The Role of Housing Conditions on the Success of Artificial Insemination in Intensively Reared Dairy Ewes in Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms and Animals
2.2. Estrous Synchronization and AI Procedure
2.3. Data Collection and Handling
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paraskevopoulou, C.; Theodoridis, A.; Johnson, M.; Ragkos, A.; Arguile, L.; Smith, L.; Vlachos, D.; Arsenos, G. Sustainability Assessment of Goat and Sheep Farms: A Comparison Between European Countries. Sustainability 2020, 12, 3099. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, A.E.; Fernandez, J.; Bruno-Galarraga, M.M.; Spinelli, M.V.; Cueto, M.I. Technical recommendations for artificial insemination in sheep. Anim. Reprod. 2019, 16, 803–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barillet, F.; Marie, C.; Jacquin, M.; Lagriffoul, G.; Astruc, J.M. The French Lacaune dairy sheep breed: Use in France and abroad in the last 40 years. Livest. Prod. Sci. 2001, 71, 17–29. [Google Scholar] [CrossRef]
- Faigl, V.; Vass, N.; Jávor, A.; Kulcsár, M.; Solti, L.; Amiridis, G.; Cseh, S. Artificial insemination of small ruminants—A review. Acta Vet. Hung. 2012, 60, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Raoul, J.; Elsen, J.M. Effect of the rate of artificial insemination and paternity knowledge on the genetic gain for French meat sheep breeding programs. Livest. Sci. 2020, 232, 103932. [Google Scholar] [CrossRef]
- Anel, L.; Alvarez, M.; Martinez-Pastor, F.; Garcia-Macias, V.; Anel, E.; De Paz, P. Improvement Strategies in Ovine Artificial Insemination. Reprod. Domest. Anim. 2006, 41, 30–42. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015; Available online: http://www.fao.org/3/a-i4787e/index.html (accessed on 12 July 2022).
- Alvarez, M.; Anel-Lopez, L.; Boixo, J.C.; Chamorro, C.; Neila-Montero, M.; Montes-Garrido, R.; de Paz, P.; Anel, L. Current challenges in sheep artificial insemination: A particular insight. Reprod. Domest. Anim. 2019, 54, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Halbert, G.W.; Dobson, H.; Walton, J.S.; Buckrell, B.C. The structure of the cervical canal of the ewe. Theriogenology 1990, 33, 977–992. [Google Scholar] [CrossRef]
- Salamon, S.; Maxwell, W.M.C. Frozen storage of ram semen II. Causes of low fertility after cervical insemination and methods of improvement. Anim. Reprod. Sci. 1995, 38, 1–36. [Google Scholar] [CrossRef]
- Eurostat. Sheep Population-Annual Data. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_lssheep&lang=en (accessed on 15 July 2022).
- Valergakis, G.E.; Gelasakis, A.I.; Oikonomou, G.; Arsenos, G.; Fortomaris, P.; Banos, G. Profitability of a dairy sheep genetic improvement program using artificial insemination. Animal 2010, 4, 1628–1633. [Google Scholar] [CrossRef]
- Arsenos, G.; Vouraki, S.; Ragkos, A.; Theodoridis, A. Trends and challenges for sustainable development of sheep and goat systems. In Pastoralism and Sustainable Development, Proceedings of the International E-Workshop Organized in the Framework of PACTORES Project, Valenzano, Bari, Italy, 14–15 July 2021; Capone, R., Bottalico, F., El Bilali, H., Ottomano Palmisano, G., Cardone, G., Acquafredda, A., Eds.; CIHEAM (Options Méditerranéennes: A): Bari, Italy, 2021; pp. 13–33. [Google Scholar]
- Donovan, A.; Kummen, E.; Duffy, P.; Boland, M.P. Fertility in the ewe following cervical insemination with fresh or frozen-thawed at a natural or syncronized oestrus. Anim. Reprod. Sci. 2004, 84, 359–368. [Google Scholar] [CrossRef]
- Anel, L.; Kaabi, M.; Abroug, B.; Alvarez, M.; Anel, E.; Boixo, J.C.; de la Fuente, L.F.; de Paz, P. Factors influencing the success of vaginal and laparoscopic artificial insemination in Churra ewes: A field assay. Theriogenology 2005, 63, 1235–1247. [Google Scholar] [CrossRef]
- Santolaria, P.; Palacin, I.; Yániz, J.L. Management Factors Affecting Fertility in Sheep. In Artificial Insemination in Farm Animals; Manafi, M., Ed.; INTECH: Rijeka, Croatia, 2011. [Google Scholar]
- Priskas, S.; Termatzidou, S.A.; Gargani, S.; Arsenos, G. Evaluation of Factors Affecting Pregnancy Rate after Cervical Insemination of Dairy Ewes in Greece. J. Vet. Sci. Med. 2019, 7, 1–7. [Google Scholar]
- Palacios, C.; Abecia, J.A. Meteorological variables affect fertility rate after intrauterine artificial insemination in sheep in a seasonal-dependent manner: A 7-year study. Int. J. Biometeorol. 2015, 59, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Santolaria, P.; Yániz, J.; Fantova, E.; Vicente-Fiel, S.; Palacín, I. Climate factors affecting fertility after cervical insemination during the first months of the breeding season in Rasa Aragonesa ewes. Int. J. Biometeorol. 2014, 58, 1651–1655. [Google Scholar] [CrossRef]
- Abecia, J.A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C. Temperature and rainfall are related to fertility rate after spring artificial insemination in small ruminants. Int. J. Biometeorol. 2016, 60, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Arrébola, F.; Sánchez, M.; López, M.D.; Rodríguez, M.; Pardo, B.; Palacios, C.; Abecia, J.A. Effects of weather and management factors on fertility after artificial insemination in Florida goats: A ten-year study. Small Rumin. Res. 2016, 137, 47–52. [Google Scholar] [CrossRef]
- Van Wettere, W.H.; Kind, K.L.; Gatford, K.L.; Swinbourne, A.M.; Leu, S.T.; Hayman, P.T.; Walker, S.K. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 2021, 12, 26. [Google Scholar] [CrossRef]
- Schefers, J.M.; Weigel, K.A.; Rawson, C.L.; Zwald, N.R.; Cook, N.B. Management practices associated with conception rate and service rate of lactating Holstein cows in large, commercial dairy herds. J. Dairy Sci. 2010, 93, 1459–1467. [Google Scholar] [CrossRef] [Green Version]
- Hodel, C.; Nathues, H.; Grahofer, A. Effect of housing conditions, management procedures and traits of the external male reproductive tract on the sexual behaviour of natural mating boars. Theriogenology 2021, 167, 44–50. [Google Scholar] [CrossRef]
- Evans, G.; Maxwell, W.M.C. Salamon’s Artificial Insemination of Sheep and Goats, 3rd ed.; Butterworths: Sydney, Australia, 1987; pp. xi+194. [Google Scholar]
- Baril, G.; Chemineau, P.; Cognie, Y.; Guerin, Y.; Leboeuf, B. Manuel de Formation pour l’insémination Artificielle chez les Ovins et les Caprins; FAO: Rome, Italy, 1993. [Google Scholar]
- Russel, A.J.F.; Dowey, J.M.; Gunn, R.G. Subjective assessment of body fat in live sheep. J. Agric. Sci. 1969, 72, 451–454. [Google Scholar] [CrossRef]
- Dwyer, C.; Ruiz, R.; Beltran de Heredia, I.; Canali, E.; Barbieri, S.; Zanella, A. AWIN Welfare Assessment Protocol for Sheep. 2015. Available online: https://air.unimi.it/handle/2434/269114#.YW0P9hwRVPZ (accessed on 13 July 2022).
- Kelly, C.F.; Bond, T.E. Bioclimatic factors and their measurement. In A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971; pp. 71–92. [Google Scholar]
- Finocchiaro, R.; Van Kaam, J.B.C.H.M.; Portolano, B.; Misztal, I. Effect of heat stress on production of Mediterranean dairy sheep. J. Dairy Sci. 2005, 88, 1855–1864. [Google Scholar] [CrossRef] [Green Version]
- Ramón, M.; Díaz, C.; Pérez-Guzman, M.D.; Carabaño, M.J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 2016, 99, 5764–5779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shock, D.A.; LeBlanc, S.J.; Leslie, K.E.; Hand, K.; Godkin, M.A.; Coe, J.B.; Kelton, D.F. Studying the relationship between on-farm environmental conditions and local meteorological station data during the summer. J. Dairy. Sci. 2016, 99, 2169–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevi, A.; Casamassima, D.; Pulina, G.; Pazzona, A. Factors of welfare reduction in dairy sheep and goats. Ital. J. Anim. Sci. 2009, 8, 81–101. [Google Scholar] [CrossRef]
- Arrébola, F.; Palacios, C.; Gil, M.J.; Abecia, J.A. Management and meteorological factors affect fertility after artificial insemination in Murciano-Granadina goats. Anim. Prod. Sci. 2015, 56, 1906–1912. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef]
- De Rensis, F.; Scaramuzzi, R.J. Heat stress and seasonal effects on reproduction in the dairy cow—A review. Theriogenology 2003, 60, 1139–1151. [Google Scholar] [CrossRef]
- Jordan, E.R. Effects of heat stress on reproduction. J. Dairy Sci. 2003, 86, 104–114. [Google Scholar] [CrossRef]
- Biffani, S.; Bernabucci, U.; Vitali, A.; Lacetera, N.; Nardone, A. Effect of heat stress on nonreturn rate of Italian Holstein cows. J. Dairy Sci. 2016, 99, 5837–5843. [Google Scholar] [CrossRef] [Green Version]
- Badinga, L.; Thatcher, W.W.; Diaz, T.; Drost, M.; Wolfenson, D. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology 1993, 39, 797–810. [Google Scholar] [CrossRef]
- Wilson, S.J.; Marion, R.S.; Spain, J.N.; Spiers, D.E.; Keisler, D.H.; Lucy, M.C. Effects of controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J. Dairy Sci. 1998, 81, 2124–2131. [Google Scholar] [CrossRef]
- Sawyer, G.J.; Lindsay, D.R.; Martin, G.B. The influence of radiant heat load on reproduction in the Merino ewe. III. Duration of oestrus, cyclical oestrous activity, plasma progesterone, LH levels and fertility of ewes exposed to high temperatures before mating. Aust. J. Agric. Res. 1979, 30, 1151–1162. [Google Scholar] [CrossRef]
- Gharibzadeh, Z.; Riasi, A.; Ostadhosseini, S.; Hosseini, S.M.; Hajian, M.; Nasr-Esfahani, M.H. Effects of heat shock during the early stage of oocyte maturation on the meiotic progression, subsequent embryonic development and gene expression in ovine. Zygote 2015, 23, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, T.E.; Johnson, G.A.; Bazer, F.W.; Burghardt, R.C. Implantation mechanisms: Insights from the sheep. Reproduction 2004, 128, 657–668. [Google Scholar] [CrossRef]
- Dixon, A.B.; Knights, M.; Winkler, J.L.; Marsh, D.J.; Pate, J.L.; Wilson, M.E.; Inskeep, E.K. Patterns of late embryonic and fetal mortality and association with several factors in sheep. J. Anim. Sci. 2007, 85, 1274–1284. [Google Scholar] [CrossRef]
- Sevi, A.; Massa, S.; Annicchiarico, G.; Dell’Aquila, S.; Muscio, A. Effect of stocking density on ewes’ milk yield, udder health and microenvironment. J. Dairy Res. 1999, 66, 489–499. [Google Scholar] [CrossRef]
- Caroprese, M. Sheep housing and welfare. Small Rumin. Res. 2008, 76, 21–25. [Google Scholar] [CrossRef]
- Caroprese, M.; Annicchiarico, G.; Schena, L.; Muscio, A.; Migliore, R.; Sevi, A. Influence of space allowance and housing conditions on the welfare, immune response and production performance of dairy ewes. J. Dairy Res. 2009, 76, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Caraviello, D.Z.; Weigel, K.A.; Craven, M.; Gianola, D.; Cook, N.B.; Nordlund, K.V.; Fricke, P.M.; Wiltbank, M.C. Analysis of reproductive performance of lactating cows on large dairy farms using machine learning algorithms. J. Dairy Sci. 2006, 89, 4703–4722. [Google Scholar] [CrossRef]
- Averós, X.; Lorea, A.; de Heredia, I.B.; Ruiz, R.; Marchewka, J.; Arranz, J.; Estevez, I. The behaviour of gestating dairy ewes under different space allowances. Appl. Anim. Behav. Sci. 2014, 150, 17–26. [Google Scholar] [CrossRef]
- Sevi, A.; Taibi, L.; Albenzio, M.; Annicchiarico, G.; Muscio, A. Airspace effects on the yield and quality of ewe milk. J. Dairy Sci. 2001, 84, 2632–2640. [Google Scholar] [CrossRef]
- Sevi, A.; Albenzio, M.; Muscio, A.; Casamassima, D.; Centoducati, P. Effects of litter management on airborne particulates in sheep houses and on the yield and quality of ewe milk. Livest. Prod. Sci. 2003, 81, 1–9. [Google Scholar] [CrossRef]
- Casamassima, D.; Sevi, A.; Palazzo, M.; Ramacciato, R.; Colella, G.E.; Bellitti, A. Effects of two different housing systems on behavior, physiology and milk yield of Comisana ewes. Small Rumin. Res. 2001, 41, 151–161. [Google Scholar] [CrossRef]
- Thiéry, J.C.; Chemineau, P.; Hernandez, X.; Migaud, M.; Malpaux, B. Neuroendocrine interactions and seasonality. Domest. Anim. Endocrinol. 2002, 23, 87–100. [Google Scholar] [CrossRef]
- Boivin, C. Effect of Light Intensity on the Control of Reproduction in Ewes and on the Growth of Lambs. Master’s Thesis, Animal Sciences, Faculty of Graduate Studies of the University of Laval, Québec, QV, Canada, 2007. [Google Scholar]
Characteristics of Selected Flocks | Mean (SD 1) |
---|---|
Average number of adult ewes | 512.6 (386.56) |
Average number of rams | 20.3 (13.41) |
Age of yearlings at first mating (months) | 8.8 (1.45) |
Milk production (kg/ewe/lactation period) in liters | 361.7 (52.63) |
Variable | Category | Frequency |
---|---|---|
Access to yard | No | 65.4 (1362) |
Yes | 34.6 (721) | |
Space per animal | <1.5 m2/animal | 29.9 (623) |
≥1.5 m2/animal | 70.1 (1460) | |
Volume per animal | <9.5 m3/animal | 55.2 (1149) |
≥9.5 m3/animal | 44.8 (934) | |
Bedding renewal | ≤4 days | 61.8 (1287) |
>4 days | 32.8 (796) | |
Indoor light | Poor | 4.0 (83) |
Adequate | 58.3 (1215) | |
Good | 37.7 (785) |
Days in Relation to AI | |||||||
---|---|---|---|---|---|---|---|
Variable | −14 | −7 | −2 | 0 | +2 | +7 | +14 |
Tm 1 (°C) | 22.1 (2.75) | 22.9 (3.02) | 23.1 (3.97) | 22.6 (4.07) | 22.5 (4.68) | 22.3 (4.68) | 22.8 (5.09) |
Tmax 2 (°C) | 29.4 (3.28) | 31.0 (3.32) | 30.7 (2.97) | 30.4 (4.34) | 29.9 (5.09) | 30.0 (5.47) | 29.9 (6.55) |
RHm 3 | 0.6 (0.07) | 0.7 (0.05) | 0.6 (0.08) | 0.6 (0.07) | 0.6 (0.08) | 0.6 (0.06) | 0.6 (0.13) |
THIm 4 | 20.3 (2.28) | 20.9 (2.46) | 21.2 (3.28) | 20.6 (3.20) | 20.5 (3.68) | 20.3 (3.67) | 20.7 (3.88) |
THImax 5 | 24.5 (2.30) | 25.6 (2.39) | 25.4 (3.13) | 25.3 (3.04) | 24.9 (3.32) | 24.2 (5.0 3) | 25.0 (4.02) |
Periods Around AI (days) | |||
---|---|---|---|
Variable | −15 to −6 | −5 to +4 | +5 to +14 |
Tm 1 (°C) | 22.5 (2.55) | 21.7 (5.70) | 22.9 (5.13) |
Tmax 2(°C) | 30.2 (2.80) | 30.3 (4.07) | 30.0 (5.64) |
RHm 3 | 0.6 (0.06) | 0.6 (0.06) | 0.6 (0.07) |
THIm 4 | 20.7 (2.17) | 20.8 (2.87) | 20.5 (3.79) |
THImax 5 | 24.9 (2.19) | 24.9 (2.89) | 24.8 (3.76) |
Categories | 95% CI | |||||
---|---|---|---|---|---|---|
Variable | Compared | Reference | Odds Ratio | Lower | Upper | p-Value |
Access to yard | No | Yes | 1.47 | 1.21 | 1.78 | <0.001 |
Space | ≥1.5 m2/animal | <1.5 m2/animal | 1.30 | 1.06 | 1.57 | 0.009 |
Bedding renewal | ≤4 days | >4 days | 1.34 | 1.11 | 1.61 | 0.002 |
Tmax 1 (d 5 −14) | Continuous | 0.96 | 0.93 | 0.98 | 0.005 | |
Tmax 1 (d 5 −7) | Continuous | 0.95 | 0.92 | 0.97 | <0.001 | |
Tmax 1 (d 5 −2) | Continuous | 0.97 | 0.95 | 0.99 | 0.013 | |
Tmax 1 (d 5 0) | Continuous | 0.97 | 0.95 | 0.99 | 0.020 | |
Tmax 1 (d 5 +2) | Continuous | 0.98 | 0.96 | 0.99 | 0.049 | |
Tmax 1 (d 5 −15 to −6) | Continuous | 0.94 | 0.90 | 0.96 | <0.001 | |
Tmax 1 (d 5 −5 to +4) | Continuous | 0.97 | 0.95 | 0.99 | 0.033 | |
Tm 2 (d 5 −14) | Continuous | 0.96 | 0.93 | 0.99 | 0.029 | |
Tm 2 (d 5 −7) | Continuous | 0.95 | 0.92 | 0.98 | 0.002 | |
Tm 2 (d 5 0) | Continuous | 0.97 | 0.95 | 0.99 | 0.050 | |
Tm 2 (d 5 −15 to −6) | Continuous | 0.95 | 0.91 | 0.99 | 0.021 | |
THImax 3 (d 5 −14) | Continuous | 0.95 | 0.91 | 0.99 | 0.008 | |
THImax 3 (d5 −7) | Continuous | 0.92 | 0.89 | 0.96 | <0.001 | |
THImax 3 (d5 −2) | Continuous | 0.94 | 0.91 | 0.97 | 0.001 | |
THImax 3 (d 5 0) | Continuous | 0.96 | 0.93 | 0.99 | 0.01 | |
THImax 3 (d 5 +2) | Continuous | 0.97 | 0.94 | 0.99 | 0.026 | |
THImax 3 (d 5 −15 to −6) | Continuous | 0.93 | 0.89 | 0.97 | 0.002 | |
THIm 4 (d 5 −15 to −6) | Continuous | 0.93 | 0.89 | 0.97 | 0.002 | |
THIm 4 (d 5 −5 to +4) | Continuous | 0.96 | 0.93 | 0.99 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priskas, S.; Valergakis, G.; Tsakmakidis, I.; Vouraki, S.; Papanikolopoulou, V.; Theodoridis, A.; Arsenos, G. The Role of Housing Conditions on the Success of Artificial Insemination in Intensively Reared Dairy Ewes in Greece. Animals 2022, 12, 2693. https://doi.org/10.3390/ani12192693
Priskas S, Valergakis G, Tsakmakidis I, Vouraki S, Papanikolopoulou V, Theodoridis A, Arsenos G. The Role of Housing Conditions on the Success of Artificial Insemination in Intensively Reared Dairy Ewes in Greece. Animals. 2022; 12(19):2693. https://doi.org/10.3390/ani12192693
Chicago/Turabian StylePriskas, Stergios, Georgios Valergakis, Ioannis Tsakmakidis, Sotiria Vouraki, Vasiliki Papanikolopoulou, Alexandros Theodoridis, and Georgios Arsenos. 2022. "The Role of Housing Conditions on the Success of Artificial Insemination in Intensively Reared Dairy Ewes in Greece" Animals 12, no. 19: 2693. https://doi.org/10.3390/ani12192693