Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animals, Diets, Housing, and Treatment
2.3. Analysed Parameters
2.4. Femur Collection
2.5. Absorptiometric Measurements
2.6. Three-Point Bending Test
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Salgueiro, M.J.; Zubillaga, M.; Lysionek, A.; Sarabia, M.I.; Caro, R.; De Paoli, T.; Hager, A.; Boccio, J. Zinc as an essential micronutrient: A review. Nutr. Res. 2000, 20, 737–755. [Google Scholar] [CrossRef]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc Homeostasis in Humans. J. Nutr. 2000, 130, 1360S–1366S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dell, B.I. Role of zinc in plasma membrane function. J. Nutr. 2000, 130, 142S–143S. [Google Scholar] [CrossRef] [PubMed]
- Chiusaroli, R.; Maier, A.; Knight, M.C.; Byrne, M.; Calvi, L.M.; Baron, R.; Krane, S.M.; Schipani, E. Collagenase Cleavage of Type I Collagen is essential for both basal and Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor-induced osteoclast activation and has differential effects on discrete bone compartments. Endocrinology 2003, 144, 4106–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdavi-Roshan, M.; Ebrahimi, M.; Ebrahimi, A. Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin. Cases Miner. Bone Metab. 2015, 12, 18–21. [Google Scholar] [CrossRef]
- Ohinata, K.; Takemoto, M.; Kawanago, M.; Fushimi, S.; Shirakawa, H.; Goto, T.; Asakawa, A.; Komai, M. Orally administered zinc increases food intake via vagal stimulation in rats. J. Nutr. 2009, 139, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzoros, C.S.; Prasad, A.S.; Beck, F.W.J.; Grabowski, S.; Kaplan, J.; Adair, C.; Brewer, G.J. Zinc may regulate serum leptin concentrations in humans. Coll. Nutr. 1998, 17, 270–275. [Google Scholar] [CrossRef]
- Huang, D.; Zhuo, Z.; Fang, S.; Yue, M.; Feng, J. Different zinc sources have diverse impacts on gene expression of zinc absorption related transporters in intestinal porcine epithelial cells. Biol. Trace Elem. Res. 2016, 173, 325–332. [Google Scholar] [CrossRef]
- Hill, G.M.; Mahan, D.C.; Jolliff, J.S. Comparison of organic and inorganic zinc sources to maximize growth and meet the zinc needs of the nursery pig. J. Anim. Sci. 2014, 92, 1582–1594. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Lodemann, U.; Bondzio, A.; Gefeller, E.M.; Vahjen, W.; Aschenbach, R.; Zentek, J.; Pieper, R. A high amount of dietary zinc changes the expression of zinc transporters and metallothionein in jejunal epithelial cells in vitro and in vivo but does not prevent zinc accumulation in jejunal tissue of piglets. J. Nutr. 2013, 143, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Pang, Y.; Applegate, T.J. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. J. Agric. Food Chem. 2006, 54, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Blavi, L.; Sola-Oriol, D.; Perez, J.F.; Stein, H.H. Effects of zinc oxide and microbial phytase on digestibility of calcium and phosphorus in maize-based diets fed to growing pigs. J. Anim. Sci. 2017, 95, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.D.; Zhao, J.M.; Harrell, R.J.; Atwell, C.A.; Dibner, J.J. Trace mineral nutrition in poultry and swine. Asian-Australas J. Anim. Sci. 2010, 23, 1527–1534. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Q.; Wang, L.; Wang, Y.; Cheng, Z.; Yang, Z.; Yang, W. The effects of partially or completely substituted dietary zinc sulfate by lower levels of zinc methionine on growth performance, apparent total tract digestibility, immune function, and visceral indices in weaned piglets. Animals 2019, 9, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitrayova, S.; Windisch, W.; Von Heimendahl, E.; Müller, A.; Bartelt, J. Bioavailability of zinc from different sources in pigs. J. Anim. Sci. 2012, 90, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Antuszewicz, A.; Taciak, M.; Żebrowska, T. The short-chain fatty acid content in the caecal digesta of rats fed diets with various sources of fibre. J. Anim. Feed. Sci. 2005, 14, 521–524. [Google Scholar] [CrossRef] [Green Version]
- Tuśnio, A.; Pastuszewska, B.; Święch, E.; Taciak, M. Response of young pigs to feeding potato protein and potato fibre—Nutritional, physiological and biochemical parameters. J. Anim. Feed. Sci. 2011, 20, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Holodova, M.; Cobanova, K.; Sefcikova, Z.; Barszcz, M.; Tuśnio, A.; Taciak, M.; Gresakova, L. Dietary zinc and fibre source can influence the mineral and antioxidant status of piglets. Animals 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, P.J.; Kanjilal, D.; Teitelbaum, M.; Lin, S.S.; Cottrell, J.A. Zinc as a Therapeutic Agent in Bone Regeneration. Materials 2020, 13, 2211. [Google Scholar] [CrossRef]
- Hadley, K.B.; Newman, S.M.; Hunt, J.R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 2010, 21, 297–303. [Google Scholar] [CrossRef]
- Macdonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Dobrowolski, P.; Kwiecień, M.; Wawrzyniak, A.; Burmańczuk, N. Comparison of the effect of a standard inclusion level of inorganic zinc to organic form at lowered level on bone development in growing male Ross broiler chickens. Ann. Anim. Sci. 2016, 16, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Olgun, O.; Yildiz, A.Ö. Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Ann. Anim. Sci. 2017, 17, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Tüzün, A.E.; Olgun, O.; Yildiz, A.Ö. The effect of high-level dietary supplementation with different zinc sources on performance, eggshell quality and bone characteristics in layer quails. Agric. Life Life Agric. Conf. Proc. 2018, 1, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Świątkiewicz, S.; Koreleski, J. The effect of zinc and manganese source in the diet for laying hens on eggshell and bones quality. J. Vet. Med. 2008, 53, 555–563. [Google Scholar]
- Walker, A.R.P. Dietary fibre and mineral metabolism. Mol. Asp. Med. 1987, 9, 69–87. [Google Scholar] [CrossRef]
- Feng, W.; Marshall, R.; Lewis-Barned, N.J.; Goulding, A. Low follicular oestrogen levels in New Zealand women consuming high fibre diets: A risk factor for osteopenia? N. Z. Med. J. 1993, 106, 419–422. [Google Scholar]
- Lee, T.; Suh, H.S. Associations between Dietary Fiber Intake and Bone Mineral Density in Adult Korean Population: Analysis of National Health and Nutrition Examination Survey in 2011. J. Bone Metab. 2019, 26, 151–160. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, Y.; Lu, N.; Felson, D.T.; Kiel, D.P.; Sahni, S. Association between dietary fiber intake and bone loss in the framingham offspring study. J. Bone Miner. Res. 2018, 33, 241–249. [Google Scholar] [CrossRef]
- Barszcz, M.; Taciak, M.; Tuśnio, A.; Čobanová, K.; Grešáková, L. The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in groeing pigs. Livest. Sci. 2019, 227, 37–43. [Google Scholar] [CrossRef]
- Kirchgessner, M.; Roth, F.X. Schätzgleichungen zur Ermittlung des energetischen Futterwertes von Mischfuttermitteln für Schweine. J. Anim. Physiol. Anim. Nutr. 1983, 50, 270–275. [Google Scholar] [CrossRef]
- Buff, C.E.; Bollinger, D.W.; Ellersieck, M.R.; Brommelsiek, W.A.; Veum, T.L. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J. Anim. Sci. 2005, 10, 2380–2386. [Google Scholar] [CrossRef]
- Li, B.; Liu, H.; Jia, S. Zinc Enhances Bone Metabolism in Ovariectomized Rats and Exerts Anabolic Osteoblastic/Adipocytic Marrow Effects Ex Vivo. Biol. Trace Elem. Res. 2015, 163, 202–207. [Google Scholar] [CrossRef]
- Bortolin, R.H.; Da Graca Avezedo Areu, B.J.; Abboltt Calvao Ururahy, M.; Costa de Souza, K.S.; Bezerra, J.F.; Loureiro, M.B.; Da Silva, F.S.; Marques, D.E.; Batista, A.A.; Oliveira, G.; et al. Protection against T1DM-induced bone loss by zinc supplementation: Biomechanical, histomorphometric, and molecular analyses in STZ-induced diabetic rats. PLoS ONE 2015, 10, e0125349. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kwiecień, M.; Winiarska-Mieczan, A.; Świetlicka, I.; Wawrzyniak, A. Effect of zinc level and source (zinc oxide vs. zinc glycine) on bone mechanical and geometric parameters, and histomorphology in male Ross 308 broiler chicken. Braz. J. Poult. Sci. 2017, 19, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.C.S.; Raul, H.; Bortolin, R.H.; Freire-Neto, F.P.; Souza, K.S.C.; Bezerra, J.F.; Ururahy, M.A.G.; Ramos, A.M.O.; Himelfarb, S.T.; Abreu, B.J.; et al. Zinc supplementation reduces RANKL/OPG ratio and prevents bone architecture alterations in ovariectomized and type 1 diabetic rats. Nutr. Res. 2017, 40, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, W.; Jia, S.; Li, B. Puerarin and zinc additively prevent mandibular bone loss through inhibiting osteoclastogenesis in ovariectomized rats. Histol. Histopathol. 2017, 32, 851–860. [Google Scholar] [PubMed]
- Amin, N.; Clark CC, T.; Taghizadeh, M.; Djafarnejad, S. Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target. J. Trace Elem. Med. Biol. 2020, 57, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, E.H.; Lomeda, R.A.; Feldmann, J.; Nixon, G.F.; Beattie, J.H.; Kwun, I.S. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts. Mol. Nutr. Food Res. 2011, 55, 1552–1560. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Igarashi, A.; Uchiyama, S. Bioavailability of zinc yeast in rats: Stimulatory effect on bone calcification in vivo. J. Health Sci. 2004, 50, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Bio-Chem. 2010, 338, 241–254. [Google Scholar] [CrossRef]
- Andrulewicz-Botulińska, E.; Wiśniewska, R.; Brzóska, M.M.; Rogalska, J.; Galicka, A. Beneficial impact of zinc supplementation on the collagen in the bone tissue of cadmium-exposed rats. Appl. Toxicol. 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Suzuki, T.; Katsumata, S.I.; Matsuzaki, H.; Suzuki, K. Dietary zinc deficiency induces oxidative stress and promotes tumor necrosis factor-α- and interleukin-1β-induced RANKL expression in rat bone. J. Clin. Biochem. Nutr. 2016, 58, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Brzóska, M.M.; Rogalska, J. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol. Appl. Pharmacol. 2013, 272, 208–220. [Google Scholar] [CrossRef]
- Ceylan, M.N.; Akdas, S.; Yazihan, N. Is zinc an important trace element on bone-related diseases and complications? a meta-analysis and systematic review from serum level, dietary intake, and supplementation aspects. Biol. Trace Elem. Res. 2021, 199, 535–549. [Google Scholar] [CrossRef]
- Lucas, S.; Omata, Y.; Hofmann, J.; Böttcher, M.; Iljazovic, A.; Sarter, K.; Albrecht, O.; Schulz, O.; Krishnacoumar, B.; Krönke, G.; et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun. 2018, 18, 55. [Google Scholar] [CrossRef] [Green Version]
- Albarracin, M.; Weisstaub, A.R.; Zuleta, A.; Drago, S.R. Extruded whole grain diets based on brown, soaked and germinated rice. Effects on cecum health, calcium absorption and bone parameters of growing Wistar rats. Part I. Food Funct. 2016, 7, 2722–2728. [Google Scholar] [CrossRef] [PubMed]
- Aliarabi, H.; Fadayifar, A.; Tabatabaei, M.M.; Zamani, P.; Bahari, A.; Farahavar, A.; Dezfoulian, A.H. Effect of zinc source on haematological, metabolic parameters and mineral balance in lambs. Biol. Trace Elem. Res. 2015, 168, 82–90. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Salah, A.S.; Abdel-Latif, M.A.; Farghly, M.F.A. Effects of Dietary Supplementation of Zinc Oxide and Zinc Methionine on Layer Performance, Egg Quality, and Blood Serum Indices. Biol. Trace Elem. Res. 2018, 184, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Uniyal, S.; Garg, A.K.; Jadhav, S.E.; Chaturvedi, V.K.; Mohanta, R.K. Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest. Sci. 2017, 204, 59–64. [Google Scholar] [CrossRef]
- Garg, A.; Mudgal, V.; Dass, R. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim. Feed. Sci. Technol. 2008, 144, 82–96. [Google Scholar] [CrossRef]
- Yan, J.Y.; Zhang, G.W.; Zhang, C.; Tang, L.; Kuang, S.Y.; Yan, J.Y.; Zhang, G.W.; Zhang, C.; Tang, L.; Kuang, S.Y. Effect of dietary organic zinc sources on growth performance, incidence of diarrhoea, serum and tissue zinc concentrations, and intestinal morphology in growing rabbits. 2003. World Rabbit. Sci. 2017, 25, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Arikan, D.C.; Coskun, A.; Ozer, A.; Kilinc, M.; Atalay, F.; Arikan, T. Plasma selenium, zinc, copper and lipid levels in postmenopausal Turkish women and their relation with osteoporosis. Biol. Trace Elem. Res. 2011, 144, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Cho, S.H.; Park, H.M.; Chang, Y.K. Relationship between bone mineral density and dietary intake of β-carotene, vitamin C, zinc and vegetables in postmenopausal Korean women: A cross-sectional study. J. Int. Med. Res. 2016, 44, 1103–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyun, T.H.; Barrett-Connor, E.; Milne, D.B. Zinc intakes and plasma concentrations in men with osteoporosis: The Rancho Bernardo Study. Am. J. Clin. Nutr. 2004, 80, 715–721. [Google Scholar] [CrossRef]
- Sun, J.Y.; Wang, J.F.; Zi, N.T.; Jing, M.Y.; Weng, X.Y. Effects of zinc supplementation and deficiency on bone metabolism and related gene expression in rat. Biol. Trace. Elem. Res. 2011, 143, 394–402. [Google Scholar] [CrossRef]
- Cho, Y.E.; Lomeda, R.A.; Ryu, S.H.; Sohn, H.Y.; Shin, H.I.; Beattie, J.H.; Kwun, I.S. Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr. Res. Pract. 2007, 1, 113–122. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, Q.; Lv, M.; Wu, Z.; Xie, Z.; Han, X.; Wang, Y. Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets. Biol. Trace. Elem. Res. 2014, 158, 45–50. [Google Scholar] [CrossRef]
- Prins, H.J.; Braat, A.K.; Gawlitta, D.; Dehert, W.J.A.; Egan, D.A.; Tijssen-Slump, E.; Yuan, H.; Coffer, P.J.; Rozemuller, H.; Martens, A.C. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem. Cell Res. 2014, 12, 428–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | LCM | LCO | PFM | PFO |
---|---|---|---|---|
Chemical composition, g/kg dry matter | ||||
Crude ash | 53 | 52 | 55 | 55 |
Crude protein | 205 | 206 | 207 | 205 |
Fat (ether extract) | 48 | 46 | 47 | 45 |
Crude fibre | 47 | 45 | 45 | 45 |
Total phosphorus | 5.7 | 5.8 | 5.7 | 5.7 |
Zinc | 0.160 | 0.160 | 0.158 | 0.160 |
Energetic value, MJ/kg dry matter | ||||
Gross energy, | 18.8 | 18.9 | 18.8 | 18.6 |
Metabolisable energy * | 14.6 | 14.7 | 14.6 | 14.4 |
Zinc Source | Fibre Source | |
---|---|---|
Lignocellulose (LC) | Potato Fibre (PF) | |
0.033% ZnSO4 (Inorganic) | LCM (n = 6) | PFM (n = 6) |
0.046% ZnGly (Organic) | LCO (n = 6) | PFO (n = 6) |
Parameters | Type of Fibre | Type of Zinc | Mean | SEM | p-Value | Interaction | ||
---|---|---|---|---|---|---|---|---|
Organic ZnGly | Mineral ZnSO4 | Type of | ||||||
Fibre | Zinc | |||||||
Total zinc, mg | PF | 142 | 112 | 127 | 3.28 | 0.4552 | 0.0163 | ns |
LC | 142 | 126 | 134 | |||||
Mean | 142 | 119 | 131 | |||||
Digestible Zn, mg | PF | 45.4 | 40.1 | 42.8 | 0.825 | 0.0451 | 0.0580 | ns |
LC | 39.3 | 39.6 | 39.5 | |||||
mean | 42.4 | 39.8 | 41.1 |
Parameters | Type of Fibre | Type of Zinc | Mean | SEM | p-Value | Interaction | ||
---|---|---|---|---|---|---|---|---|
Organic ZnGly | Mineral ZnSO4 | Type of | ||||||
Fibre | Zinc | |||||||
Mass, g | PF | 121.88 | 112.33 | 117.11 | 1.970 | 0.0064 | 0.3022 | ns |
LC | 123.89 | 127.54 | 125.72 | |||||
Mean | 122.89 | 119.94 | 121.41 | |||||
Bone mineral density, g/cm2 | PF | 0.550 | 0.483 | 0.517 | 0.009 | 0.1982 | 0.0030 | ns |
LC | 0.509 | 0.488 | 0.499 | |||||
Mean | 0.530 | 0.485 | 0.508 | |||||
Bone mineral content, g | PF | 21.97 | 18.75 | 20.36 | 0.444 | 0.9050 | 0.0132 | ns |
LC | 20.59 | 20.24 | 20.42 | |||||
Mean | 21.28 | 19.50 | 20.39 | |||||
Maximum strength, kG | PF | 158.9 | 103.4 | 131.2 | 7.13 | 0.5790 | 0.0001 | ns |
LC | 129.7 | 126.2 | 128.0 | |||||
Mean | 144.3 | 114.8 | 129.6 | |||||
Elastic strength, kG | PF | 113.6 | 80.1 | 96.9 | 4.31 | 0.3913 | 0.0001 | ns |
LC | 95.4 | 94.1 | 94.8 | |||||
Mean | 104.5 | 87.1 | 95.9 | |||||
Stiffness, kG/mm | PF | 56.8 | 37.3 | 47.1 | 2.38 | 0.5391 | 0.0001 | ns |
LC | 47.7 | 43.4 | 45.6 | |||||
Mean | 52.3 | 40.4 | 46.3 |
Item | Intake of Digestible Zn | Concentration in the Blood Serum | |
---|---|---|---|
Zinc | Alkaline Phosphatase | ||
Bone mineral density | 0.866 (p = 0.0152) | 0.440 (p = 0.0560) | 0.549 (p = 0.4514) |
Bone mineral content | 0.749 (p = 0.0001) | 0.472 (p = 0.0528) | 0.777 (p = 0.2231) |
Maximum bone strength | 0.798 (p = 0.0001) | 0.400 (p = 0.0600) | 0.745 (p = 0.2563) |
Elastic bone strength | 0.826 (p = 0.0001) | 0.377 (p = 0.6230) | 0.744 (p = 0.2650) |
Bone stiffness | 0.773 (p = 0.0001) | 0.479 (p = 0.0587) | 0.694 (p = 0.3050) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, G.; Raj, S.; Sobol, M.; Kowalczyk, P.; Barszcz, M.; Taciak, M.; Tuśnio, A.; Čobanová, K.; Grešáková, Ľ.; Grela, E.R. Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets. Animals 2022, 12, 181. https://doi.org/10.3390/ani12020181
Skiba G, Raj S, Sobol M, Kowalczyk P, Barszcz M, Taciak M, Tuśnio A, Čobanová K, Grešáková Ľ, Grela ER. Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets. Animals. 2022; 12(2):181. https://doi.org/10.3390/ani12020181
Chicago/Turabian StyleSkiba, Grzegorz, Stanisława Raj, Monika Sobol, Paweł Kowalczyk, Marcin Barszcz, Marcin Taciak, Anna Tuśnio, Klaudia Čobanová, Ľubomira Grešáková, and Eugeniusz Ryszard Grela. 2022. "Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets" Animals 12, no. 2: 181. https://doi.org/10.3390/ani12020181
APA StyleSkiba, G., Raj, S., Sobol, M., Kowalczyk, P., Barszcz, M., Taciak, M., Tuśnio, A., Čobanová, K., Grešáková, Ľ., & Grela, E. R. (2022). Influence of the Zinc and Fibre Addition in the Diet on Biomechanical Bone Properties in Weaned Piglets. Animals, 12(2), 181. https://doi.org/10.3390/ani12020181