; Ciriaco, F.M.; Henry, D.D.; Ruiz-Moreno, M.; Jaramillo, D.M.; Garcia, L.; Santos, E.R.S.; DiLorenzo, N.; Vendramini, J.M.B.; et al. Inclusion of a tannin-rich legume in the diet of beef steers reduces greenhouse gas emissions from their excreta. Sci. Rep. 2022, 12, 1–11. [Google Scholar]
- Ologhobo, A.D.; Akangbe, E.; Adejumo, I.O.; Ere, R.; Agboola, B. Haematological and histological evaluation of African mistletoe (Viscum albium) leaf meal as feed additive for broilers. Annu. Res. Rev. Biol. 2017, 15, 1–7. [Google Scholar] [CrossRef]
- Malada, P.M.; Mogashoa, M.M.; Masoko, P. The evaluation of cytotoxic effects, antimicrobial activity, antioxidant activity and combination effect of Viscum rotundifolium and Mystroxylon aethiopicum. S. Afr. J. Bot. 2022, 147, 790–798. [Google Scholar] [CrossRef]
- Ishiwu, C.N.; Obiegbuna, J.E.; Aniagolu, N.M. Evaluation of chemical properties of mistletoe leaves from three trees (avocado, African oil bean and kola). Niger. Food J. 2013, 31, 1–7. [Google Scholar] [CrossRef]
- Szurpnicka, A.; Kowalczuk, A.; Szterk, A. Biological activity of mistletoe: In vitro and in vivo studies and mechanisms of action. Arch. Pharmacal. Res. 2020, 43, 593–629. [Google Scholar] [CrossRef] [PubMed]
- Drury, S. Herbal remedies for livestock in seventeenth and eighteenth century England: Some examples. Folklore 1985, 96, 243–247. [Google Scholar] [CrossRef]
- Iso, I.E.; Kennedy, O.O.O. Growth performance, carcass and meat quality of rabbits fed mistletoe leaf meal diet. J. Livest. Sci. 2021, 12, 220–228. [Google Scholar] [CrossRef]
- Letso, M.; Thela, N. The substitution of a parasitic plant (Viscum verrucosum) for lucerne hay in sheep diets. Int. J. Livest. Res. 2013, 3, 33–41. [Google Scholar]
- Madibela, O.R.; Jansen, K. The use of indigenous parasitic plant (Viscum verrocosum) in reducing faecal egg counts in female Tswana goats. Livest. Res. Rural Dev. 2003, 15, 9. [Google Scholar]
- Kim, J.H.; Kim, D.W.; Kang, K.H.; Jang, B.G.; Yu, D.J.; Na, J.C.; Kim, S.H.; Lee, D.S.; Suh, O.S.; Choi, K.D.; et al. Effects on dietary Korean mistletoe on performance and blood characteristics in broilers. Korean J. Poult. Sci. 2007, 34, 129–136. [Google Scholar] [CrossRef]
- Saleh, I.; Maigandi, S.A.; Hudu, M.I.; Abubakar, M.I.; Shehu, A.U. Uses and chemical composition of Misletoe (Viscum album) obtained from different species. Dutse J. Agric. Food Sec. 2015, 2, 8–12. [Google Scholar]
- Ologhobo, A.D.; Oluseun, A.I.; Owoeye, T.; Esther, A. Influence of mistletoe (Viscum album) leaf meal on growth performance, carcass characteristics and biochemical profile of broiler chickens. Food Feed Res. 2017, 44, 163–171. [Google Scholar] [CrossRef]
Distribution | References | |
---|---|---|
Viscum spp. with leaves | ||
V. articulatum | Asia, Australia | [13] |
V. album | Asia, Europe and Nepal | [14] |
V. cruciatum | Asia, Africa and Europe | [15,16,17] |
V. rotundifolium | Africa | [5] |
Viscum spp. without leaves | ||
V. angulatum | Asia | [18] |
V. combreticola | Africa | [19] |
V. anceps | Africa | [20] |
V. songimveloensis | Africa | [7] |
V. verrucosum Harv. | Africa | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawu, O.; Ravhuhali, K.E.; Musekwa, M.G.; Sipango, N.; Mudau, H.S.; Mokoboki, K.H.; Moyo, B. Utilization of the Viscum Species for Diet and Medicinal Purposes in Ruminants: A Review. Animals 2022, 12, 2569. https://doi.org/10.3390/ani12192569
Hawu O, Ravhuhali KE, Musekwa MG, Sipango N, Mudau HS, Mokoboki KH, Moyo B. Utilization of the Viscum Species for Diet and Medicinal Purposes in Ruminants: A Review. Animals. 2022; 12(19):2569. https://doi.org/10.3390/ani12192569
Chicago/Turabian StyleHawu, Onke, Khuliso Emmanuel Ravhuhali, Mutshidzi Given Musekwa, Nkosomzi Sipango, Humbelani Silas Mudau, Kwena Hilda Mokoboki, and Bethwell Moyo. 2022. "Utilization of the Viscum Species for Diet and Medicinal Purposes in Ruminants: A Review" Animals 12, no. 19: 2569. https://doi.org/10.3390/ani12192569
APA StyleHawu, O., Ravhuhali, K. E., Musekwa, M. G., Sipango, N., Mudau, H. S., Mokoboki, K. H., & Moyo, B. (2022). Utilization of the Viscum Species for Diet and Medicinal Purposes in Ruminants: A Review. Animals, 12(19), 2569. https://doi.org/10.3390/ani12192569